Evangelista Torricelli ( )
|
|
- Dariusz Marek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Evangelista Torricelli ( ) Żyjemy na dnie morza powietrza, które - jak wynika z doświadczenia - ma ciężar i to taki, że najgęstsze powietrze przy powierzchni ziemi waży około jednej czterechsetnej ciężaru wody [...] Wykonaliśmy wiele naczyń ze szkła i rurek o długości 2 łokci. Napełniliśmy je rtęcią, otwarty koniec zatkaliśmy palcem i zanurzyliśmy w naczyniu z rtęcią; zobaczyliśmy jak tworzy się pusta przestrzeń, przy czym w naczyniu nic się wtedy nie dzieje, a rurka pozostaje zawsze napełniona do wysokości jednego i czwartej części łokcia plus jeden cal [...] W podobnej rurce, tylko znacznie dłuższej, woda podnosi się do wysokości około 18 łokci, to znaczy tyle razy więcej ile rtęć jest cięższa od wody, bo wtedy jest w równowadze z tą samą przyczyną, która działa najedno i drugie... List do Michelangelo Ricciego, 11 VI 1644 r.
2 Otto Guericke ( )
3 Pierwsza pompa Guerickego...wydało mi się, że dla moich celów bardziej odpowiednia będzie kula miedziana. Pojemność tej kuli A wynosiła od 60 do 70 kwart magdeburskich i została ona opatrzona u góry kurkiem mosiężnym B, na dole zaś była szczelnie połączona z pompą. Następnie przystąpiłem, jak poprzednio, do wyciągania wody i powietrza. Początkowo tłok dawał się poruszać łatwo, ale wkrótce stało się to trudniejsze, tak że dwaj silni mężczyźni prawie nie mogli go wyciągnąć. Kiedy byli oni zajęci poruszaniem tłoka tam i z powrotem i już myśleli, że usunięte zostało całe powietrze, kula metalowa została nagle zgnieciona z wielkim hukiem ku ogólnemu przerażeniu, tak jak się zgniata w palcach materiał, albo jakby kula została zrzucona z wierzchołka wieży z gwałtownym łoskotem. Uważam, że przyczyną tego była niewprawność rzemieślników, którzy przypuszczalnie nie wykonali kuli dokładnie okrągłej...
4 Druga pompa Guerickego
5 Eksperymenty Guerickego
6 Doświadczenie, które wykazuje, że wskutek ciśnienia powietrza dwie półkule zostają tak mocno połączone, że nie można ich od siebie oddzielić siłą 16 koni Poleciłem wykonać dwie miedziane półkule, czyli miski o średnicy około 3/4, a dokładniej 67/100 łokcia magdeburskiego. Były one szczelnie dopasowane do siebie i jedna z nich miała kurek, czy raczej klapę, z pomocą której można było wyciągać znajdujące się wewnątrz powietrze i która zamykała dostęp powietrzu z zewnątrz... Oprócz tego półkule są opatrzone żelaznymi kółkami, aby mogły być do nich zaprzęgnięte konie, jak widać na rysunku. Poza tym poleciłem uszyć ze skóry pierścień, bardzo dobrze nasycony woskiem z terpentyną, aby zupełnie nie przepuszczał powietrza. Półkule te połączyłem, przedzielając pierścieniem; następnie szybko zostało z nich wypompowane powietrze. Przekonałem się z jaką siłą są połączone półkule, między którymi znajdował się ów pierścień. Ściśnięte przez ciśnienie otaczającego powietrza były one złączone tak mocno, że 16 koni albo nie mogło ich wcale rozerwać, albo z wielkim tylko trudem. Kiedy ostatecznie wielkim wysiłkiem udało się je rozerwać, powodowało to huk podobny do wystrzału z armaty... Otto von Guericke, Experimenta nova (1672)
7 Publiczny pokaz półkul magdeburskich Regensburg 1654
8 Robert Boyle ( )
9 Pierwsza pompa Boyle a Druga pompa Boyle a Sprawdzanie twierdzenia Galileusza, że wszystkie ciała w próżni spadają z jednakowym przyspieszeniem
10 Wyniki pomiarów Boyle a (1662) V P obs P calc / / / / / / / / / / / / / / / / / / / / / / / / / / / 16 V P obs P calc 5 3 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 8
11 Wyniki Boyle a (1662) pv V (jednostki umowne)
12 Pomiary ciśnienia i objętości powietrza w laboratorium Boyle a wykonywali Henry Power i Richard Towneley oraz Robert Hooke, który był asystentem Boyle a. W Paryżu niezależnie od Boyle a, ale trochę później, związek objętości i ciśnienia powietrza znalazł eksperymentalnie Edme Mariotte.
