Witamy w CERN. dr inż. Łukasz Graczykowski Politechnika Warszawska. accelerating Science and Innovation

Wielkość: px
Rozpocząć pokaz od strony:

Download "Witamy w CERN. dr inż. Łukasz Graczykowski Politechnika Warszawska. accelerating Science and Innovation"

Transkrypt

1 Witamy w CERN dr inż. Łukasz Graczykowski Politechnika Warszawska accelerating Science and Innovation

2 Plan wycieczki Poniedziałek ( ) Site de Meyrin 1. 8:00-9:15 Czas wolny 2. 9:30-11:30 Wykłady wstępne (Council Chamber) 3. 11:30-11:45 Podział na trzy grupy 4. 11:45-13:45 Wyjście do: Low Energy Ion Ring Łukasz Graczykowski Antiproton Decelerator Despina Hatzifotiadou, Anna Zaborowska Date Centre Jeremi Niedziela, Satyajit Jena Następnie rotacja (3 tury) 5. 13:45-14:00 Powrót do Restauracji :00-15:00 Lunch w Restauracji :00-do odjazdu Wystawa Microcosm (Ł. Graczykowski, A. Zaborowska) Budynek 40 (J. Niedziela, S. Jena) 8. 17:00-18:00 czas wolny / odjazd Wtorek ( ) LHC Point 2, Saint Genis-Pouilly 1. 10:00-13:00 Wizyta w eksperymencie ALICE

3 Czym jest CERN? CERN European Organization for Nuclear Research (fr.) Organisation Européenne pour la Recherche Nucléaire oryginalnie (fr.) Conseil Européen pour la Recherche Nucléaire Słowo nuclear (jądrowy) obecnie ma wymiar historyczny: gdy zakładano CERN wyzwaniem było zrozumienie wnętrza atomu jądra atomowego dzisiaj zaglądamy głębiej cząstki elementarne, znacznie wyższe energie CERN powstał w 1954 r. (12 państw założycieli) Polska przystąpiła do CERN w 1991 r. (dec. L. Wałęsy)

4 Misja CERN Przekraczanie granic nauki np. tajemnice Wielkiego Wybuchu jaki był nasz Wszechświat w pierwszych chwilach swojego istnienia? Rozwój technologii akceleratorowych i detektorowych technologie informcyjne World Wide Web, GRID medycyna diagnostyka i leczenie (np. PET) Szkolenie nowych pokoleń naukowców i inżynierów Jednoczenie ludzi z różnych krajów i kultur VIP Template/ March 2010

5 CERN w liczbach ~2300 pracowników naukowych ~1400 pozostałych pracowników ~12500 użytkowników Budżet (2015): ~1000 MCHF Kraje członkowskie (21): Austria, Belgia, Bułgaria, Czechy, Dania, Finlandia, Francja, Grecja, Hiszpania, Holandia, Izrael, Niemcy, Norwegia, Polska, Portugalia, Słowacja, Szwajcaria, Szwecja, Węgry, Włochy, Wielka Brytania Kraje stowarzyszone: Pakistan, Turcja Kraje w trakcie procedury akcesji: Rumunia, Serbia Kraje aplikujące: Azerbejdżan, Brazylia, Chorwacja, Cypr, Indie, Rosja, Słowenia, Ukraina Obserwatorzy: Indie, Japonia, Rosja, USA Unia Europejska, UNESCO, Zjednoczony Instytut Badań Jądrowych

6 CERN globalna nauka

7 Polska w CERN 6 ośrodków, 10 instytucji ~300 fizyków doświadczalnych i inżynierów ~100 fizyków teoretyków Warszawa: Narodowe Centrum Badań Jądrowych Uniwersytet Warszawski Politechnika Warszawska Kraków: Akademia Górniczo-Hutnicza Politechnika Krakowska Uniwersytet Jagielloński Instytut Fizyki Jądrowej PAN Łódź: Uniwersytet Łódzki Warszawa Łódź Wrocław Kielce Katowice: Uniwersytet Śląski Wrocław: Uniwersytet Wrocławski Kielce: Uniwersytet Jana Kochanowskiego Katowice Kraków

8 CERN i Nagrody Nobla 1984 Carlo Rubbia i Simon van der Meer za prace, które doprowadziły do odkrycia bozonów W i Z 1992 George Charpak za pomysł i opracowanie detektorów cząstek, w szczególności MWPC (wielodrutowej komory proporcjonalnej) Inni Nobliści związani z CERN: 1952 Felix Bloch za precyzyjne pomiary magnetyzmu jąder atomowych pierwszy Dyrektor Generalny CERN 1976 Samuel C. Ting za odkrycie cząstki J/ψ kiedyś szef eksperymentu L3 na LEP, obecnie szef eksperymentu AMS na Międzynarodowej Stacji Kosmicznej

9

10 Podróż do początków Wszechświata czyli czym zajmujemy się w laboratorium CERN dr inż. Łukasz Graczykowski CERN,

11 Małgorzata Janik 12-14/10/2012, Jesienne Warsztaty CSZ

12 Teleskop Kosmiczny Hubble'a Mgławica Orzeł Filary stworzenia 10/09/2012, WPCF '12 Małgorzata Janik Warsaw University of Technology

13 Jak sięgnąć do początków? Teleskop Kosmiczny Hubble'a Obraz Głębokiego Kosmosu 10/09/2012, WPCF '12 Małgorzata Janik Warsaw University of Technology

14 Małgorzata Janik WMAP / Planck 380 tys. lat po Wielkim Wybuchu 12-14/10/2012, Jesienne Warsztaty CSZ Granica poznania: promieniowanie tła Planck ( )? T = K Ale co było wcześniej? Jak to sprawdzić?

15 Model Wielkiego Wybuchu ROZMIAR, KOMPLIKACJA TEMPERATURA, GĘSTOŚĆ

16 Jak zbadać coś czego nie możemy zobaczyć? Zacznijmy od podstaw...

17 Układ okresowy

18 Model Standardowy Kwarki

19 Model Standardowy Leptony

20 Oddziaływania Model Standardowy zawiera 3 z 4 oddziaływań (bez grawitacji) Grawitacja jest najsłabszą siłą w mikroświecie (jest pomijalnie mała) Oddziaływania silne zachowują się inaczej (rosną z odległością)

21 Kwarki i gluony ~10-1 m ~10-10 m ~10-15 m Kwarki są ściśle związane poprzez gluony tworząc składniki jądra atomowego: protony i neutrony Nie udało się zaobserwować swobodnego kwarku proton neutron cząstki elementarne kwarki Cała otaczająca nas materia i my sami jesteśmy zbudowani tylko z tego... leptony masa nośniki oddziaływań

22 Kwarki i gluony ~10-1 m ~10-10 m ~10-15 m Kwarki są ściśle związane poprzez gluony tworząc składniki jądra atomowego: protony i neutrony Nie udało się zaobserwować swobodnego kwarku

23 Kwarki i gluony ~10-1 m ~10-10 m ~10-15 m Kwarki są ściśle związane poprzez gluony tworząc składniki jądra atomowego: protony i neutrony Nie udało się zaobserwować swobodnego kwarku

24 Czy można uwolnić kwarki? Para kwark-antykwark (mezon) Próbujemy je rozdzielić (dodajemy energię) E=mc 2! Dostajemy dwa mezony

25 Ale... czy historia Wszechświata i zaglądanie coraz głębiej w strukturę materii nie wydają się w zasadzie podobne? Zróbmy zatem porównanie...

26 Wszechświat Kwarki i gluony Nukleony Jądra Atomy Dzisiaj Wielki Wybuch 13*10 9 lat 10 6 s 10 4 s 3 min Budowa materii Problem: wspomnieliśmy, że nie zaobserwowano obecnie wolnego kwarku i nie można go otrzymać... Pytanie: Czy potrzebujemy izolować pojedynczy kwark? Może lepiej uwolnić wszystkie na raz! Czy to możliwe?

27 Pytanie: Czy potrzebujemy izolować pojedynczy kwark? Może lepiej uwolnić wszystkie na raz! Czy to możliwe? Czy nie lepiej wytworzyć takie warunki, w których kwarki będą swobodne, jak ryby w wodzie? Przecież, aby badać zwyczaje ryb, nie należy ich wyciągać z wody!!!

28 Jak badać zwyczaje ryb? Czy tak? Nie!

29 Jak badać zwyczaje ryb? Lepiej samemu zanurkować!!! Co widzimy? Ruch kolektywny

30 Jak uwolnić kwarki? Materia hadronowa: kwarki uwięzione w protonach i neutronach? Materia kwarkowa: kwarki są swobodne i mogą się przemieszczać ścisnąć ton/cm 3 podgrzać: o C

31 Alpy/Masyw Mont Blanc Genewa Jezioro Genewskie LHC CERN/Meyrin

32 Large Hadron Collider (LHC) - Wielki Zderzacz Hadronów

33 LHC - Large Hardon Collider (Wielki Zderzacz Hadronów) LHC to prawdziwa księga rekordów Guinnessa Długość tunelu akceleratora L=27km Głębokość tunelu akc. H=100m W tych rurach krążą protony; ich prędkość: v= c Energia: E=7 TeV c prędkość światła Próżnia P=10-10 Tr Temperatura T=1.9 K= o C

34 = Lord of the Rings 34

35 = Lord of the Rings 35

36 Jak to działa w praktyce? Możemy przyspieszać tylko cząstki naładowane (elektrony, protony, jądra atomowe) Pole elektryczne przyspiesza cząstki Pole magnetyczne zakrzywia tor wiązki skupia wiązkę

37 Ale gdzie te zderzenia? Zakrzywiamy i zwężamy wiązkę również używając magnesów

38 CERN eksperyment ATLAS CERN eksperyment CMS CERN eksperyment LHCb CERN eksperyment ALICE

39

40

41 Temperatura krytyczna, poniżej której następuje przejście fazowe. Diagram fazowy wody Poniżej pewnej temperatury kwarki łączą się w protony, neutrony i inne cząstki. Diagram fazowy plazmy

42

43 Tu jest obszar naszych zainteresowań

44 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

45 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

46 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

47 W Sci-Fi antymateria zasila napędy międzygwiezdne. Star Trek (Enterprise)

48

49 Czy antymaterię możemy zaobserwować, złapać i uwięzić? Czym właściwie jest antymateria?

50 Antymateria = bliźniak materii o przeciwnym ładunku

51 Istnienie antymaterii przewidziano prawie 100 lat temu! 1928 Równanie Diraca x 2 = 4 x = -2 x = 2

52 I chwilę później faktycznie cząstki antymaterii znalezione! Znaleziono w 1932 (w cząstkach pochodzących z promieniowania kosmicznego)

53 Znaleziono też antyprotony! 1955

54 Każde inne cząstki czy atomy z antymaterii też mogłbyby istnieć. Na przykład anty-złoto.

55 Istnieje ważna rzecz, którą należy wiedzieć o antymaterii.

56 Jest tak idealną kopią/przeciwieństwem materii, że po zetknięciu z nią zamienia się w czystą energię = anihiluje! Zostaje czysta energia...

57 Zgodnie ze sławnym równaniem: energia to masa, a masa to energia. Masa materii i antymaterii zamieniają się na czystą energię.

58 Tu jest 13 zer. Bardzo dużo czystej energii!

59 1 gram antymaterii: okrążenie samochodem 1000 razy kuli ziemskiej Albo wyprowadzenie promu kosmicznego na orbitę

60 Wiemy już, że mając antymaterię możemy wytwarzać energię. A można na odwrót? Z czystej energii wyprodukować antymaterię? TAK

61 W dodatku materia i antymateria powinny się produkować w tej samej ilości!

62 CERN eksperyment ATLAS CERN eksperyment CMS CERN eksperyment LHCb CERN eksperyment ALICE

63 I dokładnie to widzimy w LHC: materię i antymaterię produkowaną w tych samych ilościach.

64 Antymaterię można spotkać nie tylko w akceleratorach. Mamy z nią do czynienia na co dzień. Rozpad promieniotwórczy pierwiastków

65 Używamy antymaterii w medycynie: PET radioaktywny izotop F-18

66 Jeszcze jedno pytanie: skoro materia i antymateria są tak symetryczne, to dlaczego wszystko dookoła jest tylko z materii? Wiemy, że w trakcie Wielkiego Wybuchu powstały obie!

67 Jeszcze jedno pytanie: skoro materia i antymateria są tak symetryczne, to dlaczego wszystko dookoła jest tylko z materii? Wiemy, że w trakcie Wielkiego Wybuchu powstały obie!

68 Skąd ta nadwyżka? Dlaczego została tylko materia...?

69 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

70 Nagroda Nobla z Fizyki 2013 Sztokholm,

71 Problemem istnienia masy i właściwości bozonu Higgsa zajmują się eksperymenty ATLAS oraz CMS. Dlaczego niektóre cząstki są bardzo ciężkie a inne nie mają masy w ogóle? Odpowiedź na tak zadane pytanie daje tak zwany mechanizm Higgsa. Według tej teorii cała przestrzeń wypełniona jest tzw. polem Higgsa, przez oddziaływanie z którym cząstki uzyskują masę. Cząstki, które oddziałują silnie z polem Higgsa są ciężkie, natomiast te które oddziałują słabo są lekkie. Pole Higgsa ma przynajmniej jedną nową cząstkę z tym związaną bozon Higgsa. Cząstka Higgsa Święty Graal współczesnej nauki

72 Problemem istnienia masy i właściwości bozonu Higgsa zajmują się eksperymenty ATLAS oraz CMS. Dlaczego niektóre cząstki są bardzo ciężkie a inne nie mają masy w ogóle? Odpowiedź na tak zadane pytanie daje tak zwany mechanizm Higgsa. Według tej teorii cała przestrzeń wypełniona jest tzw. polem Higgsa, przez oddziaływanie z którym cząstki uzyskują masę. Cząstki, które oddziałują silnie z polem Higgsa są ciężkie, natomiast te które oddziałują słabo są lekkie. Pole Higgsa ma przynajmniej jedną nową cząstkę z tym związaną bozon Higgsa. Cząstka Higgsa Święty Graal współczesnej nauki

73 Problemem istnienia masy i właściwości bozonu Higgsa zajmują się eksperymenty ATLAS oraz CMS. Dlaczego niektóre cząstki są bardzo ciężkie a inne nie mają masy w ogóle? Odpowiedź na tak zadane pytanie daje tak zwany mechanizm Higgsa. Według tej teorii cała przestrzeń wypełniona jest tzw. polem Higgsa, przez oddziaływanie z którym cząstki uzyskują masę. Cząstki, które oddziałują silnie z polem Higgsa są ciężkie, natomiast te które oddziałują słabo są lekkie. Pole Higgsa ma przynajmniej jedną nową cząstkę z tym związaną bozon Higgsa. Cząstka Higgsa Święty Graal współczesnej nauki

74

75 Jak wygląda Higgs? Tak wygląda bozon Higgsa

76 Poszukiwanie Higgsa

77 Poszukiwanie Higgsa

78 14 marca 2013 Higgs-like staje się Higgsem Nagroda Nobla z Fizyki 2013 Sztokholm, François Englert (Université Libre de Bruxelles, Bruksela, Belgia) Peter W. Higgs (University of Edinburgh, Edynburg, Wielka Brytania) Za teoretyczne odkrycie mechanizmu, który przyczynia się do zrozumienia pochodzenia mas cząstek elementarnych, i który został niedawno potwierdzony poprzez odkrycie przewidywanej cząstki elementarnej dokonane przez grupy ATLAS i CMS w LHC (CERN).

79 Science Fiction Badamy Higgsa dzięki temu nauczyli ekranować pole Higgsa (elektromagnetyczne już potrafimy - tzw. niewidzialność optyczna) moglibyśmy stworzyć samochody potrafiące przyspieszać do ogromnych prędkości w ułamkach sekund! Odkrywamy Higgsa rozumiemy skąd się bierze masa potrafimy kontrolować bezwładność wypadki samochodowe lub lotnicze przestają być groźne bo wyeliminujemy obrażenia związane z gigantycznymi przeciążeniami.

80 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

81 Najważniejsze jest, że wiemy, że wiele jeszcze nie wiemy. Czyż to nie wspaniałe, że tyle jest jeszcze do odkrycia!!!

82

83

84 DZIĘKUJĘ ZA UWAGĘ Zawsze chętnie odpowiem na pytania:

85 CERN plan Site de Meyrin

86 Financial Times,

87 (April 1983)

88 26 lat temu... Tim Berners-Lee pisze słynny dokument, który stał się początkiem WWW (HTML) W jego pierwszych akapitach pisze: Many of the discussions of the future at CERN and the LHC era end with the question - ªYes, but how will we ever keep track of such a large project?º This proposal provides an answer to such questions. Firstly, it discusses the problem of information access at CERN. Then, it introduces the idea of linked information systems, and compares them with less flexible ways of finding information.

89 A czy mogą istnieć pułapki na antymaterię?

90 Układ akceleracyjny w CERN = Lord of the Rings

91 TAK! ALPHA A czy mogą istnieć pułapki na antymaterię? ATRAP

92 Problem ciemnej materii oraz ciemnej energii badają z kolei również eksperymenty ATLAS i CMS. Czym jest ciemna energia i ciemna materia? 92

93 Problem ciemnej materii oraz ciemnej energii Astronomowie od dawna obserwują ruchy gwiazd i galaktyk na niebie, a od kilkudziesięciu lat coraz lepiej widzą, że obserwacje te są sprzeczne ze znanymi nam prawami fizyki (m. in. obracają się za szybko, a grawitacja od widzalnych obiektów jest niewystarczająca, by je utrzymać w całości: wszystko powinno sę rozpaść). Prawa fizyki można uratować jeśli założymy, że we Wszechświecie znajduje się ogromna ilość materii innej niż ta, którą znamy materii niezbudowanej z atomów, nieoddziałującej ze światłem, a więc ciemnej!

94 Ciemna energia z kolei tłumaczy obserwowaną coraz większą prędkość rozszerzania się Wszechświata. Podobnie jak ciemnej materii, nie udało się jeszcze potwierdzić jej istnienia.

95 Dzięki poszukiwaniom w LHC nowych, ciężkich cząstek, słabo oddziałujących ze zwykłą materią, być może będziemy w stanie przybliżyć się do rozwiązania tej zagadki.

96 A czy zwykłemu człowiekowi to się na coś przyda? nowe materiały, nowe technologie, nowe urządzenia pomiarowe, zastosowania w medycynie, zastosowania w komunikacji, zastosowania w energetyce, zastosowania w ochronie środowiska...

97 26 lat temu... Tim Berners-Lee pisze słynny dokument, który stał się początkiem WWW (HTML) W jego pierwszych akapitach pisze: Many of the discussions of the future at CERN and the LHC era end with the question - ªYes, but how will we ever keep track of such a large project?º This proposal provides an answer to such questions. Firstly, it discusses the problem of information access at CERN. Then, it introduces the idea of linked information systems, and compares them with less flexible ways of finding information.

98 CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin

99 Gdzie to jest? ok. 100m Tu!!!

100 LHC w schematycznym przekroju

101 CERN/LHC - Large Hardon Collider (Wielki Zderzacz Hadronów) LHC, to prawdziwa księga rekordów Guinnessa Głębokość tunelu akc. H=100m W tych rurach krążą protony; ich prędkość: Długość tunelu akceleratora L=27km v= c Energia: E p =7 TeV c prędkość światła Próżnia P=10-10 Tr Temperatura T=1.9 K= o C Magnesy nadprzewodzące: Prąd elektryczny: I= A Pole magnetyczne: B=8.7 T

102 LHC, Large Hadron Collider - Wielki Zderzacz Hadronów

103 Technologie stworzone dla potrzeb CERN zostały wykorzystane w: 1. Medycynie - diagnostyka: tomografia emisyjna PET, pozwalająca na badanie fizjologii organizmu, tomografia komputerowa CT, - leczenie: terapia hadronowa umożliwiająca skuteczne leczenie głęboko położonych guzów. 2. Przemyśle: - opracowano technologię opartą na materiale zwanym getterem, który można zastosować do poprawy izolacji termicznej urządzeń gospodarstwa domowego (np. lodówki). 3. Środowisko: - dzięki opanowaniu technologii wytwarzania ultrawysokiej próżni oraz łączenia szkła z metalem, płaskie próżniowe kolektory słoneczne przechodzą z fazy prototypu do sprzedaży, co stanowi znaczny postęp w wytwarzaniu energii ze źródeł odnawialnych. 4. Technologie informacyjne: - oprócz WWW niedawno powstała światowa sieć komputerów GRID.

104 KONIEC CZĘŚCI I CIĄG DALSZY NASTĄPI... Zawsze chętnie odpowiemy na pytania: lgraczyk@cern.ch majanik@cern.ch

105

106 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

107 Kolejny problem, to materia i antymateria. Zrozumieć go próbuje eksperyment LHCb. Na początku Wszechświat był zbudowany w równych proporcjach z materii i antymaterii. Gdyby podczas ewolucji Wszechświata materia i antymateria były swoim lustrzanym odbiciem unicestwiłyby się całkowicie, zostawiając jedynie energię. Dlaczego jednak część materii pozostała, tworząc galaktyki, Układ Słoneczny, naszą planetę i nas? LHC będzie badać, skąd bierze się ta niewielka różnica, jaka istnieje między materią i antymaterią.

108 Czego nie wiemy? 1. Jak formował się wczesny Wszechświat? 2. Jakie są własności kwarków w stanie swobodnym? (Czym jest plazma kwarkowo-gluonowa?) 3. Skąd się biorą masy cząstek i czemu są takie jakie są? 4. Czy istnieje bozon Higgsa? 5. Gdzie się podziała antymateria? 6. Gdzie i czym jest niewidoczna część Wszechświata? ( ciemna materia i ciemna energia ) 7. Czy istnieją skryte wymiary przestrzeni? 8. Czy istnieją cząstki supersymetryczne? 9. Wiele innych...

109 Problem ciemnej materii oraz ciemnej energii badają z kolei również eksperymenty ATLAS i CMS. Astronomowie od dawna obserwują ruchy gwiazd i galaktyk na niebie, a od kilkudziesięciu lat coraz lepiej widzą, że obserwacje te są sprzeczne ze znanymi nam prawami fizyki. Prawa fizyki można uratować jeśli założymy, że we Wszechświecie znajduje się ogromna ilość materii innej niż ta, którą znamy materii niezbudowanej z atomów, nieoddziałującej ze światłem, a więc ciemnej. Dzięki poszukiwaniom w LHC nowych, ciężkich cząstek, słabo oddziałujących ze zwykłą materią, być może będziemy w stanie przybliżyć się do rozwiązania tej zagadki. Ciemna energia z kolei tłumaczy obserwowaną coraz większą prędkość rozszerzania się Wszechświata. Podobnie jak ciemnej materii, nie udało się jeszcze potwierdzić jej istnienia.

110 1978 Nagroda Nobla (Penzias, Wilson) Granica poznania: promieniowanie tła Planck

111 Jaki jest przepis na przyrodę? Przyroda na najniższym poziomie opisywana jest tzw. Modelem Standardowym (SM): Cząstki elementarne cegiełki budujące materię (fermiony i bozony) Trzy oddziaływania (z czterech) opisujące dynamikę cząstek elementarnych (słabe, silne oraz elektromagnetyczne) kwarki leptony Fermiony (budulec materii) Bozony (nośniki oddziaływań) Model Standardowy nie zawiera w sobie grawitacji opisanej przez Ogólną Teorię Względności Alberta Einsteina. masa Po potwierdzeniu odkrycia bozonu Higgsa w 2013 r. (o tym później) SM nazywany jest teorią prawie wszystkiego (theory of almost everything).

112 Model Wielkiego Wybuchu WMAP / Planck Jądra atomowe Protony i neutrony Plazma kwarkowo-gluonowa Powstają cząstki elementarne Inflacja? (Kwantowa grawitacja)

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN

Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN Podróż do początków Wszechświata: czyli czym zajmujemy się w laboratorium CERN mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż. Łukasz Graczykowski - lgraczyk@cern.ch Zakład Fizyki Jądrowej, Wydział

Bardziej szczegółowo

Eksperyment ALICE i plazma kwarkowo-gluonowa

Eksperyment ALICE i plazma kwarkowo-gluonowa Eksperyment ALICE i plazma kwarkowo-gluonowa CERN i LHC Jezioro Genewskie Lotnisko w Genewie tunel LHC (długość 27 km, ok.100m pod powierzchnią ziemi) CERN/Meyrin Gdzie to jest? ok. 100m Tu!!! LHC w schematycznym

Bardziej szczegółowo

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek

Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek Wszystko, co kiedykolwiek chcieliście wiedzieć o CERNie i o fizyce cząstek i jeszcze kilka, których nie chcieliście wiedzieć, ale i tak się dowiecie mgr inż. Małgorzata Janik - majanik@cern.ch mgr inż.

Bardziej szczegółowo

Witamy w CERN. 2014-02-24 Marek Kowalski

Witamy w CERN. 2014-02-24 Marek Kowalski Witamy w CERN Co to jest CERN? CERN European Organization for Nuclear Research oryg. fr Conseil Europeén pour la Recherche Nucléaire Słowo nuclear (Jadrowy) czysto historyczne. W czasie, gdy zakładano

Bardziej szczegółowo

Witamy w CERNie. Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie.

Witamy w CERNie. Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie. Witamy w CERNie Bolesław Pietrzyk LAPP Annecy (F) Wykład przygotowany przez polskich fizyków w CERNie bolek.pietrzyk@cern.ch 4 lipca 2012 Joe Incandela (CMS) Fabiola Gianotti (ATLAS) Première rencontre

Bardziej szczegółowo

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych Z czego składa się Wszechświat?

Grzegorz Wrochna Narodowe Centrum Badań Jądrowych  Z czego składa się Wszechświat? Narodowe Centrum Badań Jądrowych www.ncbj.gov.pl Z czego składa się Wszechświat? 1 Budowa materii ~ cała otaczająca nas materia składa się z atomów pierwiastek chemiczny = = zbiór jednakowych atomów Znamy

Bardziej szczegółowo

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept.

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept. CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept. Menu Co to jest właściwie CERN? Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów: cząstki elementarne

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-

Bardziej szczegółowo

Wydział Fizyki Politechniki Warszawskiej

Wydział Fizyki Politechniki Warszawskiej Faculty of Physics, Warsaw University of Technology Wydział Fizyki Politechniki Warszawskiej Jan Pluta, Zakład Fizyki Jądrowej 28. 03. 2015 Wstęp do fizyki cząstek elementarnych 1. Świat jest piękny i

Bardziej szczegółowo

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011

WYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników. Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW 25.11.2011 Współczesne eksperymenty Wprowadzenie Akceleratory Zderzacze Detektory LHC Mapa drogowa Współczesne

Bardziej szczegółowo

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia?

Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Z czego i jak zbudowany jest Wszechświat? Jak powstał? Jak się zmienia? Cząstki elementarne Kosmologia Wielkość i kształt Świata Ptolemeusz (~100 n.e. - ~165 n.e.) Mikołaj Kopernik (1473 1543) geocentryzm

Bardziej szczegółowo

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski

Cząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

- Cząstka Higgsa - droga do teorii wszystkiego

- Cząstka Higgsa - droga do teorii wszystkiego - Cząstka Higgsa - droga do teorii wszystkiego Bohdan Grządkowski Uniwersytet Warszawski Wydział Fizyki Instytut Fizyki Teoretycznej 19 maja 2014 Uniwersytet Szczeciński Plan Model Standardowy oddziaływań

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012

Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe 4.IV.2012 Wszechświat cząstek elementarnych WYKŁAD 8sem.letni.2011-12 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siły Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

LHC: program fizyczny

LHC: program fizyczny LHC: program fizyczny Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 2 Program fizyczny LHC Model Standardowy i Cząstka Higgsa Poza Model Standardowy:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA Wydział: BMiZ Kierunek: MiBM / KMiU Prowadzący: dr hab. Tomasz Stręk Przygotował: Adrian Norek Plan prezentacji 1. Wprowadzenie 2. Chłodzenie największego na świecie magnesu w CERN

Bardziej szczegółowo

Sieci Komputerowe. Wykład 1: Historia, model ISO, Ethernet, WiFi

Sieci Komputerowe. Wykład 1: Historia, model ISO, Ethernet, WiFi Sieci Komputerowe Wykład 1: Historia, model ISO, Ethernet, WiFi prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 117d 1 Informacje o przedmiocie Strona internetowa przedmiotu: http://www.if.pw.edu.pl/~siecik/

Bardziej szczegółowo

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept.

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept. CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept. Menu Co to jest właściwie CERN? Trochę historii Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów:

Bardziej szczegółowo

Bozon Higgsa prawda czy kolejny fakt prasowy?

Bozon Higgsa prawda czy kolejny fakt prasowy? Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

LHC i po co nam On. Piotr Traczyk CERN

LHC i po co nam On. Piotr Traczyk CERN LHC i po co nam On Piotr Traczyk CERN LHC: po co nam On Piotr Traczyk CERN Detektory przy LHC Planowane są 4(+2) eksperymenty na LHC ATLAS ALICE CMS LHCb 5 Program fizyczny LHC 6 Program fizyczny LHC

Bardziej szczegółowo

Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą.

Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą. Kurs dla nauczycieli fizyki - Cząstki elementarne w CERN pod Genewą. Europejska Organizacja Badań Jądrowych CERN (European Organization for Nuclear Research) pod Genewą i Centralny Ośrodek Doskonalenia

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Materia i jej powstanie Wykłady z chemii Jan Drzymała

Materia i jej powstanie Wykłady z chemii Jan Drzymała Materia i jej powstanie Wykłady z chemii Jan Drzymała Przyjmuje się, że wszystko zaczęło się od Wielkiego Wybuchu, który nastąpił około 15 miliardów lat temu. Model Wielkiego Wybuch wynika z rozwiązań

Bardziej szczegółowo

Model Standardowy i model Higgsa. Sławomir Stachniewicz, IF PK

Model Standardowy i model Higgsa. Sławomir Stachniewicz, IF PK Model Standardowy i model Higgsa Sławomir Stachniewicz, IF PK 1. Wstęp. Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami materii. Model Higgsa to dodatek do

Bardziej szczegółowo

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi?

Wielki Wybuch czyli podróż do początku wszechświata. Czy może się to zdarzyć na Ziemi? Wielki Wybuch czyli podróż do początku wszechświata Czy może się to zdarzyć na Ziemi? Świat pod lupą materia: 10-4 m kryształ: 10-9 m ρ=2 3 g/cm 3 atom: 10-10 m jądro: 10-14 m nukleon: 10-15 m (1fm) ρ=10

Bardziej szczegółowo

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept.

CERN - pierwsze globalne laboratorium. Magdalena Kowalska CERN, PH-Dept. CERN - pierwsze globalne laboratorium Magdalena Kowalska CERN, PH-Dept. Menu Co to jest właściwie CERN? Trochę historii Kilku CERN-owskich Noblistów Co badamy? Obecne przyspieszacze Przykłady eksperymentów:

Bardziej szczegółowo

Cząstka Higgsa własności, odkrycie i badania oddziaływań

Cząstka Higgsa własności, odkrycie i badania oddziaływań Cząstka Higgsa własności, odkrycie i badania oddziaływań Prof. dr hab. Elżbieta Richter-Wąs Instytut Fizyki Uniwersytetu Jagiellońskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Odkrycia cząstek

Bardziej szczegółowo

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe

WYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Epiphany Wykład II: wprowadzenie

Epiphany Wykład II: wprowadzenie Epiphany 2008 LEP, 2: opady deszczu LHC This morning I visited the place where the street-cleaners dump the rubbish. My God, it was beautiful - Van Gogh 20 krajów europejskich należy do CERN Kraje

Bardziej szczegółowo

Akceleratory Cząstek

Akceleratory Cząstek M. Trzebiński Akceleratory cząstek 1/30 Akceleratory Cząstek Maciej Trzebiński Instytut Fizyki Jądrowej Polskiej Akademii Nauki Praktyki studenckie na LHC IFJ PAN, 23 sierpnia 2016 Obserwacje w makroświecie

Bardziej szczegółowo

Nauka i technologia dwa spojrzenia na CERN

Nauka i technologia dwa spojrzenia na CERN Nauka i technologia dwa spojrzenia na CERN Politechnika Krakowska, wykład inauguracyjny, 3.10.2014 Agnieszka Zalewska, IFJ PAN Przewodnicząca Rady CERN-u CERN utworzony został w 1954: przez 12 państw europejskich

Bardziej szczegółowo

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków

Historia Wszechświata w (dużym) skrócie. Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków Historia Wszechświata w (dużym) skrócie Agnieszka Pollo Instytut Problemów Jądrowych Warszawa Obserwatorium Astronomiczne UJ Kraków wczesny Wszechświat późny Wszechświat z (przesunięcie ku czerwieni; redshift)

Bardziej szczegółowo

Fizyka cząstek elementarnych i oddziaływań podstawowych

Fizyka cząstek elementarnych i oddziaływań podstawowych Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość

Bardziej szczegółowo

Na tropach czastki Higgsa

Na tropach czastki Higgsa Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Oddziaływania podstawowe

Oddziaływania podstawowe Oddziaływania podstawowe grawitacyjne silne elektromagnetyczne słabe 1 Uwięzienie kwarków (quark confinement). Przykład działania mechanizmu uwięzienia: Próba oderwania kwarka d od neutronu (trzy kwarki

Bardziej szczegółowo

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 15 Maria Krawczyk, Wydział Fizyki UW 12.01. 2010 Ciemny Wszechświat Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Supersymetria, czyli super symetria

Supersymetria, czyli super symetria 28 Supersymetria, czyli super symetria Piotr Korcyl Instytut Fizyki UJ W niniejszym artykule chciałbym zaprosić Państwa do świata cząstek elementarnych. Zamierzam przedstawić Państwu kilka zagadnień, na

Bardziej szczegółowo

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39

Skad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39 Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,

Bardziej szczegółowo

oraz Początek i kres

oraz Początek i kres oraz Początek i kres Powstanie Wszechświata szacuje się na 13, 75 mld lat temu. Na początku jego wymiary były bardzo małe, a jego gęstość bardzo duża i temperatura niezwykle wysoka. Ponieważ w tej niezmiernie

Bardziej szczegółowo

Wstęp do fizyki cząstek elementarnych

Wstęp do fizyki cząstek elementarnych Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania

Bardziej szczegółowo

Teoria grawitacji. Grzegorz Hoppe (PhD)

Teoria grawitacji. Grzegorz Hoppe (PhD) Teoria grawitacji Grzegorz Hoppe (PhD) Oddziaływanie grawitacyjne nie zostało dotychczas poprawnie opisane i pozostaje jednym z nie odkrytych oddziaływań. Autor uważa, że oddziaływanie to jest w rzeczywistości

Bardziej szczegółowo

Nowe wyniki eksperymentów w CERN

Nowe wyniki eksperymentów w CERN FOTON 122, Jesień 2013 59 Nowe wyniki eksperymentów w CERN Małgorzata Nowina-Konopka IFJ PAN Kraków I. Eksperyment AMS mierzy nadwyżkę antymaterii w przestrzeni Promieniowanie kosmiczne to naładowane,

Bardziej szczegółowo

Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ)

Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Plazma Kwarkowo-Gluonowa Nowy Stan Materii Stany skupienia (fazy) materii (1) p=const Gaz (cząsteczkowy lub atomowy), T eratura, Tempe Ciecz wrzenie topnienie Ciało ł stałe ł (kryształ) Diagram fazowy

Bardziej szczegółowo

Sylwa czyli silva rerum na temat fizyki cz astek elementarnych

Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Sylwa czyli silva rerum na temat fizyki cz astek elementarnych Barbara Badełek Uniwersytet Warszawski i Uniwersytet Uppsalski Nauczyciele fizyki w CERN 20 26 maja 2007 B. Badełek (Warsaw and Uppsala) Silva

Bardziej szczegółowo

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty

Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Ewolucja Wszechświata Wykład 5 Pierwsze trzy minuty Historia Wszechświata Pod koniec fazy inflacji, około 10-34 s od Wielkiego Wybuchu, dochodzi do przejścia fazowego, które tworzy prawdziwą próżnię i

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych

Jak działają detektory. Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych Jak działają detektory Julia Hoffman# Southern Methodist University# Instytut Problemów Jądrowych LHC# Wiązka to pociąg ok. 2800 paczek protonowych Każda paczka składa się. z ok. 100 mln protonów 160km/h

Bardziej szczegółowo

Z czego składa się Wszechświat? Jak to wszystko się zaczęło?

Z czego składa się Wszechświat? Jak to wszystko się zaczęło? Z czego składa się Wszechświat? Jak to wszystko się zaczęło? Żyjemy na Ziemi, małej błękitno-zielonej planecie, trzeciej od Słońca jednej z setek tysięcy milionów gwiazd w galaktyce zwanej Drogą Mleczną,

Bardziej szczegółowo

Wstęp do fizyki cząstek elementarnych: część eksperymentalna

Wstęp do fizyki cząstek elementarnych: część eksperymentalna Wstęp do fizyki cząstek elementarnych: część eksperymentalna Pięćdziesiąt lat badań cząstek elementarnych, nagrody Nobla, Model Standardowy Labolatorium CERN Eksperymenty LHC Detektory cząstek elementarnych

Bardziej szczegółowo

Co dalej z fizyką cząstek czy LHC udzieli na to pytanie odpowiedzi? 1

Co dalej z fizyką cząstek czy LHC udzieli na to pytanie odpowiedzi? 1 Co dalej z fizyką cząstek czy LHC udzieli na to pytanie odpowiedzi? 1 Marek Zrałek Zakład Teorii Pola i Cząstek Elementarnych Ludzie od zawsze pragnęli zrozumieć z czego składa się wszystko to, co nas

Bardziej szczegółowo

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)

WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU) WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Bozon Higgsa oraz SUSY

Bozon Higgsa oraz SUSY Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Fizyka cząstek elementarnych

Fizyka cząstek elementarnych Wykład III Metody doświadczalne fizyki cząstek elementarnych I Źródła cząstek elementarnych Elektrony, protony i neutrony tworzą otaczającą nas materię. Aby eksperymentować z elektronami wystarczy zjonizować

Bardziej szczegółowo

Ostatnie uzupełnienia

Ostatnie uzupełnienia Ostatnie uzupełnienia 00 DONUT: oddziaływanie neutrina taonowego (nikt nie wątpił, ale ) Osiągnięta skala odległości: 100GeV 1am; ew. struktura kwarków i leptonów musi być mniejsza! Listy elementarnych

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem

Bardziej szczegółowo

Wytwarzanie zimnej antymaterii. Joanna Mieczkowska Fizyka Stosowana Semestr VII

Wytwarzanie zimnej antymaterii. Joanna Mieczkowska Fizyka Stosowana Semestr VII Wytwarzanie zimnej antymaterii Joanna Mieczkowska Fizyka Stosowana Semestr VII 1 Wolno poruszające się atomy antywodoru umożliwią zbadanie podstawowych praw rządzących Wszechświatem Graham P.Collins Atom

Bardziej szczegółowo

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008))

10.V Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 10 Maria Krawczyk, Wydział Fizyki UW Ciemny Wszechświat 10.V. 2010 Polecam - The Dark Universe by R. Kolb (Wykłady w CERN (2008)) http://indico.cern.ch/conferencedisplay.py?confid=24743

Bardziej szczegółowo

Janusz Gluza. Instytut Fizyki UŚ Zakład Teorii Pola i Cząstek Elementarnych

Janusz Gluza. Instytut Fizyki UŚ  Zakład Teorii Pola i Cząstek Elementarnych Akceleratory czyli największe mikroskopy świata Janusz Gluza Instytut Fizyki UŚ http://fizyka.us.edu.pl/ Zakład Teorii Pola i Cząstek Elementarnych http://www.us.edu.pl/~ztpce/ http://www.us.edu.pl/~gluza

Bardziej szczegółowo

CERN: fizyka wysokich energii i edukacja szkolna. Krzysztof Fiałkowski Uniwersytet Jagielloński

CERN: fizyka wysokich energii i edukacja szkolna. Krzysztof Fiałkowski Uniwersytet Jagielloński CERN: fizyka wysokich energii i edukacja szkolna Krzysztof Fiałkowski Uniwersytet Jagielloński Czym jest CERN? CERN to skrót francuskiej nazwy Conseil Européen pour la Recherche Nucléaire, czyli Europejska

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata

Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Wszechświat Cząstek Elementarnych dla Humanistów Ciemna Strona Wszechświata Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 16 stycznia 2018 A.F.Żarnecki

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Oddziaływania elektrosłabe

Oddziaływania elektrosłabe Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz

Bardziej szczegółowo

Wszechświat cząstek elementarnych (dla humanistów)

Wszechświat cząstek elementarnych (dla humanistów) Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN )

Bardziej szczegółowo

th- Zakład Zastosowań Metod Obliczeniowych (ZZMO)

th-  Zakład Zastosowań Metod Obliczeniowych (ZZMO) Zakład Zastosowań Metod Obliczeniowych (ZZMO) - prof. dr hab. Wiesław Płaczek - prof. dr hab. Elżbieta Richter-Wąs - prof. dr hab. Wojciech Słomiński - prof. dr hab. Jerzy Szwed (Kierownik Zakładu) - dr

Bardziej szczegółowo

Fizyka cząstek elementarnych. Tadeusz Lesiak

Fizyka cząstek elementarnych. Tadeusz Lesiak Fizyka cząstek elementarnych Tadeusz Lesiak 1 WYKŁAD IX Oddziaływania słabe T.Lesiak Fizyka cząstek elementarnych 2 Rola oddziaływań słabych w przyrodzie Oddziaływania słabe są odpowiedzialne (m.in.) za:

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1

Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1 Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO

Bardziej szczegółowo

Tworzenie protonów neutronów oraz jąder atomowych

Tworzenie protonów neutronów oraz jąder atomowych Tworzenie protonów neutronów oraz jąder atomowych kwarki, elektrony, neutrina oraz ich antycząstki anihilują aby stać się cząstkami 10-10 s światła fotonami energia kwarków jest już wystarczająco mała

Bardziej szczegółowo

Fizyka wysokich energii w erze LHC

Fizyka wysokich energii w erze LHC Konferencja FIZYKA WYSOKICH ENERGII W EDUKACJI SZKOLNEJ Puławy, 29.02 01.03.2008 Fizyka wysokich energii w erze LHC Jan Paweł Nassalski Instytut Problemów Jądrowych im. A. Sołtana J. P. Nassalski Puławy,

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Komora próżniowa

Frialit -Degussit Ceramika tlenkowa Komora próżniowa Frialit -Degussit Ceramika tlenkowa Komora próżniowa Zastosowanie: Zaginanie toru cząstki w akceleratorze Materiał: Tlenek glinu FRIALIT F99.7 L = 1350 mm D = 320 mm Produkcja Friatec Na całym świecie

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Wszechświata. Piotr Traczyk. IPJ Warszawa

Wszechświata. Piotr Traczyk. IPJ Warszawa Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa

Bardziej szczegółowo

Ekspansja Wszechświata

Ekspansja Wszechświata Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera

Bardziej szczegółowo

Poszukiwany: bozon Higgsa

Poszukiwany: bozon Higgsa Poszukiwany: bozon Higgsa Higgs widoczny w świetle kolajdera liniowego Fizyka Czastek i Oddziaływań Fundamentalnych: TESLA & ZEUS Poszukiwane: czastki sypersymetryczne (SUSY) Fizyka Czastek i Oddziaływań

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne

Wyk³ady z Fizyki. Zbigniew Osiak. Cz¹stki Elementarne Wyk³ady z Fizyki 13 Zbigniew Osiak Cz¹stki Elementarne OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wszechświat czastek elementarnych Wykład 9: Współczesne eksperymenty prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych Wykład

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Początki Wszechświata Początki Wszechświata Dane obserwacyjne Odkrycie Hubble a w 1929 r. Promieniowanie tła w 1964 r. (Arno Penzias i Robert

Bardziej szczegółowo

Relatywistyczne zderzenia ciężkich jonów jako narzędzie w badaniu diagramu fazowego silnie oddziałującej materii

Relatywistyczne zderzenia ciężkich jonów jako narzędzie w badaniu diagramu fazowego silnie oddziałującej materii Relatywistyczne zderzenia ciężkich jonów jako narzędzie w badaniu diagramu fazowego silnie oddziałującej materii Katarzyna Grebieszkow 5 lutego 2016 Streszczenie W dokumencie pokazane są podstawowe cele

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Wykład monograficzny 0 1

Wykład monograficzny 0 1 Fizyka zderzeń relatywistycznych ciężkich jonów Wykład 0: LHC okno na Mikroświat Wykład 1: AA: Motywacja, cele fizyczne, akceleratory, eksperymenty Wykład 2: Plazma kwarkowo-gluonowa Wykład 3: Geometria

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania

Elementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)

Bardziej szczegółowo

Masterclasses: Warsztaty z fizyki cząstek. Politechnika Warszawska, Wydział Fizyki, Wydział Elektroniki i Technik Informacyjnych

Masterclasses: Warsztaty z fizyki cząstek. Politechnika Warszawska, Wydział Fizyki, Wydział Elektroniki i Technik Informacyjnych Masterclasses: Warsztaty z fizyki cząstek Politechnika Warszawska, Wydział Fizyki, Wydział Elektroniki i Technik Informacyjnych What is a Particle Physics Masterclass? As in a masterclass in the arts,

Bardziej szczegółowo

Obserwacja Nowej Cząstki o Masie 125 GeV

Obserwacja Nowej Cząstki o Masie 125 GeV Obserwacja Nowej Cząstki o Masie 125 GeV Eksperyment CMS, CERN 4 lipca 2012 Streszczenie Na wspólnym seminarium w CERN i na konferencji ICHEP 2012 [1] odbywającej się w Melbourne, naukowcy pracujący przy

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 13 Początki Wszechświata c.d. Nukleosynteza czas Przebieg pierwotnej nukleosyntezy w czasie pierwszych kilkunastu minut. Krzywe ukazują stopniowy

Bardziej szczegółowo

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek

Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Frialit -Degussit Ceramika tlenkowa Jednostka akceleratora cząstek Zastosowanie: Akceleratory wysokiego napięcia Materiał: Tlenek glinu FRIALIT F99.7 Pierścienie miedziane L = 560 mm D = 350 mm Produkcja

Bardziej szczegółowo

Jak działają detektory. Julia Hoffman

Jak działają detektory. Julia Hoffman Jak działają detektory Julia Hoffman wielki Hadronowy zderzacz Wiązka to pociąg ok. 2800 wagonów - paczek protonowych Każdy wagon wiezie ok.100 mln protonów Energia chemiczna: 80 kg TNT lub 16 kg czekolady

Bardziej szczegółowo

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak Wyk³ady z Fizyki J¹dra 12 Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r.

Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r. Reportaż ze szkolenia w CERN w Genewie, 11 17.04.2010 r. Do CERN wyruszyliśmy z parkingu Instytutu Fizyki Uniwersytetu Śląskiego, który był organizatorem tego bardzo interesującego dla fizyków wyjazdu.

Bardziej szczegółowo

AKCELERATORY I DETEKTORY WOKÓŁ NAS

AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle

Bardziej szczegółowo