Przykłady pomiarów wielkości ogniska Lamp rentgenowskich

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykłady pomiarów wielkości ogniska Lamp rentgenowskich"

Transkrypt

1 Przykłady pomiarów wielkości ogniska Lamp rentgenowskich Dominik SENCZYK Politechnika Poznańska 1. Wprowadzenie Ze względu na duże znaczenie wielkości ogniska lampy w diagnostyce rentgenowskiej konieczne są metody wyznaczenia tej wielkości. Metody pomiarowe opisuje norma EN :99 - Badania nieniszczące - Właściwości ognisk przemysłowych układów aparatury rentgenowskiej stosowanych w badaniach nieniszczących. Mimo tego opisu niewiele jest dokonywanych pomiarów tej wielkości. W związku z tym poniżej przedstawiono przykłady pomiarów wielkości ogniska w lampach rentgenowskich. 2. Przykłady pomiaru wielkości ogniska lamp rentgenowskich Jedną z metod pomiaru wielkości ogniska lamp rentgenowskich jest metoda kamery z otworkiem (pinhole method), której pierwowzorem jest tzw. camera obscura. Rezultaty badania tą metodą pokazano na rys. 1. a) b) Rys. 1. Obrazy ogniska lampy rentgenowskiej uzyskane metodą kamery z otworkiem; krótsza ekspozycja (a) pokazuje tylko ognisko, natomiast dłuższa (b) również pewne szczegóły związane z targetem i anodą; obrazy rentgenowskie tych elementów są rezultatem ich bombardowania przez błądzące elektrony (stray electrons). 1

2 Przykład badania wielkości ogniska lampy rentgenowskiej przedstawiono w pracy [1]. Badano w niej możliwość zwiększenia natężenia emitowanego promieniowania przez zmiany w konstrukcji targetu lampy. Wielkość obszaru oświetlonego strumieniem elektronów wynosiła odpowiednio: ø 10 µm (target transmisyjny) oraz µm i µm (target odbiciowy). Obrazy ognisk pokazuje rys. 2. a) b) Rys. 2. Obrazy ognisk dla nowego (a) i konwencjonalnego (b) targetu odbiciowego Podobne badania [2] pokazały, że w przypadku zastosowania lampy z anodą wirującą uzyskuje się większe natężenie promieniowania rentgenowskiego (tabl. 1). W tablicy 1 oznaczono natężenie promieniowania dla lampy: I R z wirującą anodą o mocy 30 kw, I P zatopionej o mocy 1 kw. Tablica 1 Porównanie stosunku natężeń promieniowania uzyskanego z lampy z anodą wirującą o mocy 30 kw i lampy zatopionej o mocy 1 kw Kąt odbioru 2 o 3 o 4 o 5 o 6 I R /I P 31,5 32,0 33,4 35,5 36,7 Dane zamieszczone w powyższej tablicy wyraźnie pokazują, że w przypadku lampy rentgenowskiej o mocy 30 kw z wirującą anodą uzyskuje się ponad 30-krotny (aż do 36,7) wzrost natężenia promieniowania w stosunku do lampy zatopionej o mocy 1 kw. Powyższy wzrost zależy od wartości kąta odbioru promieniowania. Inny przykład pomiaru wielkości ogniska skonstruowanej lampy (zwanej laboratoryjnym synchrotronem, co wiąże się z bardzo dużym natężeniem emitowanego promieniowania rentgenowskiego) zawiera praca [3]. Lampa ta miała mikroognisko 10 µm, moc 10 W i dawała strumień fotonów około 4, s 1 dla linii CuKα. W pomiarach wielkości ogniska zastosowano optykę światłowodową (polikrystaliczne włókna miały średnicę 2 µm). Obraz rejestrowano za pomocą układu obrazowania rentgenowskiego o zdolności rozdzielczej 2 µm. Schemat blokowy stosowanego układu pomiarowego pokazano na rys. 3. Dla skalibrowania stosowanego układu wiązka światłowodów zastała zastąpiona pojedynczym włóknem o średnicy 18 µm, przy niezmienionych pozostałych warunkach eksperymentu. Otrzymane obrazy pokazano na rys. 4 i 5. 2

3 Rys. 3. Schemat blokowy układu stosowanego w pomiarach wielkości ogniska lampy rentgenowskiej Rys. 4. Obraz anody lampy rentgenowskiej Rys. 5. Obraz na wyjściu monowłókna o średnicy 18 µm Analiza uzyskanych obrazów wskazuje, że ognisko ma wielkość mniejszą niż 18 µm. W celu dokładniejszego pomiaru wielkości ogniska lampy zastosowano specjalny kolimator (rys. 6) zawierający dwie szlifowane szklane płyty, między którymi umieszczono folię o 3

4 grubości 5 µm. Środkowa część tego kolimatora była szlifowana w celu zapobieżenia całkowitemu wewnętrznemu odbiciu promieni rentgenowskich i zmniejszenia ich rozbieżności kątowej na wyjściu kolimatora. Kolimator umieszczono w specjalnym urządzeniu pozwalającym na przesuwanie go w trzech kierunkach wzajemnie prostopadłych z krokiem 2 µm. Rys. 6. Specjalny kolimator stosowany w pomiarach wielkości ogniska lampy rentgenowskiej Promieniowanie przechodzące przez powyższy kolimator mierzono detektorem półprzewodnikowym. Podczas pomiarów wielkości ogniska lampa rentgenowska pracowała przy napięciu 40 kv, a natężenie prądu anodowego wynosiło 250 µm. Rezultaty pomiarów pokazano na rys. 7. Rys. 7. Rozkład natężenia w ognisku lampy rentgenowskiej Wykres na rys. 7 pokazuje, że: rozkład natężenia w ognisku badanej lampy rentgenowskiej jest asymetryczny, co świadczy o tym, że gęstość strumienia elektronów uderzających w anodę lampy rentgenowskiej jest nierównomierna, szerokość połowkowa (FWHM) krzywej rozkładu natężenia w ognisku tej lampy wynosi około 14 µm. Podamy jeszcze rezultaty własnych badań wielkości ogniska w lampie mikroogniskowej typ BS-1 (ZSRR), w której elektrony były ogniskowane nie tylko metodą elektrostatyczną, 4

5 lecz również magnetyczną. Lampa parcowałą przy napięciu 45 kv, a natężenie prądu anodowego wynosiło 50 µa. Moc lampy wynosiła 2,2 W. W pomiarach wielkości ogniska stosowano szczelinę uformowaną przez dwie szlifowane płytki szklane, między którymi umieszczono dwa paski folii aluminiowej o grubości 5 µm, tworzące szczelinę o podobnej szerokości. Taki kolimator zamocowano w urządzeniu, w którym można było go przesuwać za pomocą śruby mikrometrycznej. Natężenie przechodzącego promieniowania mierzono licznikiem proporcjonalnym w odstępadch co 5 µm. Uzyskane rezultaty pokazano na rys. 8. Widać z niego, że lampa miała ognisko o wielkości (10 ± 2) µm. Zastosowanie mniejszego kroku pomiaru natężenia promieniowania pozwala na dokładniejszy pomiar wielkości ogniska. I [imp/min] L [mm] Rys. 8. Rezulaty pomiaru rozkładu natężenia w ognisku lampy rentgenowskiej BS-1 Szczegółowe informacje dotyczące konstrukcji lampy mikroogniskowej i pomiarów wielkości jej ogniska oraz wpływu różnych czynników na jego wielkość podano w pracy [5]. Literatura [1] Shimura Y., Mizunuma M., Kosaki S., High Brilliancy Microfocus X-Ray Generator, Rigaku Denki Co., Ltd., Tokyo, Japan. [2] Shimura Y., Mizunuma M., Nakamura K., Construction, Experimental Results and Application of a 60 kv 500 ma High Intensity Rotating Anode X-Ray Diffraction Generator, Rigaku Denki Co., Ltd., Tokyo, Japan. [3] Mikhin O. V., Dabagov S. B., Gelver V. D., Priladyshev A. V., Novel high flux x-ray source: a laboratory synchrotron, Laboratori Nazionali di Frascati, SIS Pubblicazioni LNF 03/16 (P), 18 Settembre [4] Senczyk D., Źródła promieniowania rentgenowskiego, (w przygotowaniu do druku). [5] Auleytner J., Acta Phys. Pol., 1957, t. 16, s

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,

Bardziej szczegółowo

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE

DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE X3 DOZYMETRIA I BADANIE WPŁYWU PROMIENIOWANIA X NA MEDIA BIOLOGICZNE Tematyka ćwiczenia Promieniowanie X wykazuje właściwości jonizujące. W związku z tym powietrze naświetlane promieniowaniem X jest elektrycznie

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 3

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 3 Dyfrakcja rentgenowska () w analizie fazowej Wykład 3 1. Podział metod rentgenowskich ze względu na badane materiały oraz rodzaj stosowanego promieniowania. 2. Metoda Lauego. 3. Metoda obracanego monokryształu.

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O9 Temat ćwiczenia WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie O9 WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo

Bardziej szczegółowo

( L ) I. Zagadnienia. II. Zadania

( L ) I. Zagadnienia. II. Zadania ( L ) I. Zagadnienia 1. Promieniowanie X w diagnostyce medycznej powstawanie, właściwości, prawo osłabienia. 2. Metody obrazowania naczyń krwionośnych. 3. Angiografia subtrakcyjna. II. Zadania 1. Wykonanie

Bardziej szczegółowo

LVI Olimpiada Fizyczna Zawody III stopnia

LVI Olimpiada Fizyczna Zawody III stopnia LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna

Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Światłowody

Uniwersytet Warszawski Wydział Fizyki. Światłowody Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

F = e(v B) (2) F = evb (3)

F = e(v B) (2) F = evb (3) Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas

Bardziej szczegółowo

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009

Ćwiczenie LP2. Jacek Grela, Łukasz Marciniak 25 października 2009 Ćwiczenie LP2 Jacek Grela, Łukasz Marciniak 25 października 2009 1 Wstęp teoretyczny 1.1 Energetyczna zdolność rozdzielcza Energetyczna zdolność rozdzielcza to wielkość opisująca dokładność detekcji energii

Bardziej szczegółowo

SPRAWDŹ SWOJĄ WIEDZĘ

SPRAWDŹ SWOJĄ WIEDZĘ SPRAWDŹ SWOJĄ WIEDZĘ Podobne pytania możesz otrzymać na egzaminie certyfikacyjnym Uwaga: Jeśli masz wątpliwości czy wybrałeś poprawną odpowiedź, spytaj przez forum dyskusyjne Pytania zaczerpnięto ze zbiorów

Bardziej szczegółowo

BADANIE CHARAKTERYSTYK FOTOELEMENTU

BADANIE CHARAKTERYSTYK FOTOELEMENTU Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.

Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich. Doświadczenie nr 6 Pomiar energii promieniowania gamma metodą absorpcji elektronów komptonowskich.. 1. 3. 4. 1. Pojemnik z licznikami cylindrycznymi pracującymi w koincydencji oraz z uchwytem na warstwy

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

LABORATORIUM Pomiar charakterystyki kątowej

LABORATORIUM Pomiar charakterystyki kątowej Ćwiczenie 6 LABORATORIUM Pomiar charakterystyki kątowej Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Opisz budowę złączy światłowodowych. Opisz budowę lasera w tym lasera półprzewodnikowego.

Bardziej szczegółowo

MOŻLIWOŚCI DIAGNOSTYKI WYŁADOWAŃ NIEZUPEŁNYCH POPRZEZ POMIAR ICH PROMIENIOWANIA ULTRAFIOLETOWEGO

MOŻLIWOŚCI DIAGNOSTYKI WYŁADOWAŃ NIEZUPEŁNYCH POPRZEZ POMIAR ICH PROMIENIOWANIA ULTRAFIOLETOWEGO MOŻLIWOŚCI DIAGNOSTYKI WYŁADOWAŃ NIEZUPEŁNYCH POPRZEZ POMIAR ICH PROMIENIOWANIA ULTRAFIOLETOWEGO Autorzy: Jerzy Skubis, Michał Kozioł Toruń, 2019 CEL I ZAKRES BADAŃ Podjęta tematyka badawcza ma na celu

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

SPRAWDZANIE PRAWA STEFANA BOLTZMANNA

SPRAWDZANIE PRAWA STEFANA BOLTZMANNA Ćwiczenie 31 SPRAWDZANIE PRAWA STEFANA BOLTZMANNA Cel ćwiczenia: poznanie podstawowych pojęć związanych z promienio-waniem termicznym ciał, eksperymentalna weryfikacja teorii promieniowania ciała doskonale

Bardziej szczegółowo

Nowoczesne sieci komputerowe

Nowoczesne sieci komputerowe WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Nowoczesne sieci komputerowe Instrukcja nr 1 Dąbrowa Górnicza, 2010

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki

Systemy laserowe. dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Systemy laserowe dr inż. Adrian Zakrzewski dr inż. Tomasz Baraniecki Metody analizy i kształtowania wiązki laserowej Źródło: Beyer Wiązka gaussowska Natężenia promieniowania poprzecznie do kierunku propagacji

Bardziej szczegółowo

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę.

Schemat układu zasilania diod LED pokazano na Rys.1. Na jednej płytce połączone są różne diody LED, które przełącza się przestawiając zworkę. Ćwiczenie 3. Parametry spektralne detektorów. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami detektorów i ich podstawowych parametrów. Poznanie zależności związanych z oddziaływaniem

Bardziej szczegółowo

LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ

LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZADZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 6 Badanie zjawiska ulotu elektrycznego na modelu linii napowietrznej

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE

LABORATORIUM PROMIENIOWANIE w MEDYCYNIE LABORATORIUM PROMIEIOWAIE w MEDYCYIE Ćw nr STATYSTYKA ZLICZEŃ PROMIEIOWAIA JOIZUJACEGO azwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa Cel ćwiczenia Rozpad izotopu promieniotwórczego wysyłającego

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze wzgl

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze wzgl Dyfrakcja rentgenowska () w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze względu na badane materiały oraz rodzaj stosowanego promieniowania. 2. Metoda Lauego. 3. Metoda obracanego monokryształu.

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO Politechnika Poznańska, nstytut Chemii i Elektrochemii Technicznej, OZNACZANE WSPÓŁCZYNNKA POCHŁANANA PROMENOWANA GAMMA PRZY UŻYCU LCZNKA SCYNTYLACYJNEGO nstrukcję przygotował: dr, inż. Zbigniew Górski

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

dotyczy: postępowania o zamówienie publiczne w trybie przetargu nieograniczonego na dostawę sprzętu i aparatury medycznej.

dotyczy: postępowania o zamówienie publiczne w trybie przetargu nieograniczonego na dostawę sprzętu i aparatury medycznej. Toruń, dn. 16 maja 2016r. L.dz. SSM.DZP.200.73.2016 dotyczy: postępowania o zamówienie publiczne w trybie przetargu nieograniczonego na dostawę sprzętu i aparatury medycznej. I. W związku ze skierowanymi

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2

Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników 2 Łukasz Przywarty 171018 Data wykonania pomiarów: 0.10.009 r. Sala: 4.3 Prowadząca: dr inż. Ewa Oleszkiewicz Sprawozdanie z zajęć laboratoryjnych: Fizyka dla elektroników Temat: Wyznaczanie gęstości ciał

Bardziej szczegółowo

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE Sławomir Mackiewicz IPPT PAN DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE 1. Wstęp Dyfraktometria rentgenowska jest techniką badawczą znaną i szeroko stosowaną w dziedzinie

Bardziej szczegółowo

TERAPIA PROTONOWA. Proseminarium magisterskie 18 X 2005 1/36. Marta Giżyńska

TERAPIA PROTONOWA. Proseminarium magisterskie 18 X 2005 1/36. Marta Giżyńska TERAPIA PROTONOWA Proseminarium magisterskie 18 X 2005 1/36 W skrócie... Cele terapii Słownictwo Własności wiązki protonowej Cele strategiczne Technika wielopolowa Technika rozpraszania Porównanie z techniką

Bardziej szczegółowo

Paulina Majczak-Ziarno, Paulina Janowska, Maciej Budzanowski, Renata Kopeć, Izabela Milcewicz- Mika, Tomasz Nowak

Paulina Majczak-Ziarno, Paulina Janowska, Maciej Budzanowski, Renata Kopeć, Izabela Milcewicz- Mika, Tomasz Nowak Pomiar rozkładu dawki od rozproszonego promieniowania wokół stanowiska gantry, w gabinecie stomatologicznym i stanowiska pomiarowego do defektoskopii przy użyciu detektorów MTS-N i MCP-N Paulina Majczak-Ziarno,

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu

Laboratorium techniki światłowodowej. Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd światłowodu Laboratorium techniki światłowodowej Ćwiczenie 5. Badanie wpływu periodycznych zgięd na tłumiennośd Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Radiografia mikroogniskowa

Radiografia mikroogniskowa Radiografia mikroogniskowa Jan Kielczyk Energomontaż-Północ- Technika Spawalnicza i Laboratorium Sp. z o.o. Warszawa 1. Wstęp W badaniach radiograficznych wymiar ogniska lampy rentgenowskiej jest źródłem

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Laboratorium RADIOTERAPII

Laboratorium RADIOTERAPII Laboratorium RADIOTERAPII Ćwiczenie: Testy specjalistyczne aparatu RTG badanie parametrów obrazu Opracowała: mgr inż. Edyta Jakubowska Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii Biomedycznej

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

RADIOMETRYCZNY SKANER FOLII TYTANOWEJ RADIOMETRIO SCANNER FOR TITANIUM FOIL

RADIOMETRYCZNY SKANER FOLII TYTANOWEJ RADIOMETRIO SCANNER FOR TITANIUM FOIL PL0000454 RDIOMETRYCZNY SKNER FOLII TYTNOWEJ RDIOMETRIO SCNNER FOR TITNIUM FOIL Piotr Urbański, Ewa Kowalska, Jan Strzałkowski, Edward Świstowski Instytut Chemii i Techniki Jądrowej, 03-95 Warszawa, ul.

Bardziej szczegółowo

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. THICK 800A DO POMIARU GRUBOŚCI POWŁOK THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu. Zoptymalizowany do pomiaru grubości warstw Detektor Si-PIN o rozdzielczości

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

Instrukcja obsługi stomatologicznego fantomu testowego

Instrukcja obsługi stomatologicznego fantomu testowego Instrukcja obsługi stomatologicznego fantomu testowego Dent/digitest 3 Opracował: mgr inż. Jan Kalita 1 Spis treści. 1. Opis techniczny 3 1.1. Przeznaczenie fantomu. 3 1.2. Budowa fantomu. 4 2. Procedura

Bardziej szczegółowo

( S ) I. Zagadnienia. II. Zadania

( S ) I. Zagadnienia. II. Zadania ( S ) I. Zagadnienia 1. Warunki prawidłowego wykonywania zdjęć rentgenowskich. 2. Skanowanie zdjęć i ocena wpływu ekspozycji na jakość zdjęcia. 3. Dawka i moc dawki, jednostki; pomiary mocy dawki promieniowania

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia Zadanie 1. Jednym z najnowszych rozwiązań czujników

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji

Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

OGNISKA LAMP RENTGENOWSKICH Z WIRUJĄCĄ ANODĄ

OGNISKA LAMP RENTGENOWSKICH Z WIRUJĄCĄ ANODĄ OGNISKA LAMP RENTGENOWSKICH Z WIRUJĄCĄ ANODĄ Dominik SENCZYK Politechnika Poznańska E-mail: dominik.senczyk@put.poznan.pl 1. Wprowadzenie Lampy rentgenowskie z wirującą anodą są coraz częściej spotykane

Bardziej szczegółowo

Układ stabilizacji natężenia prądu termoemisji elektronowej i napięcia przyspieszającego elektrony zwłaszcza dla wysokich energii elektronów

Układ stabilizacji natężenia prądu termoemisji elektronowej i napięcia przyspieszającego elektrony zwłaszcza dla wysokich energii elektronów PL 219991 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219991 (13) B1 (21) Numer zgłoszenia: 398424 (51) Int.Cl. G05F 1/56 (2006.01) H01J 49/26 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego.

Ćwiczenie ELE. Jacek Grela, Łukasz Marciniak 3 grudnia Rys.1 Schemat wzmacniacza ładunkowego. Ćwiczenie ELE Jacek Grela, Łukasz Marciniak 3 grudnia 2009 1 Wstęp teoretyczny 1.1 Wzmacniacz ładunkoczuły Rys.1 Schemat wzmacniacza ładunkowego. C T - adaptor ładunkowy, i - źródło prądu reprezentujące

Bardziej szczegółowo

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity

Bardziej szczegółowo

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI

Ćwiczenie 2. Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. LABORATORIUM OPTOELEKTRONIKI LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 2 Badanie strat odbiciowych i własnych wybranych patchcordów światłowodowych. Cel ćwiczenia: Zapoznanie studentów ze zjawiskami tłumienności odbiciowej i własnej.

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów

Laboratorium techniki światłowodowej. Ćwiczenie 2. Badanie apertury numerycznej światłowodów Laboratorium techniki światłowodowej Ćwiczenie 2. Badanie apertury numerycznej światłowodów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie Światłowody

Bardziej szczegółowo

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:...

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk. Imię i nazwisko:... Imię i nazwisko:... Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 4 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Dobór optymalnego

Bardziej szczegółowo

Absorpcja promieni rentgenowskich 2 godz.

Absorpcja promieni rentgenowskich 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium

Bardziej szczegółowo

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM ` Maszyny Elektryczne Zeszyty Problemowe Nr 3/2015 (107) 145 Maciej Gwoździewicz Wydział Elektryczny, Politechnika Wrocławska ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU

Bardziej szczegółowo

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej

Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Układ aktywnej redukcji hałasu przenikającego przez przegrodę w postaci płyty mosiężnej Paweł GÓRSKI 1), Emil KOZŁOWSKI 1), Gracjan SZCZĘCH 2) 1) Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy

Bardziej szczegółowo

Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych stosowanych we współczesnych pojazdach samochodowych Stworzenie nowego ćwiczenia laborat

Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych stosowanych we współczesnych pojazdach samochodowych Stworzenie nowego ćwiczenia laborat PRACA DYPLOMOWA INŻYNIERSKA Rumiński Dariusz Badania wybranych elementów optycznoświetlnych oświetlenia sygnałowego pojazdu samochodowego 1 Cele pracy Badania rozsyłu wiązek świetlnych lamp sygnałowych

Bardziej szczegółowo

BADANIE WŁAŚCIWOŚCI I UKŁADÓW PRACY ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

BADANIE WŁAŚCIWOŚCI I UKŁADÓW PRACY ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie S 23 BADANIE WŁAŚCIWOŚCI I UKŁADÓW PRACY ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z właściwościami elektrycznych źródeł światła, układami w jakich

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 4 Dyfrakcja na szczelinie przy użyciu lasera relacja Heisenberga Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski

Bardziej szczegółowo

Efekt fotoelektryczny

Efekt fotoelektryczny Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej

Bardziej szczegółowo

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D

XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:

Bardziej szczegółowo

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ

Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ 60-965 Poznań Grupa: Elektrotechnika, sem 3., Podstawy Techniki Świetlnej Laboratorium wersja z dn. 03.11.2015 Ćwiczenie nr 6 Temat: BADANIE ŚWIATEŁ DO JAZDY DZIENNEJ Opracowanie wykonano na podstawie

Bardziej szczegółowo

Korpuskularna natura światła i materii

Korpuskularna natura światła i materii Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348

Bardziej szczegółowo