13 Początki termometrii Pierwsze termoskopy powietrzne (termometry) Galileo Galilei 1603? (1592?) Santorio Santori 1611 Cornelius Drebbel > 1606 (1586?) Robert Fludd 1617? Jean Rey (1631) pierwszy termometr cieczowy Punkty stałe 1665 Boyle zamarzanie olejku anyżowego Huygens Hooke zamarzanie (lub wrzenie) wody zamarzanie wody 1688 Dalencé topnienie śniegu (-10 o ) i topnienie masła (10 o ) 1694 Renaldini zamarzanie i wrzenie wody (przedział 12 o )
14 Ciepło i zimno traktowano przez długi czas jako odrębne jakości, tzn. zimno nie było postrzegane jako mała ilość ciepła. Przykład: Jean Baptiste Morin ( ) uważał, że ciepło i zimno mają pewien maksymalny stopień, którego nie mogą przekroczyć, a także pewien stopień minimalny, poniżej którego nie mogą się obniżyć. Przyjął arbitralne założenie: stopień ciepła + stopień zimna = 8 Temperatura mieszanin
15 Termometry pozwalały mierzyć ciepło (temperatura od łacińskiego temperatura - mieszanina) W stanie równowagi ciepło, jak sądzono (np. Boerhaave, Musschenbroek), jest po prostu proporcjonalne do objętości albo proporcjonalne do masy, ale z doświadczeń wynikało, iż jest to niezgodne ze wzorami termometrycznymi na temperaturę mieszanin.
16 Porównanie niektórych skal termometrycznych Deluc 1772 Sweden 1745 Celsius 1742 Delisle 1733 Reaumur 1730 Fahrenheit 1717 Amontons 1702 Roemer 1702 Newton ,5 22,5 59, ,8 96,5 64,3 35,5 28,5 0 7,5 51, , ,2 176, Wrzenie wody Ciało ludzkie Topnienie lodu
17 Początki kalorymetrii Kalorymetry Joseph Black ( ) Laplace i Lavoisier (1783) Odkrył różnicę między ilością ciepła i temperaturą oraz stwierdził istnienie ciepła utajonego (ok r.)
18 ...wydaje się więc, że prawdziwy element ognia jest materialny, ponieważ słowo materialny obejmuje każdą rzecz, która jest mierzalna geometrycznie trzema liniami narysowanymi prostopadle do siebie ze wspólnego środka... Przypuśćmy bowiem, że zawieszoną na nici kulę ze srebra, nagrzaną niemal do punktu zapalenia, upuszczamy łagodnie do zimnej wody... wówczas ogień rozprzestrzeni się w mierzalnej objętości tej wody... Cała historia ognia dobitnie pokazuje, że jest on równie rozciągły jak ciało lub sama przestrzeń... Cząstki ognia, które - jak już wykazano są materialne, wydają się być najmniejsze ze wszystkich znanych ciał; gdyż skoro są materialne, muszą koniecznie być niezmiernie subtelne, ponieważ z łatwością przenikają wszystkie ciała, nawet te najgęstsze...
19 Ale większość francuskich i niemieckich filozofów przyrody i dr Boerhaave było zdania, że ruch składający się na ciepło nie jest drganiem samych cząstek gorącego ciała, lecz cząstek subtelnego, bardzo sprężystego i przenikającego wszystko fluidu, który jest zawarty w porach gorących ciał, między ich cząstkami, fluidu, który - jak sobie wyobrażali - jest rozproszony w całym wszechświecie i przenika nawet najgęstsze ciała. Niektórzy uważają, że ta materia, zmieniona w różny sposób, wytwarza światło i zjawiska elektryczne... Black, Lectures on Chemistry
20 Bardziej pomysłowa próba została podjęta ostatnio. Jej pierwszy zarys podał zmarły już dr Cleghorn w swej dysertacji na temat ciepła tutaj ogłoszonej [Uniwersytet w Edynburgu, 1779 r.]. Przyjął on, że ciepło zależy od obecności tego subtelnego i sprężystego fluidu, który według wyobrażeń innych filozofów jest obecny w całym wszechświecie i jest przyczyną ciepła. Ale ci inni filozofowie przyjmowali tylko jedną właściwość tej subtelnej materii: jej wielką sprężystość, czyli silne odpychanie wzajemne jej cząstek. Natomiast dr Cleghorn założył jeszcze inną jej właściwość, a mianowicie silne przyciąganie między jej cząstkami i innymi rodzajami materii w przyrodzie, które ogólnie wykazują mniejsze lub większe wzajemne przyciąganie grawitacyjne. Przyjął on zatem, że zwykłe rodzaje materii składają się z cząstek obdarzonych właściwością silnego przyciągania się wzajemnego i przyciągania materii ciepła; natomiast subtelna, sprężysta materia ciepła ma właściwość odpychania, jej cząstki wzajemnie się odpychają, chociaż są przyciągane przez inne rodzaje materii... Black, Lectures on Chemistry
21 Ten materiał ognia sam przez się, inaczej niż inne rzeczy (specjalnie powietrze i woda), nie znajduje się zjednoczony i aktywny, ani jako ciecz, ani w stanie rozrzedzonym. Ale jeśli przez ruch ognia, przy dodatku powietrza, staje się rozrzedzony i ulatnia się, wtedy pozostaje rozproszony dzięki swej niepojętej subtelności i niemierzalnemu rozrzedzeniu i żadna wiedza znana człowiekowi, żadna ludzka umiejętność nie może go zebrać ponownie i zamknąć w małej przestrzeni, zwłaszcza jeśli zaszło to szybko i na dużą skalę... Wobec tych jego właściwości uważam, że zasługuje on na swą nazwę własną, jako pierwsza, jedyna, podstawowa zasada palności. Ale ponieważ dotychczas nie może być wyodrębniony sam, poza związkami i połączeniami z innymi materiałami i nie ma wobec tego podstaw, by nadać mu nazwę opisową wyjaśniającą właściwości, sądziłem, że najlepiej nadać mu nazwę od ogólnego działania, które zwykle pokazuje we wszystkich swych związkach. Dlatego wybrałem dlań grecką nazwę flogiston... Black, Lectures on Chemistry
22 Teoria flogistonu Georg Ernest Stahl ( ) Teoria flogistonu: metal metal zwapniały ( popiół ) + flogiston popiół + węgiel drzewny (źródło flogistonu) metal Lavoisier: Obecnie: metal + powietrze metal zwapniały popiół + węgiel drzewny metal + powietrze trwałe 2 Pb + O 2 2 PbO 2 PbO + C 2 Pb + CO 2
23 Nie oczekujecie przecież, że chemia powinna być zdolna dać garść flogistonu oddzielonego od ciała palnego; równie nierozsądne byłoby żądanie otrzymania garści magnetyzmu, grawitacji albo elektryczności wydzielonych z ciał magnetycznych, ciężkich lub naelektryzowanych; w przyrodzie są siły, które objawiają się wyłącznie przez swe działania i do nich właśnie należy flogiston. R. Watson, Chemical Essays (1782)
24 ...w pracy, której autorami są panowie De Morveau, Berthollet, De Fourcroy i ja, na temat reformy nomenklatury chemicznej [1787 r.]... wyróżniliśmy przyczynę ciepła, czyli ten niezmiernie sprężysty fluid, który je wywołuje, nadając mu nazwę cieplik....w obecnym stanie wiedzy nie możemy zdecydować czy światło jest modyfikacją cieplika, czy też przeciwnie, cieplik jest modyfikacją światła. Nie podlega jednak dyskusji to, że w systemie, w którym dopuszcza się jedynie ustalone fakty, musimy unikać za wszelką cenę przypuszczania rzeczy, których istnienie nie jest udowodnione; zatem powinniśmy prowizorycznie rozróżniać odmiennymi nazwami rzeczy, które wywołują różne efekty. Wobec tego odróżniliśmy światło od cieplika; nie zaprzeczamy jednak, że mają one pewne cechy wspólne i że w pewnych sytuacjach łączą się z ciałami niemal w ten sam sposób i wywołują takie same efekty. Lavoisier, Traité élémentaire de chimie, (1789)
25 To, co powiedziałem dotąd, może wystarczyć dla wyjaśnienia idei przypisanej słowu cieplik, pozostaje jednak sprawa trudniejsza, a mianowicie wyjaśnić sposób, w jaki cieplik działa na ciało. Ponieważ ta materia subtelna przenika pory wszystkich znanych substancji, ponieważ nie ma naczyń, z których by nie mogła się wydostać, i wobec tego żadnych naczyń, w których można by ją przechowywać, możemy poznać jej właściwości jedynie na podstawie zjawisk ulotnych i trudnych do stwierdzenia. W tych rzeczach, których nie widzimy, ani nie czujemy, trzeba nam szczególnie strzec się ekstrawagancji w naszej wyobraźni, zawsze skłaniającej się do przestępowania granic ustalonej prawdy i trudnej do utrzymania w wąskim zakresie faktów. Widzieliśmy już, że to samo ciało występuje w stanie stałym albo jako ciecz, lub gaz, zależnie od zawartości przenikającego je cieplika, lub ściślej mówiąc, zależnie od tego, czy siła odpychająca wywierana przez cieplik jest równa, większa lub mniejsza od przyciągania wzajemnego cząstek ciała. Lavoisier, Traité élémentaire de chimie, (1789)
26 Cieplik wszystkie ciała przeymuie, oddala od siebie Pierwotne ich cząstki mieszcząc się między niemi, zmnieysza ich atrakcyą, powiększa ciał obiętość, topi stałe, rozrzedza ciekłe do takiego stopnia, iż staią się niewidzialnemi, nadaje im kształt powietrza, zamienia w płyny sprężyste, ściśliwe, powietrzne. Podług tego, ciecze są to kombinacye ciał stałych z cieplikiem, a zaś płyny sprężyste czyli gazy, są to rozpuszczenia rozmaitych ciał w ciepliku, który sam w sobie uważany, iest istotą naybardziey rozdzieloną, naylżeyszą, naysprężystszą, i którey wagi dotąd nieoznaczono. Dlatego to niektórzy Fizycy brali cieplik wolny czyli sprawuiący w nas ciepło, za modyfikacyą jakąś innych ciał od wewnętrznego ruchu ich cząstek zależącą... Wszystkie te zdarzenia dowodzą, że cieplik iest szczególnem ciałem exystuiącem przez się, i nie zawisłym od innych ciał. Nie okazano ieszcze czyli iest toż samo co światło: wielu iednak teraźnieyszych Fizyków i Chimików rozumie, że dwa te skutki światło i ciepło od iednego ciała to iest cieplika pochodzą, że pierwszy zależy od zagęszczenia i nagłego ruchu po linii prostey, a drugi od wolnego trzęsienia się i poruszenia w rozmaite strony... Zdaie się, że światło zwolnione w swym ruchu iest cieplikiem, czyli sprawuie tylko ciepło; ieżeli zaś cieplik zgęszczony w jakiem ciele, nagle się z niego wydobywa, wtenczas wydaie się światłem Antoine-François de Fourcroy, Filozofia Chimiczna czyli fundamentalne prawdy teraźnieyszey chimii, (1808)
27 Uwagi o stanie chemii przed reformą Lavoisiera Nadal utrzymywała się teoria czterech elementów, nawet potwierdzana doświadczalnie, np. przez van Helmonta. Alchemicy byli przekonani o nieskończonej liczbie kombinacji czterech elementów. Nawet metale uważano wtedy za mieszaniny elementów. Próba reformy Paracelsusa: wprowadził on trzy zasady: rtęć (zasada rozpuszczalności), siarkę (zasada palności) i sól (zasada trwałości). Nawoływał do porzucenia bezowocnych poszukiwań kamienia filozoficznego i skoncentrowania się na poszukiwaniu nowych leków (jatrochemia). Najsłynniejszy polski alchemik Michał Sędziwój był zwolennikiem czterech żywiołów Arystotelesa, ale jednocześnie wyznawał trzy zasady Paracelsusa. Robert Boyle - próba nowej definicji pierwiastka chemicznego (Sceptical Chymist, 1661).
28 Paracelsus ( ) Michał Sędziwój ( ) Jan Baptista van Helmont ( )
29 Dzieła Michała Sędziwoja cieszyły się wielkim powodzeniem i były tłumaczone na wiele języków. Miał je w swej bibliotece Newton.
30 Robert Boyle...Przez pierwiastki rozumiem... pewne pierwotne i proste, albo całkowicie pozbawione domieszek ciała, które nie będąc złożone z żadnych innych ciał lub jedne z drugich, są składnikami, z których złożone są bezpośrednio wszystkie tak zwane doskonale mieszane ciała, i na które te ostatnie mogą być ostatecznie rozłożone...
31
32 Kartka z notatnika Daltona John Dalton ( )
33 Rozszerzalność cieplna według teorii cieplika
34 Eksperymenty z wierceniem luf armatnich, które przeprowadził w 1798 roku Benjamin Thompson (Rumford)... i eksperymenty na temat wywiązywania ciepła przy tarciu kawałków lodu, które wykonał Humphry Davy (1799), interpretowane w duchu mechanicznej teorii ciepła, mogły zostać z łatwością odrzucone przez zwolenników cieplika.
35 Na początku tego rozumowania czyni się bardzo nieszczęśliwe założenie, a mianowicie, że jeśli ciepło będąc fluidem sprężystym wywiązuje się przy ściskaniu materii w stanie stałym, to pojemność cieplna tego ciała ma zostać zmniejszona w stosunku do ilości ciepła, która została wydzielona. Niewątpliwie cała ilość ciepła zawartego w ciele stałym zostaje zmniejszona, ale dlaczego ma się zmieniać pojemność cieplna?...bez wątpienia ilość ciepła wywiązanego w tym eksperymencie była wielka, ale to nie wystarcza do zapewnienia wniosków, które wyciągnięto... W tych eksperymentach bardzo duża masa metalu została poddana podwyższonemu ciśnieniu i w masie tej, przez stopniowe ścieranie się brązu, stale coraz to nowe warstwy były wystawiane ma naciskanie. Zatem kolejno z każdej warstwy oddzielana była określona ilość ciepła. Jeżeli przyjmiemy, że w metalach występuje cieplik w stanie dużej gęstości, to wymieniona przyczyna wystarcza do wytworzenia obserwowanego efektu. Największym błędem okazuje się założenie, że źródło ciepła w ten sposób wytwarzanego jest niewyczerpane, tymczasem ilość ciepła, która może być w ten sposób wytwarzana, jest skończona. I. Emmet, Annals of Philosophy (1820)
36 Matematyczna teoria cieplika (Poisson, Laplace) Ilość cieplika q = f(p, ρ,t) = f(p,t) ponieważ p, ρ, T związane równaniem p = aρ (1 + αt) [Dziś U = U(p, V) oraz S = S (p, V)] dq = ( q/ p) V dp + ( q/ V) p dv q = f(pv γ ) γ = C p /C V = [ ( q/ T) p /( q/ T) V ] Laplace: najprostsze założenie, że funkcja f jest liniowa q = A + B T p (1 - γ)/γ Zgodność z danymi doświadczalnymi dla γ = 1.4
37 Zjawiska i fakty wyjaśniane przez teorię cieplika Istnienie materii Stany skupienia Rozszerzalność cieplna i jej różnice Wydzielanie ciepła przez tarcie itd. Przewodnictwo cieplne (Fourier) Przechodzenie ciepła przez próżnię Zmiany ciepła właściwego C P /C V (Laplace, Poisson) Promieniowanie, pochłanianie, odbijanie ciepła Działanie maszyn cieplnych (Carnot)
38 Zjawiska i fakty wyjaśniane przez teorię cieplika Istnienie materii Stany skupienia Rozszerzalność cieplna i jej różnice Wydzielanie ciepła przez tarcie itd. Przewodnictwo cieplne (Fourier) Przechodzenie ciepła przez próżnię Zmiany ciepła właściwego C P /C V (Laplace, Poisson) Promieniowanie, pochłanianie, odbijanie ciepła Działanie maszyn cieplnych (Carnot)
39 Prawa gazowe Guillaume Amontons - ciśnienie powietrza rośnie w przybliżeniu proporcjonalnie do temperatury XVIII wiek - badania rozszerzalności cieplnej powietrza prowadzone przez wielu fizyków (Berthollet, Deluc, De la Hire, Hauksbee, Lambert, Priestley, Saussure i in.) dawały rozbieżne wyniki, od rozszerzalności nierównomiernej do równomiernej, ale ze współczynnikami rozszerzalności od 1/85 do 1/ Jacques Charles - powietrze, tlen, azot, wodór, dwutlenek węgla wykazują równomierną rozszerzalność cieplną (wynik nie opublikowany) 1793 Alessandro Volta - współczynnik rozszerzalności cieplnej powietrza wynosi 1/270 (praca opublikowana w Annali di Chimica nie była znana większości fizyków) 1802 John Dalton - wyniki badań rozszerzalności cieplnej gazów rozszerzalność różnych gazów niemal jednakowa 1802 Joseph-Louis Gay-Lussac - wyniki badań rozszerzalności cieplnej gazów V = V o (1 + αt), gdzie współczynnik rozszerzalności cieplnej α = 1/266,66 (Prawo Gay-Lussaca)
40 Joseph-Michel i Jacques-Etienne Montgolfier Pierwszy pokaz balonu na gorące powietrze 4 lipca 1783 r. Pierwszy lot ludzi balonem na gorące powietrze 21 XI 1783 r. Pierwszy lot ludzi balonem wypełnionym wodorem 1 XII 1783 r.
Wykład 5. Początki nauki nowożytnej część 3 (termodynamika)
Wykład 5 Początki nauki nowożytnej część 3 (termodynamika) 1 Temperatura Termoskopy powietrzne Awicenna Santorio Santori (1612) pierwszy opis termometru powietrznego pierwszy rysunek termometru Robert
Początki fizyki gazów i zjawisk cieplnych
Początki fizyki gazów i zjawisk cieplnych Evangelista Torricelli (1608-1647) Żyjemy na dnie morza powietrza, które - jak wynika z doświadczenia -ma ciężar i to taki, że najgęstsze powietrze przy powierzchni
Nowoczesna teoria atomistyczna
Nowoczesna teoria atomistyczna Joseph Louis Proust Prawo stosunków stałych (1797) (1754-1826) John Dalton, Prawo stosunków wielokrotnych (1804) Louis Joseph Gay-Lussac Prawo stosunków objętościowych (1808)
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia
Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał
Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,
Nauka o gazach i cieple
Wykład IX Nauka o gazach i cieple Już starożytni zdawali sobie sprawę z istnienia powietrza. Horror vacui strach przed próżnią, zgodnie z nauką Arystotelesa próżnia nie istnieje. 1644 rok doświadczenie
Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.
Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)
1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e
Fizyka dla Informatyków Wykład 9 Termodynamika
Fizyka dla Informatyków Wykład 9 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Wstęp 2 Skale temperatur 3 Pierwsza zasada termodynamiki Druga zasada termodynamiki Trzecia zasada
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ
CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³
1. Za³o enia teorii kinetyczno-cz¹steczkowej budowy cia³ Imię i nazwisko, klasa A 1. Wymień trzy założenia teorii kinetyczno-cząsteczkowej budowy ciał. 2. Porównaj siły międzycząsteczkowe w trzech stanach
Tytuł: Dzień dobry, mam na imię Atom. Autor: Ada Umińska. Data publikacji:
Tytuł: Dzień dobry, mam na imię Atom. Autor: Ada Umińska Data publikacji: 13.04.2012 Uwaga: zabrania się kopiowania/ wykorzystania tekstu bez podania źródła oraz autora publikacji! Historia atomu. Już
Wykład 8. Początki nauki nowożytnej część 4 (elektryczność i magnetyzm)
Wykład 8 Początki nauki nowożytnej część 4 (elektryczność i magnetyzm) 1 Magnetyzm Odkrycie 4-5 stulecie pne (jeżeli wierzyć Arystotelesowi, to i siódme) przyciąga żelazo Pierwsze kompasy 12 wiek (Alexander
Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017
Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, siły równoważące się. Dział V. Dynamika (10 godzin lekcyjnych)
Rodzaj/forma zadania. Max liczba pkt. zamknięte 1 1 p. poprawna odpowiedź. zamknięte 1 1 p. poprawne odpowiedzi. zamknięte 1 1 p. poprawne odpowiedzi
KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum - etap rejonowy Nr zada Cele ogólne nia 1 I. Wykorzystanie wielkości fizycznych 2 I. Wykorzystanie wielkości fizycznych 3 III. Wskazywanie w otaczającej
Przemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
Równanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
SPRAWDZIAN NR Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest
SRAWDZIAN NR 1 JOANNA BOROWSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest rawo ascala dotyczy A. możliwości zwiększenia ilości
Podstawy fizyki wykład 6
Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Stany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Prawa gazowe- Tomasz Żabierek
Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem
CZTERY ŻYWIOŁY. Q=mg ZIEMIA. prawo powszechnej grawitacji. mgr Andrzej Gołębiewski
CZTERY ŻYWIOŁY mgr Andrzej Gołębiewski W starożytności cztery żywioły (ziemia, powietrze, woda i ogień) uznawano jako podstawę do życia na ziemi. ZIEMIA Ziemia była nazywana żywicielką. Rośliny i zwierzęta
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.
Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.
Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie
Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych
Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.
Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:
Imię i nazwisko Klasa Punkty (max 12) Ocena
Rozdział 1. grupa A Imię i nazwisko Klasa Punkty (max 12) Ocena Data Zadanie 1. (1 pkt) Podkreśl właściwości dotyczące ditlenku węgla: gaz, rozpuszczalny w wodzie, bezbarwny, palny, żółty, powoduje zmętnienia
Narzędzia myślenia Słowa - wyobrażenia - pojęcia Wiesław Gdowicz
Narzędzia myślenia Słowa - wyobrażenia - pojęcia Wiesław Gdowicz Einstein nie prowadził eksperymentów. Był fizykiem teoretycznym. Zestawiał znane fakty i szczegółowe zasady i budował z nich teorie, które
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 2. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
WYKONUJEMY POMIARY. Ocenę DOSTATECZNĄ otrzymuje uczeń, który :
WYKONUJEMY POMIARY Ocenę DOPUSZCZAJĄCĄ otrzymuje uczeń, który : wie, w jakich jednostkach mierzy się masę, długość, czas, temperaturę wie, do pomiaru jakich wielkości służy barometr, menzurka i siłomierz
b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)
Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod
Wykłady z Fizyki. Hydromechanika
Wykłady z Fizyki 03 Zbigniew Osiak Hydromechanika OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K
BUDOWA ATOMU KRYSTYNA SITKO
BUDOWA ATOMU KRYSTYNA SITKO Ziarnista budowa materii Otaczająca nas materia to świat różnorodnych substancji np. woda, powietrze, drewno, metale. Sprawiają one wrażenie, że mają budowę ciągłą, to znaczy
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:
Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),
Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.
Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w
dr inż. Beata Brożek-Płuska LABORATORIUM LASEROWEJ SPEKTROSKOPII MOLEKULARNEJ Politechnika Łódzka Międzyresortowy Instytut Techniki Radiacyjnej
dr inż. Beata Brożek-Płuska LABORATORIUM LASEROWEJ SPEKTROSKOPII MOLEKULARNEJ Politechnika Łódzka Międzyresortowy Instytut Techniki Radiacyjnej 93-590 Łódź Wróblewskiego 15 tel:(48-42) 6313162, 6313162,
Energia, właściwości materii
Imię i nazwisko Pytanie 1/ Zaznacz prawidłową odpowiedź. Kasia stała na balkonie i trzymała w ręku lalkę o masie 600 g. Lalka znajdowała się na wysokości 5 m nad ziemią. W pewnej chwili dziewczynka upuściła
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3
DO ZDOBYCIA 44 PUNKTY POWTÓRKA PRZED KONKURSEM CZĘŚĆ 3 Jest to powtórka przed etapem szkolnym, na którym określono wymagania: ETAP SZKOLNY 1) Ruch prostoliniowy i siły. 2) Energia. 3) Właściwości materii.
mgr Anna Hulboj Treści nauczania
mgr Anna Hulboj Realizacja treści nauczania wraz z wymaganiami szczegółowymi podstawy programowej z fizyki dla klas 7 szkoły podstawowej do serii Spotkania z fizyką w roku szkolnym 2017/2018 (na podstawie
Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.
TEMAT: TEORIA SPALANIA Spalanie reakcja chemiczna przebiegająca między materiałem palnym lub paliwem a utleniaczem, z wydzieleniem ciepła i światła. Jeżeli w procesie spalania wszystkie składniki palne
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów
Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI Podręcznik: Fizyka z plusem7 Autorzy: Krzysztof Horodecki, Artur Ludwikowski MATERIAŁ NAUCZANIA I OPIS ZAŁOŻONYCH OSIĄGNIĘĆ UCZNIA Klasa VII SZCZEGÓŁOWE
Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka
Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka Wymagania Temat lekcji ele operacyjne uczeń: Kategoria celów podstawowe Ponad podstawowe konieczne podstawowe rozszerzające dopełniające
Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1
1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.
PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;
Termodynamika Część 2
Termodynamika Część 2 Równanie stanu Równanie stanu gazu doskonałego Równania stanu gazów rzeczywistych rozwinięcie wirialne równanie van der Waalsa hipoteza odpowiedniości stanów inne równania stanu Równanie
Konkurs fizyczny. Etap szkolny KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY. 07 października 2013
KOD UCZNIA KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW I ETAP SZKOLNY 07 października 2013 Ważne informacje: 1. Masz 60 minut na rozwiązanie wszystkich zadań. 2. Zapisuj szczegółowe obliczenia i komentarze
Płetwonurek KDP/CMAS ** (P2)
Płetwonurek KDP/CMAS ** (P2) WWW.CMAS.PL Płetwonurek KDP/CMAS ** (P2) KDP CMAS 2013 1 Zagadnienia Ciśnienie Zależność pomiędzy ciśnieniem, objętością i temperaturą Ciśnienie w mieszaninach gazów Rozpuszczalność
Grawitacja okiem biol chemów i Linuxów.
Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja
Wykład 4. Przypomnienie z poprzedniego wykładu
Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak
Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,
Gdy pływasz i nurkujesz również jesteś poddany działaniu ciśnienia, ale ciśnienia hydrostatycznego wywieranego przez wodę.
Jakie ciśnienie wywierasz? Jakie ciśnienie wywierasz? Wstęp Gdy pompujesz opony w rowerze lub gdy słuchasz prognozy pogody w telewizji, jesteś poddany działaniu pewnej wielkości fizycznej. Czegokolwiek
Chemia. 3. Która z wymienionych substancji jest pierwiastkiem? A Powietrze. B Dwutlenek węgla. C Tlen. D Tlenek magnezu.
Chemia Zestaw I 1. Na lekcjach chemii badano właściwości: żelaza, węgla, cukru, miedzi i magnezu. Który z zestawów badanych substancji zawiera tylko niemetale? A Węgiel, siarka, tlen. B Węgiel, magnez,
Postawy: Uczeń: - Odpowiada za bezpieczeństwo własne i kolegów, - Jest dociekliwy i dokładny, - Wykazuje postawę badawczą.
Temat: Udział tlenu w niektórych przemianach chemicznych scenariusz lekcji przyrody klasie V. Dział: Podstawowe właściwości i budowa materii. Zakres treści: - rola tlenu w niektórych procesach chemicznych,
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
WYZNACZANIE ROZMIARÓW
POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 6 WYZNACZANIE ROZMIARÓW MAKROCZĄSTECZEK I. WSTĘP TEORETYCZNY Procesy zachodzące między atomami lub cząsteczkami w skali molekularnej
10. Wznoszenie się wody
. Wznoszenie się wody Autor: Michał Dziuba MegaEpsilon Treść problemu: Napełnij spodek wodą i umieść pośrodku świecę. Po zapaleniu świecy nakryj ją przezroczystą zlewką. Zbadaj i wyjaśnij zjawisko, które
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Przyroda. klasa IV. listopad. XI Kuchnia jako laboratorium
Przyroda listopad klasa IV XI Kuchnia jako laboratorium Zapisy podstawy programowej Uczeń: 3. 3) obserwuje i rozróżnia stany skupienia wody, bada doświadczalnie zjawiska: parowania, skraplania, topnienia
Powtórzenie wiadomości z klasy I. Cząsteczkowa budowa materii. Ciśnienie, prawo Pascala - obliczenia.
Powtórzenie wiadomości z klasy I Cząsteczkowa budowa materii. Ciśnienie, prawo Pascala - obliczenia. Atomy i cząsteczki 1. Materia składa się z cząsteczek zbudowanych z atomów. 2. Atomy są bardzo małe,
Nazwa substancji. b) Ogrzewano kawałek miedzi. Jak zmieni się gęstośd miedzi po jej ogrzaniu? A) wzrośnie B) zmaleje C) nie zmieni się
Budowa materii gr. A Zad.1. Rysunki przedstawiają kolejno (od lewej): A) ciecz ciało stałe gaz B) ciało stałe gaz Ciecz C) gaz ciecz ciało stałe D) gaz ciało stałe ciecz Zad.2. Ciała w różnych stanach
FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania)
FIZYKA KLASA 7 Rozkład materiału dla klasy 7 szkoły podstawowej (2 godz. w cyklu nauczania) Temat Proponowana liczba godzin POMIARY I RUCH 12 Wymagania szczegółowe, przekrojowe i doświadczalne z podstawy
3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
T e r m o d y n a m i k a
Pracownia dydaktyki fizyki T e r m o d y n a m i k a Instrukcja dla studentów Tematy ćwiczeń: I. Pokazy: II. Doświadczenia kalorymetryczne Doświadczenie 1. Wyznaczanie ciepła właściwego wybranej substancji
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:
Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch
Wykład z Termodynamiki II semestr r. ak. 2009/2010
Wykład z Termodynamiki II semestr r. ak. 2009/2010 Literatura do wykładu 1. F. Reif - "Fizyka Statystyczna- PWN 1971. 2. K. Zalewski, - "Wykłady z termodynamiki fenomenologicznej i statystycznej- PWN 1978.
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
Fizyka 14. Janusz Andrzejewski
Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) odczas testów
WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015. Imię i nazwisko:
(pieczątka szkoły) Imię i nazwisko:................................. Czas rozwiązywania zadań: 45 minut WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP I SZKOLNY Informacje:
Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła
Test 2 1. (4 p.) Wskaż zdania prawdziwe i zdania fałszywe, wstawiając w odpowiednich miejscach znak. I. Zmniejszenie liczby żarówek połączonych równolegle powoduje wzrost natężenia II. III. IV. prądu w
Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis
Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
DYNAMIKA SIŁA I JEJ CECHY
DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia
Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy
Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Wykład 5. Kalorymetria i przejścia fazowe
Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW
Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa II Gimnazjum
Wymagania programowe na oceny szkolne z podziałem na treści Fizyka klasa II Gimnazjum 5. Siły w przyrodzie Temat według 5.1. Rodzaje i skutki oddziaływań rozpoznaje na przykładach oddziaływania bezpośrednie
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
I zasada dynamiki Newtona
I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub