Systemy ekspertowe. Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell

Wielkość: px
Rozpocząć pokaz od strony:

Download "Systemy ekspertowe. Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell"

Transkrypt

1 Systemy ekspertowe Podstawowe pojęcia, geneza, metody wnioskowania, PC-Shell

2 Inteligencja i ekspert dziedzinowy Inteligencja - (psych.) zespół zdolności umysłowych umożliwiających jednostce sprawne korzystanie z nabytej wiedzy oraz skuteczne zachowanie się wobec nowych zadań i sytuacji EKSPERT: Człowiek posiadający specjalistyczną wiedzę z pewnej dziedzinie (wiedzę dziedzinową) i umiejętność stosowania jej dla podejmowania decyzji związanych z tą dziedziną (umiejętność wnioskowania w oparciu o posiadaną wiedzę), nabyte w wyniku studiów i praktyki.

3 System ekspertowy definicja.. inteligentny program komputerowy, wykorzystujący procedury wnioskowania do rozwiązywania tych problemów, które są na tyle trudne, że normalnie wymagają znaczącej ekspertyzy specjalistów. Wiedza wraz z procedurami wnioskowania może być uważana za model ekspertyzy, normalnie posiadanej tylko przez najlepszych specjalistów w danej dziedzinie. Wiedza w SE składa się z faktów i heurystyk. Fakty są podstawą bazy wiedzy systemu informacją, która jest ogólnie dostępna i powszechnie akceptowana przez ekspertów w danej dziedzinie. Heurystyki są zwykle bardziej prywatną informacją.. (wg. E. Feigenbauma)

4 system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną wiedzę na temat określonego obszaru ludzkiej działalności, przy czym wiedza ta jest tak zorganizowana, że umożliwia systemowi wejście w interakcyjny dialog z użytkownikiem, w wyniku czego system może oferować rady lub podpowiadać decyzje, jak również objaśniać proces prowadzonego wnioskowania.

5 System ekspertowy definicja System ekspercki (funkcjonuje też nazwa system ekspertowy) jest to program, lub zestaw programów komputerowych wspomagający korzystanie z wiedzy i ułatwiający podejmowanie decyzji. Systemy ekspertowe mogą wspomagać bądź zastępować ludzkich ekspertów w danej dziedzinie, mogą dostarczać rad, zaleceń i diagnoz dotyczących problemów tej dziedziny.

6 Inteligencja ludzka a sztuczna inteligencja? Zastosowania systemów ekspertowych: diagnozowanie chorób poszukiwanie złóż minerałów identyfikacja struktur molekularnych udzielanie porad prawniczych diagnoza problemu (np. nieprawidłowego działania urządzenia)

7 Systemy ekspertowe Systemy ekspertowe: są narzędziem kodyfikacji wiedzy eksperckiej, mają zdolność rozwiązywania problemów specjalistycznych, w których duża rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym, zwiększają dostępność ekspertyzy, zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów, poziom ekspertyzy jest stabilny - jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu, jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego, zdolność do objaśniania znalezionych przez system rozwiązań, możliwość przyrostowej budowy i pielęgnacji bazy wiedzy.

8 Wnioskowanie Dwie podstawowe strategie wnioskowania: Wnioskowanie w przód, zwane też wnioskowaniem progresywnym. Polega ono na uaktywnianiu reguł spełnionych, a więc takich, których przesłanki są w zbiorze faktów. Uaktywnienie reguły powoduje dopisanie nowego faktu, co może spowodować, że spełniona i potem uaktywniona może zostać kolejna reguła. Wnioskowanie w przód nie może odbyć się bez faktów. Mówi się, że jest ono sterowane faktami ( ang. data driven). Wnioskowanie wstecz, zwane też regresywnym. Polega ono na potwierdzeniu prawdziwości postawionej hipotezy, zwanej celem wnioskowania. Hipoteza jest potwierdzona wtedy, gdy istnieje reguła, której przesłanki są w bazie faktów a konkluzja zgodna jest z hipotezą. Ustalenie prawdziwości przesłanek może powodować konieczność uaktywnienia wielu reguł. Wnioskowanie wstecz nie może odbyć się bez ustalonej hipotezy, stanowiącej cel wnioskowania. Mówi się, że jest ono sterowane celem ( ang. goal driven).

9 Architektura SE

10 Wyznaczniki dobrego systemu ekspertowego: Udzielanie jak najbardziej precyzyjnych i wiarygodnych odpowiedzi Prostota obsługi dla każdego użytkownika Rozwiązywanie problemów w określonym czasie Umiejętność imitowania wiedzy i wieloletniego doświadczenia eksperta Uniwersalność Rozbudowana i dobrej jakości baza danych

11 że niby komputer zamiast lekarza? Medyczny System Ekspertowy będzie jedynie wspomagał, ale nie zastąpi pracy lekarza. W szpitalu w Ottawie, w izbie przyjęć nie dyżuruje specjalista chirurg, lecz stażyści, interniści, a nawet wykwalifikowane pielęgniarki. Chirurg jest pod telefonem. Tymczasem trzeba ocenić, czy konkretnemu małemu pacjentowi chirurg jest potrzebny. To nie jest takie proste. Trafność decyzji, czy przywołać chirurga, czy skierować na obserwację, czy też odesłać do domu, jest rzędu sześćdziesięciu procent. Czyli często się zdarza, że do domu odsyła się kogoś bardzo chorego, a chirurga wzywa się do banalnego zatrucia pokarmowego. Dzięki sztucznej inteligencji, maszyna może wyindukować z danych reguły decyzyjne, jednak, na przykład w przypadku medycyny, dopiero po zrozumieniu i akceptacji tych reguł przez lekarza reguły te mogą pretendować do miana wiedzy i prowadzić do interesującego, potwierdzającego intuicję odkrycia. Niewątpliwie maszyny w coraz większym stopniu będą wyręczały człowieka w wykonywaniu pewnych intelektualnych czynności, bo są sprawniejsze obliczeniowo, bardziej pojemne pamięciowo, nie męczą się, nie mają złych dni itd. W związku z tym potrafią wykonywać prace, które przerastają człowieka swoim ogromem i uciążliwością.

12 Architektura SE

13 Tworzenie SE

14 Właściwości systemów ekspertowych Są narzędziem kodyfikacji wiedzy; Mają zdolność rozwiązywania problemów specjalistycznych, w których dużą rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym; Zwiększają dostępność ekspertyzy; zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów; poziom ekspertyzy jest stabilny jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu; jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego; zdolność do objaśniania znalezionych przez system rozwiązań; możliwość przyrostowej budowy i pielęgnacji bazy wiedzy. System ekspertowy służy do rozwiązywania problemów, które charakteryzują się jedną lub wieloma z następujących cech: problem nie da się sformalizować w postaci liczbowej; cele nie dadzą się opisać za pomocą matematycznych funkcji celu; nie istnieją formalne algorytmy rozwiązywania problemu; dane i wiedza systemu są obarczone nieznanym błędem lub są one niepełne, niepewne. Przyczyny tworzenia systemu ekspertowego (uogólnione): tylko jeden (lub bardzo niewielu) specjalista posiada niezbędną wiedzę, co grozi jej utratą; ekspertyza jest wymagana często, lub jest niezbędna w wielu miejscach; ekspertyza jest niezbędna w miejscach niedostępnych dla człowieka lub szkodliwych dla zdrowia.

15 Baza wiedzy Baza wiedzy w systemie zawiera wiedzę zapisaną za pomocą faktów i reguł, przy czy sposób zapisu tej wiedzy zależy od przyjętej reprezentacji wiedzy. Wiedza w systemie odzwierciedla fragmenty logicznego rozumowania eksperta. Wiedza eksperta może mieć różny zakres i różną szczegółowość. Sensownym jest tworzenie bazy wiedzy o wysokim poziomie szczegółowości wąskim zakresie, lub o niskiej szczegółowości i szerokim zakresie wiedzy (patrz rys. 3, obszary zakreskowane).

16 Fakty liczby Rozmiar baz danych współczesnych systemów informatycznych osiąga wielkości rzędu terabajtów. Średniej wielkości hipermarket rejestruje dziennie sprzedaż przynajmniej kilkunastu tysięcy produktów. Puchną bazy danych systemów e-commerce, dostępnych na bieżąco, 24 godziny na dobę wzrasta liczba ich klientów oraz liczba zawieranych transakcji.

17 Fakty liczby (cd.) Jednocześnie. Konkurencja pomiędzy firmami zaostrza się. Coraz trudniej znaleźć nowe obszary ekspansji, nisze rynkowe. Coraz trudniej utrzymać dotychczasowych klientów. Bazy danych zawierają ogromne ilości użytecznych informacji, pozwalających firmom utrzymać lub wzmocnić ich pozycje rynkową.

18 Faktów nigdy za wiele Korporacyjne bazy danych kopalnią użytecznych informacji: Użyteczne informacje są wyrażone niejawnie, są ukryte w danych, należy je odkryć, wydobyć. Proces ten nazywa się potocznie eksploracją danych (ang. Data Mining). Świadomość istnienia ukrytego potencjału informacyjnego baz danych jest znana od lat. Jednak dopiero w ciągu ostatnich kilkunastu lat intensywnie prowadzi się badania nad odkrywaniem metod eksploracji danych oraz wykorzystuje się te metody w praktyce. Co więc można się wywiedzieć z danych?

19 Jaką wiedzę odkrywamy dzięki DM 1.odkrywanie asocjacji (associations) znajdowanie reguł typu:piwo -> orzeszki 2.wzorce sekwencji (sequential patterns) znajdowanie sekwencji dot. np. zakupów klienta: (TV, video, kamera) 3. klasyfikacja (classifications) klasyfikacja danych do grup ze względu na atrybut decyzyjny, np.: klasyfikacja klientów przez bank do grup: dać kredyt / nie dać kredytu 4. analiza skupień (clustering) grupowanie danych na wcześniej nieznane klasy, znajdowanie wspólnych cech, np.: wyodrębnienie różnych rodzajów klientów różnych taryf przez sieć telefonii komórkowej 5. podobieństwo szeregów czasowych (time-series similarities) badanie podobieństwa przebiegów czasowych, np. wykresów giełdowych 6. wykrywanie odchyleń (deviation detection) znajdowanie anomalii, wyjątków, np.: rozpoznawanie kradzieży karty kredytowej (nietypowe operacje na koncie)

20 Mniej poważna definicja DM Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać

21 Data mining eksploracja danych jest dziedziną informatyki zajmującą się odkrywaniem wiedzy zapisanej niejawnie w dużych zbiorach danych oraz przedstawieniem jej w zrozumiały dla użytkownika sposób. Pod pojęciem wiedzy rozumieć będziemy relacje, powiązania, związki i wzorce odkrywane przez algorytmy eksploracji danych w sposób autonomiczny. Eksploracja danych (DM Data Mining) określana jest również pojęciem odkrywania wiedzy w bazach danych (KDD Knowledge Discovery in Databases)

22

23 Różne metody cel ten sam!!!

24

25 Jeżeli jest ładna pogoda to mam dobry humor. pogoda=ladna humor=tak Jeżeli jest ładna pogoda i mam czas wolny to pójdę na spacer. pogoda=ladna czas_wolny=tak zajecie=spacer

26 Baza danych przykład

27 Tablica decyzyjna? Po wyodrębnieniu atrybutów warunkowych i decyzyjnych taka tabela staje się tablicą decyzyjną. Z tablicy można próbować bezpośrednio odczytywać reguły: Zachmurzenie=slonce temperatura = goraco wilgotnosc = wysoka wiatr=slaby grac=nie 14 rekordów produkuje 14 reguł.... A jeżeli rekordów będzie kilkadziesiąt tysięcy? Kto potrzebuje wiedzy w postaci kilkudziesięciu tysięcy reguł?????

28 Klasyfikator wybawcą?

29 Kiedy tworzyć SE: - gdy tylko jeden specjalista (lub bardzo niewielu) posiada niezbędną wiedzę, co grozi jej utratą - gdy ekspertyza jest wymagana często lub jest niezbędna równocześnie w wielu miejscach - gdy ekspertyza jest niezbędna w warunkach szkodliwych dla zdrowia. Etapy tworzenia SE: 1 - analiza problemu pod kątem faktu, czy kwalifikuje się on do budowy SE 2 - opracowanie specyfikacji systemu i zdefiniowanie jego zadań, danych i oczekiwanych wyników 3 - przejęcie wiedzy od ekspertów i jej opracowanie 4 - wybór metody reprezentacji wiedzy oraz "narzędzi" do budowy systemu 5 - organizacja i kodowanie wiedzy, często realizowane dwuetapowo, tj. najpierw w postaci prototypu systemu a następnie jego pełnej wersji 6 - weryfikacja i testowanie systemu

30 System ekspertowy służy do rozwiązywania problemów, które charakteryzują się jedną lub wieloma z następujących cech: problem nie da się sformalizować w postaci liczbowej; cele nie dadzą się opisać za pomocą matematycznych funkcji celu; nie istnieją formalne algorytmy rozwiązywania problemu; dane i wiedza systemu są obarczone nieznanym błędem lub są one niepełne, niepewne.

31 Przyczyny tworzenia systemu ekspertowego (uogólnione): tylko jeden (lub bardzo niewielu) specjalista posiada niezbędną wiedzę, co grozi jej utratą; ekspertyza jest wymagana często lub jest niezbędna w wielu miejscach; ekspertyza jest niezbędna w miejscach niedostępnych dla człowieka lub szkodliwych dla zdrowia.

32 Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej inteligencji zajmująca się projektowaniem i realizacją systemów ekspertowych. Inżynier wiedzy projektant SE, osoba łącząca wiedzę na temat technik budowy SE z umiejętnością pozyskiwania i formalizacji wiedzy eksperckiej. Akwizycja wiedzy proces pozyskiwania wiedzy niezbędnej do realizacji systemu ekspertowego. Na proces składają się: rozpoznanie problemu, wywiady z ekspertem, oraz reprezentacja wiedzy eksperta. Akwizycja kończy się w momencie zapisania wiedzy eksperta w bazie wiedzy SE.

33 Zasady tworzenia systemu ekspertowego

34 Etapy tworzenia systemu ekspertowego: analiza problemu, pod kątem, czy kwalifikuje się on do budowy systemu ekspertowego, opracowanie specyfikacji systemu, zdefiniowanie jego zadań i oczekiwanych wyników; przejęcie wiedzy od ekspertów i jej opracowanie; wybór metody reprezentacji wiedzy oraz narzędzi do budowy systemu; organizacja i kodowanie wiedzy (prototyp, pełna wersja); weryfikacja i testowanie systemu.

35

36 Każda sekcja ustala zakres tematyczny wiedzy eksperta, którego miałby zastąpić tworzony System Ekspertowy. Wiedza eksperta może mieć różny zakresy różną szczegółowość jednak sensownym jest tworzenie bazy wiedzy o wysokim poziomie szczegółowości i niskim zakresie lub o niskiej szczegółowości i wysokim zakresie

37

38 Trzy sposoby przejmowania wiedzy od eksperta I. Ekspert sam przedstawia łańcuch logicznego rozumowania ciągnący się od przyczyny do skutku. Przekazuje swoją wiedzę w formie łańcucha przyczynowo-skutkowego typu: Jeśli...to.... Zalety: łatwo można takie łańcuchy wykorzystać do zapisu w bazie wiedzy; na bazie tych zapisów łatwo stworzyć blok objaśnień. Wady: Ekspert nie jest często w stanie przekazać wiedzy w realnym czasie; Ekspert nie pamięta co już powiedział, a co nie Dla eksperta jest to zadanie nietypowe, musi przeprowadzić syntezę swojej wiedzy, a zwykle zajmuje się pojedynczymi przypadkami. II. Ekspert określa prawdopodobieństwo wpływu pojedynczych cech (atrybutów) na podporządkowanie sytuacji określonemu zdarzeniu. (Np. lekarz-ekspert określa jakie jest prawdopodobieństwo, że taka czy inna wartość diagnozowanego objawu odpowiada pewnej chorobie. Każda para objaw-choroba rozpatrywana jest osobno. Wady: Ludzie z natury źle oceniają prawdopodobieństwo; W realnych sytuacjach, właśnie połączenia cech określają na ile ta, czy inna sytuacja jest prawdopodobna. III. Budowa bazy wiedzy na przykładach (np. skorzystanie ze zdiagnozowanych przypadków (kartoteki pacjentów)). Przykłady powinny być różnorodne, ich liczba powinna być duża. Przejmowanie wiedzy od eksperta może przebiegać w różny sposób, w zależności od wykorzystywanego środowiska sprzętowego, programowego oraz od zaangażowanych w ten proces zasobów ludzkich.

39 Architektura SE

40 Metoda grupowej oceny ekspertów W analizie systemowej wykorzystuje się ocenę ekspertów w sytuacji charakteryzującej się niepewnością. Kierunki wykorzystania ocen ekspertów: 1. Wprowadzanie nowych koncepcji 2. Szacowanie danych 3. Prognozowanie wydarzeń 4. Prognozowanie normatywne (jaka powinna być przyszłość )

41 Dobór ekspertów do badań - ustalenie charakteru wymaganych wiadomości i umiejętności - określenie, które z osób są najbardziej biegłe w danej dziedzinie Wybór przez wstępną, analizę ekspertów za pomocą specjalnych ankiet lub kwestionariuszy, w których dokonują oni samooceny. Najprostszym sposobem pobudzenia ekipy ekspertów do wymiany poglądów jest dyskusja okrągłego stołu", prowadzona przynajmniej w początkowym okresie na zasadzie burzy mózgów". Krytyka nawet najbardziej zwariowanych pomysłów jest ograniczona. Jeżeli dysponujemy ocenami ekspertów musimy opracować jednoznaczną opinię, zwaną grupowa ocena ekspertów. Ocenę można uzyskać bezpośrednio jako wynik odpowiednio usystematyzowanej dyskusji. Temu celowi służy m.in. metoda delficka i gry.

42 Metoda delficka stanowi instrument pozwalający dokonać integracji ocen ekspertów. Metoda została opracowana w latach 50-tych dla celów militarnych przez Olafa Helmera i Normana Dalkeya. W 1963 roku została zastosowana do badań z dziedziny prognozowania naukowo-technicznego. Podstawą jest ankieta zawierająca pytania_związane z centralnym zadaniem ekspertyzy, Sformułowania poszczególnych pytań powinny zabezpieczyć jednoznaczność odpowiedzi oraz wyrażenie ich w postaci ilościowej oceny. Jeżeli natomiast jakościowej cesze trudno przypisać ocenę ilościową, wówczas przeprowadza się ocenę porównawczą danej cechy, np. za pomocą metod porządkowania. Metody zbierania informacji: - zaoczna - ankiety wysyła sic pocztą do poszczególnych ekspertów. - osobowa - ekspert instruktor bezpośrednio i zgodnie współpracuje z pozostałymi ekspertami. Ze względu na formę pytań można je podzielić na: - otwarte - jeżeli odpowiedź może być udzielona w dowolnej formie. - zamknięte - podana jest treść wariantów możliwych odpowiedzi.

43 Ankieta powinna pozwolić uzyskać 1. ilościowe określenie odpowiedzi na przedłożone ekspertom pytania (ocenę wyraża się w jednostkach, np. w punktach od 0 do 100 ) 2. sformalizowanie wiadomości o charakterze źródeł informacji, a także stopnia wpływu każdego, ze źródeł na odpowiedź każdego eksperta ( eksperci wskażą źródła i określą ich wpływ up. w skali: wysoki, średni, niski). 3. ilościową ocenę stopnia znajomości przez eksperta danej dziedziny. Eksperci wypełniają kwestionariusze i otrzymują informacje zwrotną o rezultatach poprzedniej rundy. Eksperci podają uzasadnienie wyrażonych w poprzedniej rundzie opinii. Zestawienie anonimowe wszystkich uzasadnień jest przedstawione każdemu z ekspertów, aby w świetle tych uwag rozpatrzył swoje stanowisko i dokonał jego rewizji, lub przedstawił kontrargumenty, wyjaśniające dlaczego podane uzasadnienie nic przekonuje go. Celem jest pobudzenie ekspertów do myślenia i zwrócenie uwagi na czynniki, które mogli pominąć, bądź były ich zdaniem mało istotne.

44 Najczęstszy przebieg ( 4 rundy ) 1. podanie pierwszej oceny 2. dokonanie jej ewentualnej korekty - przedstawienie uzasadnienia, dlaczego podana ocena różni się od mediany wyników uzyskanych w pierwszej rundzie 3. sformułowanie nowej oceny przy uwzględnieniu przedstawionych uzasadnień, ewentualne podanie kontrargumentów. 4. ponowne sformułowanie oceny w świetle przytoczonych kontrargumentów. Mediana odpowiedzi uzyskanych w czwartej rundzie jest zazwyczaj uznawana za ocenę najbardziej bliską tej, która uzyskałaby jednomyślną akceptację wszystkich ekspertów. Proces kończymy jeżeli uzyskamy pewną stabilność ocen.

45 Mini metoda delficka 1. każdy uczestnik niezależnie od innych, opracowuje w wersji pisemnej swoją ocenę lub oszacowanie danej wielkości 2. zbiór wszystkich ocen przedstawiany jest całej grupie (anonimowo) 3. krótka dyskusja nad rozbieżnościami opinii 4. każdy uczestnik ponownie formułuje swoją ocenę 5. mediana tych ostatnich wyników jest przyjmowana jako decyzja grupy ekspertów

46 Architektura SE

47 REGUŁOWA REPREZENTACJA WIEDZY Wiedza dziedzinowa (ang. domain knowldege) - dotyczy danego fragmentu rzeczywistości dla którego tworzymy model w postaci systemu informatycznego. System taki musi oczywiście w pewien sposób przechowywać wiedzę o interesującym nas fragmencie rzeczywistości. W ramach wiedzy dziedzinowej wyróżnić można wiedzę strukturalną i wiedzę relacyjną. Wiedza strukturalna jest ukierunkowana na systematyzowanie informacji o typach obiektów występujących w danej dziedzinie zastosowań. Przedmiotem jej zainteresowania jest struktura podziału obiektów na pewne kategorie, określenia hierarchii klasyfikacji obiektów lub poddziedzin. Wiedza relacyjna skupia się na relacjach występujących pomiędzy obiektami opisanymi wiedzą strukturalną. W aspekcie systemów sztucznej inteligencji szczególne znaczenie ma wiedza relacyjna odwzorowująca związki przyczynowo-skutkowe zachodzące pomiędzy określonymi obiektami czy układami obiektów w danej dziedzinie.

48 REGUŁY PRODUKCJI Reprezentacja faktów (zapis stwierdzeń). Istotnym elementem formalizmu zapisu wiedzy jest sposób reprezentacji pewnych atomowych porcji informacji. Takimi informacjami są fakty (stwierdzenia, obserwacje) opisujące zdarzenia, stany, objawy, sytuacje z modelowanej w bazie wiedzy rzeczywistości. Podstawową formą reprezentacji dla tego rodzaju informacji są trójki <OAV>, co stanowi skrót terminu Obiekt-Atrybut-Wartość (ang. Object- Attribute-Value triples). Obiekt stanowi reprezentacje pewnego podmiotu (bytu) z danej dziedziny zastosowań. Obiekt zwykle posiada atrybuty go opisujące, stanowiące odzwierciedlenie cech i właściwości podmiotów ze świata rzeczywistego. Dla każdego atrybutu określa się zbiór możliwych wartości, pokrywają- cy możliwe wcielenia danej cechy czy właściwości określonego podmiotu. Trójka <OAV> reprezentuje zatem informację, że dany obiekt posiada atrybut o ściśle określonej wartości. Poniżej przedstawione zostały przykłady ilustrujące możliwości wykorzystania trójek <OAV> do reprezentacji faktów (atrybuty dyskretne).

49

50 Często w danym zastosowaniu nie da się wyodrębnić obiektów lub nie ma potrzeby ich wyodrębniania. Wtedy stosuje się notację dwójkową, tzn. fakty zapisywane są w postaci dwójek <AV> - atrybut i jego wartość. Inny zbliżony sposób zakłada opis w postaci trójek <ARV> co stanowi akronim terminu Atrybut-Relacja-Wartość (ang. Atributr-Relation- Value). W tej trójce nowy element - relacja kwalifikuje dodatkowo powiązanie pomiędzy atrybutem a wartością. Przykładowe relacje są semantycznie równoważne znanym operatorom takim jak: równy, mniejszy, mniejszy lub równy itp.). W pewnych przypadkach istotne jest także odnotowanie faktu, że pewien atrybut na pewno nie posiada pewnej wartości, co może odwzorowywać relacja nierówny, czy idąc dalej nie posiada wartości. Przedstawione powyżej metody zapisu faktów bywają często rozszerzane o możliwości reprezentacji faktów niepewnych. Daną trójkę (czy dwójkę) uzupełnia się wtedy o pewien ilościowy opis pewności posiadania danej cechy. Opis ten jest ściśle uwarunkowany stosowaną metodą reprezentacji wiedzy niepewnej, zwykle jest to pewna liczba o interpretacji zależnej od przyjętego formalizmu. Najczęściej spotykanym opisem jest współczynnik pewności CF (ang. certain factor) będący liczbą (zwykle z przedziału od 0..1 lub -1..1), liczba rozmyta przy wykorzystaniu logiki rozmytej (ang. fuzzy logic) czy wartość masy przy wykorzystaniu teorii Dempstera-Shafera. Zagadnienia te są również poruszone w rozdziale poświęconym reprezentacji wiedzy niepewnej w systemie reguł produkcji.

51 Regułowa reprezentacja wiedzy (inaczej mówiąc: w postaci reguł produkcji), jest jedną z najbardziej rozpowszechnionych metod zapisu wiedzy. Jest ona bardzo popularna i stale wykorzystywana zarówno w swej czystej postaci jaki w najróżniejszych mutacjach i wariantach w systemach ekspertowych i doradczych. W bazie wiedzy oprócz zapisu stwierdzeń (faktów) zapisane są zbiory reguł. Reguły można zapisać w następującej postaci: Jeżeli <Przesłanka> To <Konkluzja> lub <Konkluzja> Jeżeli <Przesłanka> gdzie: Przesłanka: wyrażenie złożone z zdań logicznych (zwykle wyrażeń prostych), połączonych spójnikami (funktorami) "and" (i) lub "or" (lub). Wyrażenie proste to zwykle trójka <OAV>, <ARV>. Konkluzja: stwierdzenie (zdanie logiczne), które staje się prawdziwe gdy prawdziwa jest przesłanka. Takie stwierdzenie staje się zatem faktem. W przesłankach alternatywa zwykle nie jest wykorzystywana. Stosuje się zastępowanie pojedynczej reguły z alternatywą kilkoma regułami zawierające przesłanki będące składnikami alternatywy. Na przykład regułę postaci Jeżeli (p1 lub p2 lub... lub pn) To q gdzie p1, p2, pn, q to zdania logiczne, zamienia się na reguły: Jeżeli p1 To q Jeżeli p2 To q... Jeżeli pn To q Takie postępowanie pozwala na przyjęcie zasady, że interpreter reguł analizuje przesłanki do napotkania pierwszego niespełnionego warunku. Z tego samego powodu nie rozpatruje się reguł w pełnej postaci, tzn. Jeżeli <Przesłanka> To <Konkluzja_1> W przeciwnym wypadku <Konkluzja_2>

52 Zalety reprezentacji regułowej 1. Naturalność. Reguły umożliwiają zapis wiedzy w sposób intuicyjnie prosty. Wyrażają one naturalną dążność do opisywania rzeczywistości i zachodzących w niej procesów w kategorii związków przyczynowo skutkowych. Wymogi formalne nie są zbyt krępujące a jednocześnie dostatecznie ścisłe, ostateczny zapis jest przejrzysty i łatwy w zrozumieniu, bliski językowi naturalnemu. 2. Modularność. Reguły umieszczane w bazie wiedzy są w dużym stopniu niezależne. Każda reguła reprezentuje pewną atomową porcję wiedzy potencjalnie niezależną od innych reguł. 3. Zdolność do generowania objaśnień. Jednym z najważniejszych zadań systemu ekspertowego jest uzasadnianie wyników wnioskowania. Typowe rodzaje objaśnień to: HOW - JAK: Tego typu objaśnienia mają na celu przedstawienie użytkownikowi systemu sposobu, w jaki system osiągnął dane rozwiązanie. Polega to najczęściej na przedstawieniu użytkownikowi w dogodnej dla niego formie ciągu reguł, których stosowanie doprowadziło do określonego celu (patrz system ATEST). Dzięki określonej syntaktyce zapisu reguł stosunkowo łatwo jest dokonać translacji reguł na odpowiadające im teksty w języku naturalnym. WHY - DLACZEGO: Tego typu objaśnienia przedstawiane są na wyraźne żądanie użytkownika, najczęściej w przypadku, gdy system zadaje mu pewne pytanie a użytkownik chce być świadomy przyczyn zadania tego pytania. Zatem objaśnienia tego typu umożliwiają sprawdzenie zasadności pytań generowanych przez system. Również w tym przypadku użytkownik otrzymuje informację w postaci tekstowej reprezentacji ostatnio aplikowanej reguły.

53 Wady reprezentacji regułowej. 1. Problemy z generacją kompleksowych objaśnień. Mimo opisywanej wcześniej łatwości generowania objaśnień procesu wnioskowania, istnieją spore trudności w uzyskiwaniu objaśnień natury bardziej ogólnej. Trudno mianowicie uzyskać objaśnienia związane ze stosowaniem wiedzy strategicznej. Objaśnienia generowane przez system mogą mówić, CO zostało zrobione a nie DLACZEGO właśnie w taki sposób. 2. Problemy związane z efektywnością. Działanie interpretera prowadzi bardzo często do powstania zbioru reguł jednakowo prawdopodobnych. Powoduje to konieczność wyboru wśród tych reguł takiej, która będzie w następnym kroku pracy interpretera zastosowana. Po uzyskaniu zbioru reguł jednakowo prawdopodobnych pozostaje do rozwiązania problem jego redukcji. W praktyce stosuje się pewne mechaniczne kryteria wyboru reguły do zastosowania, takie jak: pierwsza reguła o prawdziwej przesłance, lub reguła o pewnym najwyższym ustalonym priorytecie, itd. Obie te operacje mogą powodować znaczny spadek efektywności systemu. 3. Ograniczenia związane z syntaktyką zapisu reguł problem reprezentacja wiedzy negatywnej i dyzjunkcyjnej. Zapis wiedzy negatywnej wymaga stosowania odpowiednich operatorów (np. różny oznaczany zwykle symbolem "<>"), atrybutów (np. istnieje - exist) czy wartości (np. false -nieprawda). Dodatkowo wiedza negatywna występować może w przesłance lecz nie w konkluzji reguły. Podobnie jest w przypadku wiedzy dyzjunkcyjnej. Wyrażenie jej w warstwie przesłanek wymaga rozdzielenia na osobne reguły zawierające poszczególne składniki sumy jako przesłanki a posiadające wspólną konkluzję. Natomiast nie jest możliwe zapisanie dysjunkcji w konkluzji, tzn. zdefiniowanie reguły, która w razie prawdziwości przesłanki prowadzi do wielu alternatywnych i równoprawnych konkluzji (np. Jeżeli Kaszel To Koklusz Lub Zapalenie Oskrzeli Lub Grypa).

54 Wnioski: Regułowa reprezentacja wiedzy była, jest jedną z najpopularniejszych form reprezentacji wiedzy. Wady jak i zalety takiej reprezentacji zostały skrótowo omówione powyżej. Mimo wielu ograniczeń modelu regułowego niezaprzeczalne wydają się takie jego cechy jak prostota i naturalność zapisu, modularność bazy wiedzy i dość duża niezależność zapisanych w niej reguł. Istotna jest również zdolność do generowania prostych objaśnień toku przeprowadzania wnioskowania. Dodatkowym argumentem na korzyść modelu regułowego jest duża ilość działających, popularnych i praktycznie wykorzystywanych systemów regułowych. Istnieje również wiele systemów, dla których reprezentacja regułowa stanowiła bazę do modyfikacji i rozwoju Należy sądzić, że te zalety modelu regułowego sprawią, że będzie on stanowił bazową reprezentację wiedzy wszędzie tam, gdzie problem w naturalny sposób da się podzielić na sekwencję w miarę niezależnych związków przyczynowo-skutkowych.

55 Zastosowania Systemów Ekspertowych Obszary zastosowań systemów ekspertowych obejmują w głównej mierze następujące dziedziny: Interpretacja -- formowanie wniosków następuje na podstawie danych Prognozowanie -- przewidywanie możliwych konsekwencji wystąpienia określonych sytuacji Diagnostyka -- wykrywanie przyczyn niesprawności w oparciu o zaobserwowane symptomy Projektowanie -- określenie konfiguracji składowych systemu, spełniającej określone kryteria działania przy określonych ograniczeniach Planowanie -- określanie sekwencji działań prowadzących do celu przy zadanych warunkach startowych Monitoring -- porównywanie zaobserwowanego funkcjonowania z oczekiwanymi działaniami Serwis -- wykrywanie i usuwanie usterek Szkolenie i instruktaż -- wykrywanie i korygowanie błędów w rozumieniu przedmiotu danej dziedziny Sterowanie automatyczne -- nadzór nad funkcjonowaniem złożonych systemów

56 Zalety i ograniczenia Tak szeroki wachlarz zastosowań wynika niewątpliwie z pewnych cech, które jednocześnie są zaletami systemów ekspertowych. Należą do nich: - większa dostępność ekspertyzy - mniejszy koszt ekspertyzy - mniejsze ryzyko w warunkach szkodliwych dla zdrowia ciągłość pracy - wyjaśnianie decyzji - szybkość uzyskania ekspertyzy stała, niewrażliwa na emocje i pełna ekspertyza - uczenie metodą prób i błędów - inteligentny interfejs człowiek-komputer

57 Architektura SE

58 Wnioskowanie

59 Typy wnioskowania Wnioskowanie w przód (data driven) Wnioskowanie wstecz (goal driven) Wnioskowanie mieszane

60 Wnioskowanie w przód

61

62

63 Wnioskowanie wstecz

64

65

66

67 Metody realizacji systemów ekspertowych w środowisku systemu PC-Shell Właściwości: są narzędziem kodyfikacji wiedzy eksperckiej, mają zdolność rozwiązywania problemów specjalistycznych, w których duża rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym. zwiększają dostępność ekspertyzy, zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów, poziom ekspertyzy jest stabilny - jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu, jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego, zdolność do objaśniania znalezionych przez system rozwiązań, możliwość przyrostowej budowy i pielęgnacji bazy wiedzy.

68

69 Reprezentacja wiedzy

70 Reguły proste

71 Reguły złożone

72 Ogólna charakterystyka szkieletowego systemu ekspertowego PC-Shell PC Shell jest podstawowym elementem pakietu sztucznej inteligencji Sphinx PC Shell jest dziedzinowo niezależnym narzędziem do budowy systemów ekspertowych, posiada właściwości hybrydowe, wykorzystuje elementy architektury tablicowej; wykorzystuje różne metody reprezentacji wiedzy: 1. deklaratywna w postaci reguł i faktów, 2. wiedza rozproszona w sieci neuronowej, 3. imperatywna w formie programu algorytmicznego, 4. faktograficzna w formie tekstów, grafiki, dźwięku, sekwencji wideo; system zapewnia wyjaśnienia: 1. jak (ang. how), 2. dlaczego (ang. why), 3. co to jest (ang. what is), 4. metafory (ang. metaphor), 5. opisu faktów; wykorzystywane jest wnioskowanie wstecz (z nawrotami), bazy wiedzy mogą być parametryzowane, system ma możliwość bezpośredniego pozyskiwania informacji z baz danych (ODBC), wykorzystuje mechanizm DDE, system PC Shell współpracuje z innymi elementami pakietu systemem Neuronix przeznaczonym do tworzenia sieci neuronowych, systemem CAKE przeznaczonym do wspomagania pracy inżyniera wiedzy oraz realizującym funkcje systemu dbmaker, zarządzającego bazami wyjaśnień.

73 Tworzenie BW w PC-Shellu

74 Właściwości systemów ekspertowych: Są narzędziem kodyfikacji wiedzy; Mają zdolność rozwiązywania problemów specjalistycznych, w których dużą rolę odgrywa doświadczenie a wiedza ekspercka jest dobrem rzadkim i kosztownym; Zwiększają dostępność ekspertyzy; Zapewniają możliwość prowadzenia jednolitej polityki przez centralę firm mających wiele oddziałów; Poziom ekspertyzy jest stabilny jej jakość nie zależy od warunków zewnętrznych i czasu pracy systemu; Jawna reprezentacja wiedzy w postaci zrozumiałej dla użytkownika końcowego; Zdolność do objaśniania znalezionych przez system rozwiązań; Możliwość przyrostowej budowy i pielęgnacji bazy wiedzy.

75

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie

Bardziej szczegółowo

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Systemy ekspertowe. Krzysztof Patan

Systemy ekspertowe. Krzysztof Patan Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów

Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.

Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta.  Autor Roman Simiński. Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008

SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008 SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

2. Metody podejmowania decyzji w warunkach pewności... 37

2. Metody podejmowania decyzji w warunkach pewności... 37 Spis treści Wstęp... 7 1. Problemy i procesy decyzyjne w organizacji... 11 1.1. Istota decyzji menedżerskich w organizacji... 11 1.2. Sytuacje decyzyjne, problemy decyzyjne i decyzje w organizacji.. 15

Bardziej szczegółowo

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:

Bardziej szczegółowo

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO

Bardziej szczegółowo

Nowe narzędzia zarządzania jakością

Nowe narzędzia zarządzania jakością Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności.

Systemy ekspertowe. Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności. Model współczynników pewności. Część siódma Reprezentacja wiedzy niepewnej i wnioskowanie w warunkach niepewności Autor Roman Simiński Model współczynników pewności Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I

Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Wprowadzenie do sztucznej inteligencji i systemów ekspertowych PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych

Bardziej szczegółowo

Projektowanie BAZY DANYCH

Projektowanie BAZY DANYCH Projektowanie BAZY DANYCH Podstawowe pojęcia Encją jest każdy przedmiot, zjawisko, stan lub pojęcie, czyli każdy obiekt, który potrafimy odróżnić od innych obiektów ( np. pies, rower,upał). Encje podobne

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Podsumowanie wyników ankiety

Podsumowanie wyników ankiety SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku

Bardziej szczegółowo

Faza Określania Wymagań

Faza Określania Wymagań Faza Określania Wymagań Celem tej fazy jest dokładne określenie wymagań klienta wobec tworzonego systemu. W tej fazie dokonywana jest zamiana celów klienta na konkretne wymagania zapewniające osiągnięcie

Bardziej szczegółowo

2

2 1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZARZĄDZANIE I INŻYNIERIA PRODUKCJI STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Załącznik nr 2 Odniesienie efektów kierunkowych do efektów obszarowych i odwrotnie Załącznik nr 2a - Tabela odniesienia

Bardziej szczegółowo

Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol

Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,

Bardziej szczegółowo

Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE. Agnieszka Nowak - Brzezińska

Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE. Agnieszka Nowak - Brzezińska Algorytmy Sztucznej Inteligencji wykład nr 1 wnioskowanie i SE Agnieszka Nowak - Brzezińska Słowem wstępu Większość programów komputerowych nie zachowuje sie szczególnie inteligentnie. Wszędzie tam, gdzie

Bardziej szczegółowo

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej. Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium

Bardziej szczegółowo

Wniosek 2: należy ograniczyć ilość wiedzy, np. ograniczając działanie systemu do pewnej dziedziny wiedzy!

Wniosek 2: należy ograniczyć ilość wiedzy, np. ograniczając działanie systemu do pewnej dziedziny wiedzy! Plan wykładu Systemy eksperckie Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj Sterowanie wnioskowaniem w systemach regułowych

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński

Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych

Bardziej szczegółowo

Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE. Agnieszka Nowak - Brzezińska

Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE. Agnieszka Nowak - Brzezińska Algorytmy Sztucznej Inteligencji wykład nr 2 wnioskowanie i SE Agnieszka Nowak - Brzezińska Słowem wstępu Większość programów komputerowych nie zachowuje sie szczególnie inteligentnie. Wszędzie tam, gdzie

Bardziej szczegółowo

Ontologie, czyli o inteligentnych danych

Ontologie, czyli o inteligentnych danych 1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania

Bardziej szczegółowo

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką? ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA KIERUNEK EKONOMIA

EFEKTY KSZTAŁCENIA KIERUNEK EKONOMIA EFEKTY KSZTAŁCENIA KIERUNEK EKONOMIA Kierunek Ekonomia Studia I stopnia Efekty kształcenia: Kierunek: Ekonomia Poziom kształcenia: Studia I stopnia Uczelnia: Uczelnia Łazarskiego w Warszawie Profil: Ogólnoakademicki

Bardziej szczegółowo

Diagramu Związków Encji - CELE. Diagram Związków Encji - CHARAKTERYSTYKA. Diagram Związków Encji - Podstawowe bloki składowe i reguły konstrukcji

Diagramu Związków Encji - CELE. Diagram Związków Encji - CHARAKTERYSTYKA. Diagram Związków Encji - Podstawowe bloki składowe i reguły konstrukcji Diagramy związków encji (ERD) 1 Projektowanie bazy danych za pomocą narzędzi CASE Materiał pochodzi ze strony : http://jjakiela.prz.edu.pl/labs.htm Diagramu Związków Encji - CELE Zrozumienie struktury

Bardziej szczegółowo

Pojęcie bazy danych. Funkcje i możliwości.

Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór

Bardziej szczegółowo

Systemy ekspertowe. PC-Shell. Sprawozdanie z bazy wiedzy

Systemy ekspertowe. PC-Shell. Sprawozdanie z bazy wiedzy Wydział Informatyki i Nauki o Materiałach Uniwersytet Śląski Systemy ekspertowe PC-Shell Sprawozdanie z bazy wiedzy Zbigniew Kędzior Informatyka inżynierska Studia niestacjonarne Trzeci rok Grupa A 1.

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk;

WIEDZA T1P_W06. K_W01 ma podstawową wiedzę o zarządzaniu jako nauce, jej miejscu w systemie nauk i relacjach do innych nauk; SYMBOL Efekty kształcenia dla kierunku studiów: inżynieria zarządzania; Po ukończeniu studiów pierwszego stopnia na kierunku inżynieria zarządzania, absolwent: Odniesienie do obszarowych efektów kształcenia

Bardziej szczegółowo

Efekt kształcenia. Wiedza

Efekt kształcenia. Wiedza Efekty dla studiów drugiego stopnia profil ogólnoakademicki na kierunku Informatyka na specjalności Przetwarzanie i analiza danych, na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie oznacza

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice

Bardziej szczegółowo

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z

Bardziej szczegółowo

Efekty kształcenia. Tabela efektów kształcenia

Efekty kształcenia. Tabela efektów kształcenia Efekty kształcenia Tabela efektów kształcenia W opisie efektów kierunkowych uwzględniono wszystkie efekty kształcenia występujące w obszarze kształcenia w zakresie nauk technicznych. Objaśnienie oznaczeń:

Bardziej szczegółowo

Wykład 4. Decyzje menedżerskie

Wykład 4. Decyzje menedżerskie Dr inż. Aleksander Gwiazda Zarządzanie strategiczne Wykład 4 Decyzje menedżerskie Plan wykładu Wprowadzenie Wprowadzenie Pojęcie decyzji Decyzja to świadoma reakcja na sytuacje powstające w trakcie funkcjonowania

Bardziej szczegółowo

Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych

Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe dla Zarządzania W wiedza

Bardziej szczegółowo

Scoring kredytowy w pigułce

Scoring kredytowy w pigułce Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110

Bardziej szczegółowo

Systemy uczące się wykład 1

Systemy uczące się wykład 1 Systemy uczące się wykład 1 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 5 X 2018 e-mail: przemyslaw.juszczuk@ue.katowice.pl Konsultacje: na stronie katedry + na stronie domowej

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy VII:

Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy VII: Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy VII: I. Ocenę celującą otrzymuje uczeń, który: posiada wiedzę i umiejętności znacznie wykraczającą poza zakres materiału programowego, która

Bardziej szczegółowo

2/4. informatyka" studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez

2/4. informatyka studia I stopnia. Nazwa kierunku studiów i kod. Informatyka WM-I-N-1 programu wg USOS. Tytuł zawodowy uzyskiwany przez Załącznik Nr 5 do Uchwały Nr 67/2015 Senatu UKSW z dnia 22 maja 2015 r. Dokumentacja dotycząca opisu efektów kształcenia dla programu kształcenia na kierunku informatyka" studia I stopnia Nazwa kierunku

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach nadzór pedagogiczny nauczanie problemowe

PG im. Tadeusza Kościuszki w Kościerzycach nadzór pedagogiczny nauczanie problemowe Problem badawczy: to pewna trudność (praktyczna lub teoretyczna), która rozwiązywana jest na drodze aktywności badawczej; jest to trudna i niepewna sytuacja, zawierająca niepełne dane; stanowi pewien rodzaj

Bardziej szczegółowo

Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym)

Efekty uczenia się na kierunku. Logistyka (studia pierwszego stopnia o profilu praktycznym) Efekty uczenia się na kierunku Załącznik nr 2 do uchwały nr 412 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Logistyka (studia pierwszego stopnia o profilu praktycznym) Tabela 1. Kierunkowe

Bardziej szczegółowo

Uchwała Nr 69 /2012. Senatu Uniwersytetu Jana Kochanowskiego w Kielcach. z dnia 31 maja 2012 roku

Uchwała Nr 69 /2012. Senatu Uniwersytetu Jana Kochanowskiego w Kielcach. z dnia 31 maja 2012 roku Uchwała Nr 69 /2012 Senatu Uniwersytetu Jana Kochanowskiego w Kielcach z dnia 31 maja 2012 roku w sprawie określenia efektów kształcenia dla kierunku zarządzanie na poziomie drugiego stopnia o profilu

Bardziej szczegółowo

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3 Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE Efekty uczenia się Kierunek Informatyka Studia pierwszego stopnia Profil praktyczny Umiejscowienie kierunku informatyka w obszarze kształcenia: Obszar wiedzy: nauki

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy I:

Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy I: Wymagania edukacyjne na poszczególne stopnie z fizyki dla klasy I: I. Ocenę celującą otrzymuje uczeń, który: posiada wiedzę i umiejętności znacznie wykraczającą poza zakres materiału programowego, która

Bardziej szczegółowo

M T E O T D O ZI Z E E A LG L O G R O Y R TM

M T E O T D O ZI Z E E A LG L O G R O Y R TM O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34

Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. Projektowanie oprogramowania cd. 1/34 Projektowanie oprogramowania cd. 2/34 Modelowanie CRC Modelowanie CRC (class-responsibility-collaborator) Metoda identyfikowania poszczególnych

Bardziej szczegółowo

Analiza danych i data mining.

Analiza danych i data mining. Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data

Bardziej szczegółowo

ODWZOROWANIE RZECZYWISTOŚCI

ODWZOROWANIE RZECZYWISTOŚCI ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

DLA SEKTORA INFORMATYCZNEGO W POLSCE

DLA SEKTORA INFORMATYCZNEGO W POLSCE DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział

Bardziej szczegółowo

Świat rzeczywisty i jego model

Świat rzeczywisty i jego model 2 Świat rzeczywisty i jego model Świat rzeczywisty (dziedzina problemu) Świat obiektów (model dziedziny) Dom Samochód Osoba Modelowanie 3 Byty i obiekty Byt - element świata rzeczywistego (dziedziny problemu),

Bardziej szczegółowo

Najprostszy schemat blokowy

Najprostszy schemat blokowy Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

zakładane efekty kształcenia

zakładane efekty kształcenia Załącznik nr 1 do uchwały nr 41/2018 Senatu Politechniki Śląskiej z dnia 28 maja 2018 r. Efekty kształcenia dla kierunku: INFORMATYKA WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI WYDZIAŁ ELEKTRYCZNY nazwa

Bardziej szczegółowo

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji.

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 3: Model związków encji. dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Co to jest model związków encji? Model związków

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

[1] [2] [3] [4] [5] [6] Wiedza

[1] [2] [3] [4] [5] [6] Wiedza 3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:

Bardziej szczegółowo

Symbol EKO S2A_W01 S2A_W02, S2A_W03, S2A_W03 S2A_W04 S2A_W05 S2A_W06 S2A_W07 S2A_W08, S2A_W09 S2A_W10

Symbol EKO S2A_W01 S2A_W02, S2A_W03, S2A_W03 S2A_W04 S2A_W05 S2A_W06 S2A_W07 S2A_W08, S2A_W09 S2A_W10 Załącznik do uchwały nr 73 Senatu Uniwersytetu Zielonogórskiego z dnia 30 stycznia 2013 r. Opis zakładanych efektów kształcenia Nazwa kierunku studiów: Administracja 1. Odniesień efektów kierunkowych do

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:

Bardziej szczegółowo

Kierunek Zarządzanie I stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych

Kierunek Zarządzanie I stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Kierunek Zarządzanie I stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe W wiedza U umiejętności

Bardziej szczegółowo

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08 Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo