Ćwiczenie 9 BADANIA POWIERZCHNI PĘKANIA MATERIAŁÓW INŻYNIERSKICH *

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 9 BADANIA POWIERZCHNI PĘKANIA MATERIAŁÓW INŻYNIERSKICH *"

Transkrypt

1 Ćwiczenie 9 1. CEL ĆWICZENIA BADANIA POWIERZCHNI PĘKANIA MATERIAŁÓW INŻYNIERSKICH * Celem ćwiczenia jest poznanie strukturalnych oraz eksploatacyjnych przyczyn dekohezji materiałów inżynierskich oraz metodyki badań fraktograficznych przy zastosowaniu skaningowej mikroskopii elektronowej. 2. WIADOMOŚCI PODSTAWOWE 2.1. Wstęp Proces częściowego lub całkowitego rozdzielenia materiału pod wpływem przyłożonego obciążenia określany jest mianem dekohezji (pękania, utraty spójności). Przebieg pękania jest zależny od całokształtu zjawisk strukturalnych zachodzących w trakcie odkształcania materiału. Ponadto na dekohezję elementów konstrukcyjnych w istotny sposób wpływają rodzaj zastosowanego materiału oraz warunki eksploatacyjne. Do jednych z najważniejszych czynników zewnętrznych wpływających na odporność materiałów na pękanie jest sposób ich obciążania oraz temperatura eksploatacji. Z tych powodów ważnym konstrukcyjnie założeniem jest spełnienie określonej odporności na pękanie w warunkach zmiennych i złożonych obciążeń nie tylko w warunkach normalnych, ale również w niskim lub wysokim zakresie temperatury. Kolejnym ważnym zagadnieniem jest uwzględnienie aktywności chemicznej środowiska, w którym materiał pracuje, gdyż korozja sprzyja zarodkowaniu i rozwojowi pęknięć w elementach konstrukcyjnych. Z praktyki przemysłowej wiadomo, że podczas procesów technologicznych, jak np. obróbka plastyczna, cieplna, odlewanie czy spawanie, mogą pojawić się mikro- lub makropęknięia w wytwarzanych wyrobach, co prowadzi do ich wycofania z użycia ze względu na wspomniane wady. Jednak niektóre z technik wytwarzania, jak np. obróbka skrawaniem lub wykrawanie, wykorzystują zjawisko dekohezji do ostatecznego kształtowania elementów konstrukcyjnych Podczas eksploatacji konstrukcji wielkogabarytowych, jak rurociągi, mosty, samoloty, statki, ich zniszczenie poprzez dekohezję jest szczególnie niebezpieczne i powoduje znaczne straty finansowe. Przykładem mogą być wytwarzane podczas drugiej wojny światowej statki serii Liberty. Z powodu kruchego pękania kadłubów niektóre z nich zostały wycofane z eksploatacji lub zatonęły. Zjawisko to występowało szczególnie zimą na wodach północnego Atlantyku i było spowodowane niską odpornością na pękanie stali eksploatowanej w obniżonej temperaturze. Najprostszy przypadkiem dekohezji jest rozdzielenie próbki podczas statycznej próby rozciągania. Należy jednak nadmienić, że duża różnorodność czynników zewnętrznych i zjawisk strukturalnych zachodzących w materiale powoduje, że przebieg każdego procesu dekohezji należy rozpatrywać oddzielnie Fraktografia Fraktografia jest eksperymentalną dziedziną inżynierii materiałowej zajmującą się badaniami powierzchni dekohezji materiałów inżynierskich. Dostarcza ona ważnych informacji na temat * Opracowali: Stanisław M. Pytel, Krzysztof Miernik.

2 przebiegu, przyczyn i mechanizmów utraty spójności w materiałach na podstawie analizy topografii powierzchni pękania. Badania fraktograficzne prowadzono już pod koniec XIX wieku. Polegały one na makroskopowych obserwacjach powierzchni pękania. Prostota i dostępność badań makrofraktograficznych wykazuje użyteczność w warunkach przemysłowych. Jednak do badań naukowych oraz w celu scharakteryzowania pełnego obrazu powierzchni pękania jest to metoda niewystarczająca. Dopiero zastosowanie w badaniach fraktograficznych mikroskopii optycznej, a następnie mikroskopii elektronowej zapewniło uzyskanie dokładniejszych wyników. Główne wady mikroskopu optycznego, jak mała głębia ostrości i niska rozdzielczość, stwarzały trudności w otrzymaniu ostrego obrazu rozwiniętej powierzchni przełomu przy dużym powiększeniu. Zastosowanie mikroskopii elektronowej stanowiło istotny przełom w badaniach fraktograficznych. Początkowo badania fraktograficzne prowadzono na transmisyjnych mikroskopach elektronowych (TEM) z wykorzystaniem replik powierzchni pękania. Niestety pracochłonna preparatyka i związane z tym problemy ograniczała zastosowanie tej metody do badań topografii przełomów. Znaczny postęp w badaniach fraktograficznych osiągnięto w wyniku zastosowania do badań skaningowego mikroskopu elektronowego (SEM). Zasadnicza przewaga SEM nad TEM polega na bezpośredniej obserwacji powierzchni przełomów w szerokim zakresie powiększeń (nawet do kilkudziesięciu tysięcy) bez używania czasochłonnych replik. Dobra powtarzalność wyników, duża efektywność oraz prostota badań SEM stwarzają warunki do przeprowadzenia jakościowej oraz ilościowej analizy fraktograficznej Podstawowe rodzaje pękania Proces pękania materiałów klasyfikuje się według różnorodnych kryteriów. Podstawowym kryterium inżynierskim (w skali makroskopowej) jest intensywność odkształcenia plastycznego materiału i energochłonność procesu do momentu utraty spójności. Z tego względu rozróżnia się dwa graniczne rodzaje zjawiska dekohezji: 1) Pękanie ciągliwe (plastyczne), które wymaga zwiększania naprężeń w trakcie plastycznego odkształcania materiału. W tym rodzaju pękania powolnemu rozprzestrzenianiu się pęknięcia towarzyszy intensywne odkształcenie plastyczne i akumulacja energii odkształcenia w materiale. Pękanie plastyczne zazwyczaj kończy się rozdzieleniem materiału wzdłuż płaszczyzn, w których działają maksymalne naprężenia styczne. Pękanie ciągliwe, występuje w materiale pod wpływem naprężeń większych od granicy plastyczności Proces ten jest związany z dużym odkształceniem plastycznym, więc wymaga znacznego wydatku energii na propagację pęknięcia. Przebieg pękania ciągliwego może być zahamowany w każdym momencie w wyniku zmniejszenia naprężenia poniżej granicy plastyczności materiału. Stąd pękanie ciągliwe nie tworzy takiego niebezpieczeństwa, jak kruche i nie zdarza się zbyt często w eksploatacji maszyn i różnego rodzaju urządzeń. Przyczyną jego powstawania są najczęściej znaczne przeciążenia elementów konstrukcji do wartości naprężeń bliskich wytrzymałości doraźnej materiału. Oprócz tego może zachodzić wskutek gwałtownego naruszenia normalnych warunków eksploatacji konstrukcji, dużych błędów w projektowaniu i obliczeniach wytrzymałości. W skali makroskopowej przełom ciągliwy charakteryzuje się: matową powierzchnią o dużej chropowatości gdy rozdzielenie materiału rozprzestrzenia się prostopadle do kierunku działania maksymalnych naprężeń rozciągających; powierzchnią jedwabistą o małej chropowatości gdy pękanie jest zgodne z kierunkiem oddziaływania naprężeń stycznych.

3 2) Pękanie kruche (łupliwe) charakteryzuje się małą energochłonnością procesu. Przebiega szybko po osiągnięciu określonej wartości naprężenia (często nie przekraczającego granicy plastyczności w skali makroskopowej) i nie wymaga jego zwiększania do propagacji pęknięcia. Kruche pękanie zachodzi poprzez tworzenie się łupliwego przełomu, którego powierzchnia jest zorientowana prostopadle do kierunku przyłożonego obciążenia, bez zauważalnych śladów odkształcenia plastycznego w makrokroskali. W skali makroskopowej (inżynierskiej) statyczna próba rozciągania próbek walcowych jest najprostszym schematem obciążenia materiału obrazującym te dwa odmienne modele pękania (rys. 9.1). Kolejnym ważnym kryterium klasyfikacji zjawiska dekohezji jest mikrostruktura materiałów. Według tego kryterium rozróżnia się trzy rodzaje powierzchni (toru) pękania uwzględniające fazową (lub ziarnistą) budowę materiałów, co przedstawiono schematycznie na rys. 9.2 dla stopu dwufazowego o mikrostrukturze f 1 ziarna osnowy; f 2 wydzielenia (cząstki) fazy rozproszonej: przełom transkrystaliczny, powierzchnia (tor) rozdzielenia przebiega poprzez ziarna i fazę rozproszoną; przełom międzykrystaliczny, powierzchnia pęknięcia (tor) rozprzestrzenia się po granicach ziaren lub faz; przełom mieszany będący połączeniem obu w/w mechanizmów. Rys Podstawowe schematy pękania materiałów dwufazowych: a) przełom transkrystaliczny, b) przełom międzykrystaliczny, c) przełom mieszany. Podstawowym sposobem pękania stopów technicznych w stanie plastycznym i kruchym jest pękanie transkrystaliczne przedstawione na rys. 9.2a. Do pękania międzykrystalicznego (rys. 9.2b) dochodzi w przypadku stopów charakteryzujących się zmniejszeniem spójności wzdłuż granic ziaren lub faz, co związane jest ze zmianami składu chemicznego w tych obszarach podczas eksploatacji, jak np. dyfuzja wodoru do granic ziaren w stali konstrukcyjnej. Do tego typu dekohezji może zachodzić również w podwyższonej temperaturze podczas pełzania lub w wyniku działania agresywnych składników środowiska a) b) Rys Dwa podstawowe mechanizmy pękania materiałów w skali makroskopowej podczas statycznej próby rozciągania: a) schemat pękania ciągliwego i kruchego, b) pękanie ciągliwe walcowej próbki z miedzi i pękanie kruche próbki z mosiądzu odlewniczego.

4 Fraktografia pękania ciągliwego Jak już wspomniano najprostszym przykładem badania przebiegu ciągliwego pękania jest statyczna próba rozciągania przeprowadzona na walcowych próbkach wykonanych z plastycznych materiałów metalowych, jak np. miedzi, aluminium czy stali niskowęglowej. Badania fraktograficzne prowadzone przy zastosowaniu skaningowego mikroskopu elektronowego wyróżniają kilka typowych etapów pękania ciągliwego w stopach technicznych, które schematycznie przedstawiono na rys Rys Charakterystyczne etapy ciągliwego pękania w stopie dwufazowym podczas statycznej próby rozciągania: E 0 stan początkowy, E 1 zarodkowanie mikropęknięć, E 2 lokalny wzrost mikropęknięć, E 3 łączenie mikropęknięć i rozdzielenie osnowy. Po przekroczeniu granicy plastyczności zarodkowanie mikropęknięć zachodzi w otoczeniu (I model rys. 9.4a) lub wewnątrz (II model rys. 9.4b) różnego rodzaju i kształtu cząstek fazy rozproszonej (np. wtrąceń niemetalicznych, węglików, azotków), gdy zostały utworzone odpowiednie warunki zależne od stanu naprężenia, lokalizacji oraz prędkości odkształcenia plastycznego. Wpływ cząstek fazy rozproszonej na zarodkowanie mikropęknięć wzrasta ze zwiększaniem prędkości obciążenia oraz spiętrzenia naprężeń na granicy cząstka (WN) osnowa (M). Spiętrzenie naprężeń zwiększa się ze wzrostem różnicy pomiędzy modułem sprężystości cząstek i osnowy. Utworzenie mikropęknięć jest łatwiejsze, tzn. zachodzi przy mniejszym odkształceniu plastycznym osnowy, gdy rozmiary cząstek są większe oraz ich spójność na granicy fazowej WN-M jest niewielka. Stwierdzono eksperymentalnie, że zarodkowanie może zachodzić tylko po osiągnięciu przez cząstkę rozmiaru krytycznego, który zmniejsza się z obniżeniem temperatury. Ponadto mechanizm zarodkowania w istotny sposób zależy od kształtu cząstek i jego przebieg jest inny dla cząstek nierównoosiowych (np. płytkowych, walcowych) w porównaniu z cząstkami sferoidalnymi. Liczne badania fraktograficzne dowodzą, że nie tylko cząstki drugiej fazy są źródłami zarodkowania mikropęknięć. W czystych metalach oraz stopach jednofazowych zwykle miejscami zarodkowania są granice ziaren i faz oraz pasma intensywnego odkształcania plastycznego. Mikropęknięcia tworzą się również wskutek połączenia się dyslokacji w spiętrzeniach przed przeszkodami.

5 a) b) Rys Modele zarodkowania mikropęknięć w stopie dwufazowym M-WN: a) zarodkowanie mikropustki w otoczeniu cząstki WN I model, b) zarodkowanie mikroszczeliny wewnątrz cząstki WN II model. W stopach technicznych zawierających cząstki fazy rozproszonej w postaci wtrąceń niemetalicznych (siarczki, tlenki, azotki) w trakcie plastycznego odkształcania osnowy dominuje zarodkowanie mikropustek (I model). Ten mechanizm zarodkowania wynika z bardzo niskiej spójności (lub jej braku) wtrąceń niemetalicznych z osnową. Ze wzrostem plastycznego odkształcenia osnowy liczba mikropustek oraz ich wymiary stopniowo powiększają się w kierunku rozciągania próbki aż do momentu osiągnięcia obciążenia maksymalnego F m. Wówczas w próbce tworzy się przewężenie (tzw. szyjka). Trójosiowy stan naprężeń rozciągających w szyjce wywołuje intensywną propagację licznych pustek i zmianę ich kształtu. Poprzez mechanizm ścinania cienkich warstw metalowej (mostków) osnowy następuje stopniowego łączenie pustek, co prowadzi do utworzenia makropęknięcia w osi szyjki. Tak utworzone makropęknięcie wskutek przyłączania nowych pustek rozprzestrzenia się prostopadle od osi do powierzchni szyjki, tworząc charakterystyczne dno spodka". Zbliżając się do powierzchni tor makropęknięcia zmienia orientację. W warstwie wierzchniej szyjki występuje ścinanie osnowy stopu w płaszczyznach maksymalnych naprężeń stycznych (pod kątem 45 o do kierunku rozciągania) tworząc ostatecznie powierzchnię przełomu o charakterystycznym kształcie spodek stożek ścięty" (rys. 9.5 a-b). Ten mechanizm pękania pojawia się w wyniku zmiany przestrzennego stanu naprężenia w osi szyjki na płaski w jej warstwie wierzchniej.

6 a) b) Rys Przełom walcowej próbki w szyjce o kształcie spodek-stożek ścięty : a) schemat profilu toru pękania, b) ogólny widok przełomu próbki z niskowęglowej stali konstrukcyjnej. Jak to potwierdzają badania fraktograficzne cechą charakterystyczną przełomu ciągliwego jest występowanie w rejonie osi próbki rozwiniętej powierzchni pękania. Topografia tej powierzchni składa się z licznego zbioru dołków (kraterów) o zróżnicowanych wielkościach i kształtach, utworzonych w otoczeniu cząstek fazy rozproszonej. Często wewnątrz dołków można zaobserwować np. wtrącenia niemetaliczne lub inne cząstki fazy rozproszonej. Liczebność, wielkość i kształt tych kraterów jest zależna od składu chemicznego i parametrów stereologicznych faz tworzących mikrostrukturę stopu. Przykłady zróżnicowanej topografii przełomów ciągliwych utworzonych w centralnej części próbki walcowej przedstawiono na rys. 9.6 a-d dla staliwa lub stali niskowęglowej. W warstwie wierzchniej szyjki dominuje natomiast mechanizm ścinania osnowy i dlatego rozrost mikropustek, a następnie ich łączenie, występuje wzdłuż płaszczyzn maksymalnych naprężeń stycznych. Wskutek tego na powierzchni pękania można zaobserwować kształt paraboliczny tych nieciągłości, co obrazuje rys. 9.7 a-b. a) Pow. 2000x b) Pow. 3000x c) Pow. 2000x d) Pow. 1000x

7 Rys Topografia przełomu ciągliwego z niskowęglowego staliwa lub stali o zróżnicowanej zawartości i morfologii wtrąceń niemetalicznych: a) sferoidalne siarczki MnS, b) wielościenne siarczki MnS, c) dendrytyczne siarczki MnS, d) wydłużone siarczki Mns po walcowaniu stali. a) b) Rys Topografia przełomu walcowej próbki ze stali niskowęglowej w warstwie wierzchniej szyjki (strefa ścinania metalowej osnowy) Fraktografia pękania kruchego Szczegółowe badania fraktograficzne stopów technicznych ujawniły, że w przypadku kruchego pękania można wyróżnić dwa podstawowe mechanizmy utraty spójności: transkrystaliczny przełom łupliwy lub międzykrystaliczny przełom łupliwy. A. Transkrystaliczny przełom łupliwy W wyniku pękania kruchego materiałów metalowych najczęściej tworzy się transkrystaliczny przełom łupliwy, charakteryzujący się małą energochłonnością i brakiem wyraźnych śladów odkształcenia plastycznego (rys. 9.8a). Ten mechanizm pękania zwykle powstaje w niskiej temperaturze, w warunkach trójosiowego stanu naprężenia (płaski stan odkształcenia), przy dużej prędkości odkształcenia. Miejscami zarodkowania pęknięć łupliwych są granice ziaren i faz, a także twarde wydzielenia fazy rozproszonej (rys. 9.8b). Utworzone mikroszczeliny rozprzestrzeniają się przez ziarna jednocześnie w kilku równoległych i blisko położonych płaszczyznach krystalograficznych, tzw.płaszczyznach łupliwości, z następnym tworzeniem się między nimi uskoków (schodków) widocznych na powierzchni przełomu. W celu określenia płaszczyzn łupliwości w materiałach metalowych wysuwano różne hipotezy, przy czym wielu badaczy podtrzymuje pogląd, że płaszczyznami kruchego rozdzielenia ziaren są płaszczyzny o minimalnej energii powierzchniowej np rodzina płaszczyzn {100}. Powierzchnia przełomu kruchego jest błyszcząca, gdyż płaszczyzny łupliwego rozdzielenia materiału są bardzo gładkie i dlatego dobrze odbijają światło. Obszary takie można wyodrębnić na przełomie już wizualnie lub przy małym powiększeniu. Widoczne są jako oddzielne płaskie strefy pękania łupliwego fasety, które są różnie zorientowane względem płaszczyzny makroprzełomu. Podczas obserwacji mikroskopowych na powierzchni faset można zidentyfikować przebieg pękania wtórnego z tworzeniem uskoków i mostków pomiędzy sąsiednimi pęknięciami, rozwijającymi się w równoległych płaszczyznach łupliwości. Uskoki między pęknięciami w równoległych płaszczyznach łupliwości wewnątrz jednego ziarna lub innego składnika mikrostruktury tworzą charakterystyczną rzeźbę rzek" (rys. 9.8c). Małe, elementarne uskoki łączą się w większe, tzw. dorzecza, w kierunku rozprzestrzeniania się pęknięcia i są źródłem pęknięcia głównego. Uskoki rzeźby rzek" mogą się tworzyć wskutek pękania łupliwego wzdłuż płaszczyzn wtórnych, granic bliźniaczych lub intensywnego odkształcenia plastycznego w warstwach między pęknięciami łupliwymi. Powstanie rzeźby rzek" wskazuje na dodatkowe wydatkowanie energii podczas pękania. Jeżeli pęknięcie

8 łupliwe powstaje w jednym punkcie, jak np. na cząstce drugiej fazy, to rozprzestrzeniając się we wszystkich kierunkach w ziarnie, powoduje utworzenie rzeźby typu promienistego wachlarza" (rys. 9.8d). W materiałach polikrystalicznych łączenie pęknięć różnych ziaren zachodzi na granicy między nimi, a kierunek rozprzestrzeniania się pęknięcia łupliwego ulega zmianie od ziarna do ziarna. Zmiana kierunku rozwijającego się pęknięcia przy jego przejściu do sąsiedniego ziarna o innej orientacji wymaga procesu akomodacji w celu odszukania nowych płaszczyzn łupliwości. Proces akomodacji pochłania dodatkową energię, co utrudnia propagację pękania łupliwego. Dlatego rozdrobnienie ziaren w materiale zwiększa jego odporność na rozprzestrzenianie się pęknięć łupliwych. Na powierzchni faset łupliwych można obserwować ślady pęknięć wtórnych rozprzestrzeniających się pod pewnym kątem do głównej płaszczyzny pękania. a) Pow. 2000x b) Pow. 4000x c) Pow. 2000x d) Pow. 2000x Rys Fraktografia przełomu transkrystalicznego kruchego w stali konstrukcyjnej: a) gładkie płaszczyzny łupliwego rozdzielenia ziaren ferrytu, b) zarodkowanie kruchego pęknięcia w otoczeniu tlenkowego wtrącenia niemetalicznego (Al 2 O 3 ), c) charakterystyczna rzeźba rzek" wewnątrz ziarna ferrytu rozdzielonego w płaszczyźnie łupliwości, d) kruche pęknięcie propagujące promieniście w płaszczyźnie łupliwości wtrącenia azotkowego (TiN). B. Międzykrystaliczny przełom łupliwy Pękanie łupliwe międzykrystaliczne (rys. 9.9a) polega na rozprzestrzenianiu się pęknięć wzdłuż granic ziaren z utworzeniem na powierzchni przełomu charakterystycznych gładkich powierzchni faset, w postaci wielościanów odpowiadających kształtom ziaren. Fasety takiego łupania łatwo jest identyfikować ze względu na obecność styków trzech lub więcej granic ziaren, co pokazano na rys. 9.9b.

9 a) Pow. 50x b) Pow. 3000x Rys Fraktografia międzykrystalicznego przełomu łupliwego: a) ogólny widok makroprzełomu w próbce z konstrukcyjnej stali stopowej, b) powierzchnia pękania w postaci wielościanów odpowiadających kształtom ziaren. Kruche pękanie międzykrystaliczne powstaje, gdy energia powierzchniowa granic ziaren jest mniejsza od energii powierzchniowej w płaszczyznach łupliwości. Zmniejszenie spójności materiału na granicach ziaren poniżej spójności w płaszczyznach łupliwości może mieć następujące przyczyny: osłabienie sił spójności ziaren wskutek segregacji zanieczyszczeń w obszarach przygranicznych, kruchości wodorowej, naprężeniowego pękania korozyjnego, wydzielania na granicach ziaren siatki fazy kruchej, utworzenie mikropustek wzdłuż granic ziaren wskutek nie sprzyjającego oddziaływania (cyklicznego, długotrwałego) przyłożonych naprężeń w warunkach zmiennego pola temperatury, niedostateczna liczba niezależnych systemów poślizgu w materiale, co utrudnia akomodację odkształcenia plastycznego między sąsiednimi ziarnami, stymulując pękanie po granicach ziaren Pękanie quasi-łupliwe Przełom quasi-łupliwy jest przejściowym rodzajem przełomu, ponieważ ma charakterystyczne cechy obu przełomów: kruchego i ciągliwego. Quasi-łupliwe rozdzielenie materiału zachodzi poprzez zarodkowanie pękania kruchego w lokalnych obszarach a następnie ich propagacją w finalną powierzchnię dekohezji wskutek uruchomienia mechanizmów odkształcenia plastycznego. Fasety pękania quasi-łupliwego łączą się przez odkształcenie plastyczne, w wyniku którego powstają między nimi grzbiety łupliwości. Grzbiety mają zazwyczaj ostre i wyciągnięte krawędzie, co świadczy o dużym odkształceniu plastycznym podczas ich tworzenia. Wzrost udziału odkształcenia plastycznego w procesie pękania przejawia się przez zwiększenie falistości, ostrości, wyciągnięcie krawędzi grzbietów łupliwości, utworzenie zniekształconych płytkich dołków oraz powstanie obszarów wgłębień (dołków, jamek) charakterystycznych dla pękania ciągliwego, czyli plastycznego. Typowy przełomy o takiej charakterystyce topografii przedstawiono na rys.10 a-b. a) b)

10 Rys Fraktografia przełomu quasi-łupliwego w stali konstrukcyjnej Dekohezja materiałów inżynierskich W praktyce inżynierii materiałowej klasyfikuje się materiały na kilka podstawowych grup wymienionych poniżej. W skali makroskopowej przebieg zjawiska dekohezji w tych materiałach można sklasyfikować według kryterium wielkości i energii odkształcenia do momentu utraty spójności, co pozwala je zaliczyć do materiałów plastycznych lub kruchych. Jednak w skali mikrostrukturalnej dekohezja jest zjawiskiem bardzo złożonym i jej przebieg w zależności od rodzaju materiału i warunków zewnętrznych należy rozpatrywać oddzielnie. Metale i stopy odznaczają się relatywnie wysoką wartością modułu sprężystości. Dekohezję tych materiałów poprzedza zazwyczaj odkształcenie plastyczne, a pękanie przyjmuje charakter ciągliwy. Obróbka cieplna stopów oraz operacje kształtowania plastycznego powodują wzrost ich wytrzymałości i zmieniają charakter pękania z ciągliwego na kruchy. Analiza przełomów próbek metalowych dowodzi różnorodności mechanizmów oraz rodzajów pęknięć tych materiałów. W skali mikroskopowej w wyniku pękania plastycznego powstają tzw. dołki utworzone przez połączenie mikropustek. W wyniku pękania kruchego powstają specyficzne rodzaje przełomów, takie jak przełom łupliwy, charakterystyczny dla metali o sieci regularnie ściennie centrowanej i heksagonalnej zwartej, będący przełomem transkrystalicznym czy przełom międzykrystaliczny, powstający w wyniku obniżenia spójności materiału na granicach ziaren. Możemy spotkać tu również pęknięcia zmęczeniowe, w wyniku których tworzą się tzw. linie zmęczeniowe, biegnące prostopadle do kierunku rozwoju pęknięcia. Ceramikę i szkło, podobnie jak metale, charakteryzują wysokie wartości modułu sprężystości. Jednak podczas prób mechanicznych, np. statycznego rozciągania w odróżnieniu od materiałów metalowych pękają krucho. Dekohezja jest najczęściej wywoływana bardzo dużymi jednostkowymi obciążeniami mechanicznymi lub naprężeniami cieplnymi. Pękanie jest spowodowane małym, w porównaniu np. do metali, stopniem uplastycznienia przy wierzchołku pęknięcia. Bardzo często również ceramiki i szkła zawierają mikropęknięcia oraz małe pory już na etapie wytwarzania lub defekty te zostają wprowadzone podczas użytkowania, np. w postaci rys. Polimery i elastomery, w porównaniu z metalami i ceramiką, posiadają niskie wartości modułu sprężystości, jednakże ich własności wytrzymałościowe mogą być zbliżone. Ich własności mechaniczne są silnie zależne od temperatury, dlatego jednoznaczne określenie ich sposobu pękania jest niemożliwe. W tych materiałach nie obserwuje się występowania przełomów transkrystalicznych lub międzykrystalicznych, natomiast często obserwuje się tzw. linie zmęczeniowe. W przypadku kruchego pękania tworzyw sztucznych ujawniają się takie cechy przełomów, jak: linie grzbietowe, linie Wallnera czy linie stożkowe. Linie Wallnera tworzą bardzo często wyraźne schodki w wyniku przecinania się czoła pęknięcia z falami sprężystymi emitowanymi spoza źródła pęknięcia. Plastyczne pękanie tworzyw sztucznych można opisać jako rozciąganie materiału będące reakcją łańcuchów polimerowych na naprężenia. Kompozyty to materiały inżynierskie, w których przebieg dekohezji jest ściśle związany z jednostkowymi cechami komponentów wchodzących w skład kompozytu. Wielofazowa struktura kompozytu, otrzymana poprzez odpowiedni dobór składników zarówno kruchych jak i plastycznych, umożliwia uzyskanie ściśle określonego efektu końcowego podczas rozprzestrzeniania się pęknięcia. W celu precyzyjnego scharakteryzowania poszczególnych grup różnych kompozytów niezbędne są indywidualne badania fraktograficzne wraz z ścisłym określeniem składu kompozytu oraz środowiskowo-obciążeniowych warunków przeprowadzenia próby. 3. MATERIAŁY I URZĄDZENIA Próbki pobrane z materiałów jedno i wielofazowych w postaci przełomów ze statycznej próby rozciągania oraz udarności, skaningowy mikroskop elektronowy.

11 4. PRZEBIEG ĆWICZENIA W ramach zajęć przeprowadzona zostaje analiza powierzchni przełomów próbek wraz z rejestracją zdjęć za pomocą skaningowego mikroskopu elektronowego. Następnie zdjęcia zostają poddane ocenie i na ich podstawie określa się dominujący rodzaj przełomu charakteryzujący próbki. 5. WYTYCZNE DO OPRACOWANIA SPRAWOZDANIA Sprawozdanie powinno zawierać: opracowanie lub podanie odpowiedzi na zamieszczone zadania, wykonane zdjęcia powierzchni pękania próbek, charakterystykę poszczególnych przełomów wraz z ich krótkim omówieniem, omówienie zastosowanych technik badawczych, podsumowanie i wnioski z przeprowadzonych badań. 6. LITERATURA [1] Blicharski M., Odkształcanie i pękanie, Wydaw. AGH, Kraków [2] Przybyłowicz K., Strukturalne aspekty odkształcania metali, WNT, Warszawa [3] Wyrzykowski J. W., Pleszakow E., Sieniawski J., Odkształcanie i pękanie metali, WNT, Warszawa 1999.

12

BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego BADANIA STRUKTURY MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. MAKROSTRUKTURA 2. MIKROSTRUKTURA 3. STRUKTURA KRYSTALICZNA Makrostruktura

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Logistyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOG-1082 Podstawy nauki o materiałach Fundamentals of Material Science

Bardziej szczegółowo

DEGRADACJA MATERIAŁÓW

DEGRADACJA MATERIAŁÓW DEGRADACJA MATERIAŁÓW Zmęczenie materiałów Proces polegający na wielokrotnym obciążaniu elementu wywołującym zmienny stan naprężeń Zmienność w czasie t wyraża się częstotliwością, wielkością i rodzajem

Bardziej szczegółowo

6. OBRÓBKA CIEPLNO - PLASTYCZNA

6. OBRÓBKA CIEPLNO - PLASTYCZNA 6. OBRÓBKA CIEPLNO - PLASTYCZNA 6.1. Cel ćwiczenia Zapoznanie się z rodzajami obróbki cieplno plastycznej i ich wpływem na własności metali. 6.2. Wprowadzenie Obróbką cieplno-plastyczną, zwaną potocznie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM

WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM KATARZYNA BIRUK-URBAN WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM 1. WPROWADZENIE W ostatnich latach można zauważyć bardzo szerokie zastosowanie

Bardziej szczegółowo

Instytut Spawalnictwa SPIS TREŚCI

Instytut Spawalnictwa SPIS TREŚCI Tytuł: Makroskopowe i mikroskopowe badania metalograficzne materiałów konstrukcyjnych i ich połączeń spajanych Opracował: pod redakcją dr. hab. inż. Mirosława Łomozika Rok wydania: 2009 Wydawca: Instytut

Bardziej szczegółowo

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów

Bardziej szczegółowo

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA *

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA * Ćwiczenie 6 1. CEL ĆWICZENIA TATYCZNA PRÓBA ROZCIĄGANIA * Celem ćwiczenia jest zapoznanie się z przebiegiem próby rozciągania i wielkościami wyznaczanymi podczas tej próby. 2. WIADOMOŚCI PODTAWOWE Próba

Bardziej szczegółowo

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka

ĆWICZENIE Nr 8. Laboratorium InŜynierii Materiałowej. Opracowali: dr inŝ. Krzysztof Pałka dr Hanna Stupnicka Akceptował: Kierownik Katedry prof. dr hab. inŝ. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INśYNIERII MATERIAŁOWEJ Laboratorium InŜynierii Materiałowej ĆWICZENIE Nr 8 Opracowali: dr

Bardziej szczegółowo

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw.

Dekohezja materiałów. Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. Dekohezja materiałów Przedmiot: Degradacja i metody badań materiałów Wykład na podstawie materiałów prof. dr hab. inż. Jerzego Lisa, prof. zw. AGH Nauka o Materiałach Treść wykładu: 1. Dekohezja materiałów

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

Laboratorium badań materiałowych i technologicznych. dr inż. Tomasz Kurzynowski

Laboratorium badań materiałowych i technologicznych. dr inż. Tomasz Kurzynowski Laboratorium badań materiałowych i technologicznych dr inż. Tomasz Kurzynowski Agenda Oferta badawcza Wyposażenie laboratorium Przykłady realizowanych badań Opracowanie i rozwój nowych materiałów Zastosowanie

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

CHARAKTERYSTYCZNE USZKODZENIA ZESTAWU KOŁOWEGO POWODUJĄCE ZDARZENIA WYPADKOWE

CHARAKTERYSTYCZNE USZKODZENIA ZESTAWU KOŁOWEGO POWODUJĄCE ZDARZENIA WYPADKOWE Inż. Ireneusz Mikłaszewicz Centrum Naukowo-Techniczne Kolejnictwa CHARAKTERYSTYCZNE USZKODZENIA ZESTAWU KOŁOWEGO POWODUJĄCE ZDARZENIA WYPADKOWE SPIS TREŚCI 1. Wstęp 2. Charakterystyczne uszkodzenia zestawu

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat: NAROST NA OSTRZU NARZĘDZIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Wpływ róŝnych rodzajów

Bardziej szczegółowo

ĆWICZENIE Nr 4/N. Laboratorium Materiały Metaliczne II. Opracowała: dr Hanna de Sas Stupnicka

ĆWICZENIE Nr 4/N. Laboratorium Materiały Metaliczne II. Opracowała: dr Hanna de Sas Stupnicka POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 4/N Opracowała:

Bardziej szczegółowo

ĆWICZENIE Nr 2/N. 9. Stopy aluminium z litem: budowa strukturalna, właściwości, zastosowania.

ĆWICZENIE Nr 2/N. 9. Stopy aluminium z litem: budowa strukturalna, właściwości, zastosowania. Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 2/N Opracowali:

Bardziej szczegółowo

Do najbardziej rozpowszechnionych metod dynamicznych należą:

Do najbardziej rozpowszechnionych metod dynamicznych należą: Twardość metali 6.1. Wstęp Twardość jest jedną z cech mechanicznych materiału równie ważną z konstrukcyjnego i technologicznego punktu widzenia, jak wytrzymałość na rozciąganie, wydłużenie, przewężenie,

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Recenzja Pracy Doktorskiej

Recenzja Pracy Doktorskiej Politechnika Częstochowska Wydział Inżynierii Produkcji i Technologii Materiałów Instytut Inżynierii Materiałowej Dr hab. inż. Michał Szota, Prof. P.Cz. Częstochowa, 15.10.2014 roku Recenzja Pracy Doktorskiej

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r

Bardziej szczegółowo

PODSTAWY INŻYNIERII MATERIAŁOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PODSTAWY INŻYNIERII MATERIAŁOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PODSTAWY INŻYNIERII MATERIAŁOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE 1. GENEZA INŻYNIERII MATERIAŁOWEJ 2. KLASYFIKACJA MATERIAŁÓW

Bardziej szczegółowo

Wykład XV: Odporność materiałów na zniszczenie. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XV: Odporność materiałów na zniszczenie. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XV: Odporność materiałów na zniszczenie JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Zmęczenie materiałów 2. Tarcie i jego skutki

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 11

Dobór materiałów konstrukcyjnych cz. 11 Dobór materiałów konstrukcyjnych cz. 11 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Zbiornik ciśnieniowy Część I Ashby

Bardziej szczegółowo

2016-01-06 WŁAŚCIWOŚCI MECHANICZNE PĘKANIE. Dekohezja. Wytrzymałość materiałów. zniszczenie materiału pod wpływem naprężeń

2016-01-06 WŁAŚCIWOŚCI MECHANICZNE PĘKANIE. Dekohezja. Wytrzymałość materiałów. zniszczenie materiału pod wpływem naprężeń WŁAŚCIWOŚCI MECHANICZNE PĘKANIE Dekohezja zniszczenie materiału pod wpływem naprężeń pękanie zmęczenie udar skrawanie Wytrzymałość materiałów Typowo dla materiałów ceramicznych: 10 20 R m rozc. = R m ścisk.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu ODLEWNICTWO STOPÓW ŻELAZA Casting of ferrous alloys Kierunek: Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: specjalnościowy Poziom studiów:

Bardziej szczegółowo

16. 16. Badania materiałów budowlanych

16. 16. Badania materiałów budowlanych 16. BADANIA MATERIAŁÓW BUDOWLANYCH 1 16. 16. Badania materiałów budowlanych 16.1 Statyczna próba ściskania metali W punkcie 13.2 opisano statyczną próbę rozciągania metali plastycznych i kruchych. Dla

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 6 Temat: Stale w stanie ulepszonym cieplnie Łódź 2010 Cel ćwiczenia Zapoznanie się

Bardziej szczegółowo

ĆWICZENIE Nr 3/N. zastosowania. 7. Stopy tytanu stosowane w motoryzacji, lotnictwie i medycynie.

ĆWICZENIE Nr 3/N. zastosowania. 7. Stopy tytanu stosowane w motoryzacji, lotnictwie i medycynie. Akceptował: Kierownik Katedry prof. dr hab. inż. A. Weroński POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Materiały Metaliczne II ĆWICZENIE Nr 3/N Opracowali:

Bardziej szczegółowo

Technologia elementów optycznych

Technologia elementów optycznych Technologia elementów optycznych dr inż. Michał Józwik pokój 507a jozwik@mchtr.pw.edu.pl Część 1 Treść wykładu Specyfika wymagań i technologii elementów optycznych. Ogólna struktura procesów technologicznych.

Bardziej szczegółowo

Nauka o materiałach III

Nauka o materiałach III Pomiar twardości metali metodami: Brinella, Rockwella i Vickersa Nr ćwiczenia: 1 Zapoznanie się z zasadami pomiaru, budową i obsługą twardościomierzy: Brinella, Rockwella i Vickersa. Twardościomierz Brinella

Bardziej szczegółowo

NISZCZENIE MATERIAŁÓW PODCZAS EKSPLOATACJI

NISZCZENIE MATERIAŁÓW PODCZAS EKSPLOATACJI NISZCZENIE MATERIAŁÓW PODCZAS EKSPLOATACJI w wyniku współdziałania aktywnych chemicznie środowisk i naprężeń: korozja naprężeniowa, korozja zmęczeniowa, korozja erozja Niszczenie materiałów podczas eksploatacji

Bardziej szczegółowo

Technologie Materiałowe II Spajanie materiałów

Technologie Materiałowe II Spajanie materiałów KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Spajanie materiałów Wykład 12 Lutowanie miękkie (SOLDERING) i twarde (BRAZING) dr inż. Dariusz Fydrych Kierunek

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

STOPY Z PAMIĘCIA KSZTAŁTU

STOPY Z PAMIĘCIA KSZTAŁTU STOPY Z PAMIĘCIA KSZTAŁTU NiTi 53-57% Ni, Ti50Ni48,5Co1,5 Przemiana martenzytyczna termosprężysta: wyniku wzajemnego dopasowania sieci macierzystej i tworzącego się martenzytu zachodzi odkształcenie sprężyste.

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

BADANIA WIZUALNE I MAKROSKOPOWE

BADANIA WIZUALNE I MAKROSKOPOWE BADANIA WIZUALNE I MAKROSKOPOWE Cel ćwiczenia. Zaznajomienie z metodyką badań okiem nieuzbrojonym lub przy użyciu lupy, w celu określenia wad powstałych w procesie technologicznym wytwarzania, montażu,

Bardziej szczegółowo

Próby zmęczeniowe. 13.1. Wstęp

Próby zmęczeniowe. 13.1. Wstęp Próby zmęczeniowe 13.1. Wstęp Obciążenia działające w różnych układach mechanicznych najczęściej zmieniają się w czasie. Wywołują one w materiale złożone zjawiska i zmiany, zależne od wartości tych naprężeń

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1 ALEKSANDER KAROLCZUK a) MATEUSZ KOWALSKI a) a) Wydział Mechaniczny Politechniki Opolskiej, Opole 1 I. Wprowadzenie 1. Technologia zgrzewania

Bardziej szczegółowo

13. ZMĘCZENIE METALI *

13. ZMĘCZENIE METALI * 13. ZMĘCZENIE METALI * 13.1. WSTĘP Jedną z najczęściej obserwowanych form zniszczenia konstrukcji jest zniszczenie zmęczeniowe, niezwykle groźne w skutkach, gdyż zazwyczaj niespodziewane. Zniszczenie to

Bardziej szczegółowo

BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM. Klaudia Radomska

BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM. Klaudia Radomska WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera w Ustroniu Wydział InŜynierii Dentystycznej BADANIA PÓL NAPRĘśEŃ W IMPLANTACH TYTANOWYCH METODAMI EBSD/SEM Klaudia Radomska Praca dyplomowa napisana

Bardziej szczegółowo

Dorota Kunkel. WyŜsza Szkoła InŜynierii Dentystycznej

Dorota Kunkel. WyŜsza Szkoła InŜynierii Dentystycznej Dorota Kunkel Implant wszystkie przyrządy medyczne wykonywane z jednego lub więcej biomateriałów, które mogą być umiejscowione wewnątrz organizmu, jak też częściowo lub całkowicie pod powierzchnią nabłonka

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali Obróbka cieplna stali Obróbka cieplna stopów: zabiegi cieplne, które mają na celu nadanie im pożądanych cech mechanicznych, fizycznych lub chemicznych przez zmianę struktury stopu. Podstawowe etapy obróbki

Bardziej szczegółowo

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI Opracował: Paweł Urbańczyk Zawiercie, marzec 2012 1 Charakterystyka stali stosowanych w energetyce

Bardziej szczegółowo

Poziom przedmiotu: I stopnia studia stacjonarne Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: I stopnia studia stacjonarne Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu : Materiałoznawstwo Materials science Kierunek: Mechanika i budowa maszyn Rodzaj przedmiotu: Treści kierunkowe Rodzaj zajęć: Wykład, Laboratorium Poziom przedmiotu: I stopnia studia stacjonarne

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 6 Temat: Hartowność. Próba Jominy`ego Łódź 2010 WSTĘP TEORETYCZNY Pojęcie hartowności

Bardziej szczegółowo

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI

CHARAKTERYSTYKA ZMIAN STRUKTURALNYCH W WARSTWIE POŁĄCZENIA SPAJANYCH WYBUCHOWO BIMETALI Mariusz Prażmowski 1, Henryk Paul 1,2, Fabian Żok 1,3, Aleksander Gałka 3, Zygmunt Szulc 3 1 Politechnika Opolska, ul. Mikołajczyka 5, Opole. 2 Instytut Metalurgii i Inżynierii Materiałowej PAN, ul. Reymonta

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym

Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie elektronowym WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ IM. PROF. MEISSNERA W USTRONIU WYDZIAŁ INśYNIERII DENTYSTYCZNEJ Mikrostruktura wybranych implantów stomatologicznych w mikroskopie świetlnym i skaningowym mikroskopie

Bardziej szczegółowo

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ Szybkobieżne Pojazdy Gąsienicowe (15) nr 1, 2002 Stanisław JURA Roman BOGUCKI ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ Streszczenie: W części I w oparciu o teorię Bittera określono

Bardziej szczegółowo

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH INSTYTUT INŻYNIERII MATERIAŁOWEJ POLITECHNIKA ŁÓDZKA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH KOROZJA W STOPACH METALI GRUPY CO-CR I NI-CR CEL ĆWICZENIA Celem

Bardziej szczegółowo

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym

Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym Badanie ultradźwiękowe grubości elementów metalowych defektoskopem ultradźwiękowym 1. Badania nieniszczące wprowadzenie Badania nieniszczące polegają na wykorzystaniu nieinwazyjnych metod badań (bez zniszczenia

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/

Bardziej szczegółowo

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI PL0400058 STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI Instytut Metalurgii Żelaza im. S. Staszica, Gliwice

Bardziej szczegółowo

Pełzanie jako zjawisko ograniczające długotrwałą eksploatację rurociągów parowych 1)

Pełzanie jako zjawisko ograniczające długotrwałą eksploatację rurociągów parowych 1) Pełzanie jako zjawisko ograniczające długotrwałą eksploatację rurociągów parowych 1) Autorzy: Michał Kwiecień, Arkadiusz Goławski ENERGOPOMIAR Sp. z o.o., Zakład Chemii i Diagnostyki ( Energetyka nr 7/2013)

Bardziej szczegółowo

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna

Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna Pytania do egzaminu inżynierskiego, PWSZ Głogów, Przeróbka Plastyczna 1. Badania własności materiałów i próby technologiczne 2. Stany naprężenia, kierunki, składowe stanu naprężenia 3. Porównywanie stanów

Bardziej szczegółowo

Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2

Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2 Kierunek: INŻYNIERIA BEZPIECZEŃSTWA I stopień studiów I. Pytania kierunkowe Pytania kierunkowe KIB 10 KEEEIA 5 KMiPKM 5 KIS 4 KPB 4 KTMiM 4 KBEPiM 3 KMRiMB 3 KMiETI 2 Katedra Budowy, Eksploatacji Pojazdów

Bardziej szczegółowo

MATERIAŁY SPIEKANE (SPIEKI)

MATERIAŁY SPIEKANE (SPIEKI) MATERIAŁY SPIEKANE (SPIEKI) Metalurgia proszków jest dziedziną techniki, obejmującą metody wytwarzania proszków metali lub ich mieszanin z proszkami niemetali oraz otrzymywania wyrobów z tych proszków

Bardziej szczegółowo

STOPY ŻELAZA. Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe

STOPY ŻELAZA. Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe STOPY ŻELAZA Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe STALE Stal stop żelaza z węglem i innymi dodatkami stopowymi, zawierający do ok. 2 % węgla,

Bardziej szczegółowo

Nowoczesne stale bainityczne

Nowoczesne stale bainityczne Nowoczesne stale bainityczne Klasyfikacja, projektowanie, mikrostruktura, właściwości oraz przykłady zastosowania Wykład opracował: dr hab. inż. Zdzisław Ławrynowicz, prof. nadzw. UTP Zakład Inżynierii

Bardziej szczegółowo

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska Promotor: prof. nadzw. dr hab. Jerzy Ratajski Jarosław Rochowicz Wydział Mechaniczny Politechnika Koszalińska Praca magisterska Wpływ napięcia podłoża na właściwości mechaniczne powłok CrCN nanoszonych

Bardziej szczegółowo

Wady wyrobów metalowych

Wady wyrobów metalowych Wady wyrobów metalowych Marta Wojas Urząd Dozoru Technicznego 1. WSTĘP Wiadomości o wyrobach metalowych, procesach ich wytwarzania oraz wadach mogących występować w wyrobach są niesłychanie istotnym obszarem

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Inżynieria materiałowa. 2. KIERUNEK: Mechanika i budowa maszyn. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Inżynieria teriałowa 2. KIERUNEK: Mechanika i budowa szyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: 1/1 i 2 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN:

Bardziej szczegółowo

Tematy prac dyplomowych dla III semestru uzupełniających studiów magisterskich kierunek Mechatronika. Rok akademicki 2012/2013

Tematy prac dyplomowych dla III semestru uzupełniających studiów magisterskich kierunek Mechatronika. Rok akademicki 2012/2013 Tematy prac dyplomowych dla III semestru uzupełniających studiów magisterskich kierunek Mechatronika Rok akademicki 2012/2013 Nr Promotor Tytuł / zakres pracy dyplomowej UM/AG1 prof. dr hab. inż. Andrzej

Bardziej szczegółowo

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA II Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 26 listopada 2014 KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA Dr hab. inż. Jerzy Myalski

Bardziej szczegółowo

2.3. Stopy z układu Fe-Al

2.3. Stopy z układu Fe-Al Stopy z układu Fe-Al 89 2.3. Stopy z układu Fe-Al Stopy na osnowie uporządkowanych faz międzymetalicznych Fe 3 Al i FeAl należą, obok stopów na osnowie faz Ni 3 Al, NiAl, Ti 3 Al i TiAl, do grupy najliczniej

Bardziej szczegółowo

MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE

MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE MATERIAŁY STOSOWANE NA POWŁOKI PRZECIWZUŻYCIOWE PAWEŁ URBAŃCZYK Streszczenie: W artykule przedstawiono klasyfikację materiałów stosowanych na powłoki przeciwzużyciowe. Przeanalizowano właściwości fizyczne

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 14 Data wydania: 5 lutego 2016 r. AB 097 Kod identyfikacji

Bardziej szczegółowo

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH

KLASYFIKACJI I BUDOWY STATKÓW MORSKICH PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 5/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 5/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków

Bardziej szczegółowo

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 1 PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 2 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 3

Bardziej szczegółowo

ZAKŁAD BADANIA MATERIAŁÓW

ZAKŁAD BADANIA MATERIAŁÓW ZAKŁAD BADANIA MATERIAŁÓW ZAKŁAD BADANIA MATERIAŁÓW Badania materiałowe Badania mechaniczne materiałów metalicznych: - statyczne próby wytrzymałościowe (rozciągania, ściskania, zginania), - nisko i wysokocyklowe

Bardziej szczegółowo

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy.

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy. Pomiar twardości 1. Wprowadzenie Badanie twardości polega na wciskaniu wgłębnika w badany materiał poza granicę sprężystości, do spowodowania odkształceń trwałych. Wobec czego twardość można określić jako

Bardziej szczegółowo

Własności mechaniczne i strukturalne wybranych gipsów w mechanizmie wiązania.

Własności mechaniczne i strukturalne wybranych gipsów w mechanizmie wiązania. WYśSZA SZKOŁA INśYNIERII DENTYSTYCZNEJ im. prof. Meissnera w Ustroniu Własności mechaniczne i strukturalne wybranych gipsów w mechanizmie wiązania. Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Barbara

Bardziej szczegółowo

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.

Nowa technologia - Cynkowanie termodyfuzyjne. Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie. Nowa technologia - termodyfuzyjne Ul. Bliska 18 43-430 Skoczów Harbutowice +48 33 8532418 jet@cynkowanie.com www.cynkowanie.com Nowa technologia cynkowanie termodyfuzyjne Pragniemy zaprezentować nowe rozwiązanie

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

Odwęglenie a wady powierzchni główki szyny

Odwęglenie a wady powierzchni główki szyny Problemy Kolejnictwa Zeszyt 165 (grudzień 2014) 85 Odwęglenie a wady powierzchni główki szyny Ireneusz MIKŁASZEWICZ 1 Streszczenie Za pomocą pomiaru twardości badano wielkość odwęglania powierzchni tocznej

Bardziej szczegółowo

OCENA STANU TECHNICZNEGO RUROCIĄGÓW WYSOKOPĘŻNYCH - DOBÓR KRYTERIÓW

OCENA STANU TECHNICZNEGO RUROCIĄGÓW WYSOKOPĘŻNYCH - DOBÓR KRYTERIÓW PL0800176 OCENA STANU TECHNICZNEGO RUROCIĄGÓW WYSOKOPĘŻNYCH - DOBÓR KRYTERIÓW JANUSZ KOMOROWSKI*, WITOLD SZTEKE**, PIOTR ZAJĄCZKOWSKI* *MEGA-ERG Sp. z o.o. Przedsiębiorstwo Techniczno - Usługowe, Warszawa

Bardziej szczegółowo

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Kompozyty Większość materiałów budowlanych to materiały złożone tzw. KOMPOZYTY składające się z co najmniej dwóch składników występujących

Bardziej szczegółowo

INSTYTUT TECHNOLOGII MECHANICZNYCH

INSTYTUT TECHNOLOGII MECHANICZNYCH Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki INSTYTUT TECHNOLOGII MECHANICZNYCH 1 Instytut Technologii Mechanicznych Dyrektor: Dr hab. inż. T. Nieszporek, prof. PCz Z-ca Dyrektora:

Bardziej szczegółowo

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ODKSZTAŁCENIE I REKRYSTALIZACJA METALI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ODKSZTAŁCENIE I REKRYSTALIZACJA METALI 1. ODKSZTAŁCENIE METALI

Bardziej szczegółowo

LASEROWA OBRÓBKA MATERIAŁÓW

LASEROWA OBRÓBKA MATERIAŁÓW LASEROWA OBRÓBKA MATERIAŁÓW Promieniowanie laserowe umożliwia wykonanie wielu dokładnych operacji technologicznych na różnych materiałach: o trudno obrabialnych takich jak diamenty, metale twarde, o miękkie

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

AKADEMIA MORSKA w GDYNI

AKADEMIA MORSKA w GDYNI AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY Nr 17 Przedmiot: Nauka o materiałach I, II, III Kierunek/Poziom kształcenia: Forma studiów: Profil kształcenia: Specjalność: MiBM/ studia pierwszego stopnia

Bardziej szczegółowo

Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym

Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym ZB 7. Plastyczne kształtowanie stopów magnezu (kucie precyzyjne, tłoczenie, wyciskanie, walcowanie itp.) Autorzy i liderzy merytoryczni

Bardziej szczegółowo

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW

ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW 8 Ćwiczenie 1 ODKSZTAŁCANIE NA ZIMNO I WYŻARZANIE MATERIAŁÓW Celem ćwiczenia jest: - poznanie zjawisk wywołujących umocnienie materiałów, - poznanie wpływu wyżarzania odkształconego na zimno materiału

Bardziej szczegółowo

PL 216101 B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL 07.06.2010 BUP 12/10

PL 216101 B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL 07.06.2010 BUP 12/10 PL 216101 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216101 (13) B1 (21) Numer zgłoszenia: 386573 (51) Int.Cl. B24B 39/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo