Pomiary akustyczne. 1. Wstęp

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiary akustyczne. 1. Wstęp"

Transkrypt

1 Pomiary akustyczne 1. Wstęp Z fizycznego punktu widzenia dźwięk to drgania mechaniczne gazowego, płynnego lub stałego elastycznego medium, w trakcie których energia odprowadzana jest ze źródła za pomocą fal akustycznych. Potocznie przez dźwięk rozumiemy takie zaburzenie (zmianę ciśnienia, przemieszczenie cząstek), które jest w stanie wywołać wraŝenie słuchowe. RozwaŜmy cząstkę medium, która jest mała w stosunku do zaburzenia akustycznego (tj. długości fali), ale wystarczająco duŝa by reprezentować własności fizyczne ośrodka. JeŜeli taka cząstka zostanie wytracona z połoŝenia równowagi, to uderzy swa sąsiadkę, powodując jej ruch o podobnym przemieszczeniu, sama się odbijając. Ta sąsiednia cząstka uderzy teraz następną itd. Nastąpi w ten sposób propagacja zaburzeń medium dzięki kolejnym oscylacjom sąsiadujących ze sobą elastycznych drobin. śadna z nich nie porusza się wraz z zaburzeniem (fala) - to tylko energia zaburzenia podlega transmisji, a same cząstki drgają jedynie wokół połoŝeń równowagi wzdłuŝ kierunku propagacji fali akustycznej. Rozprzestrzenianie się tej zmiany jest związane z przenoszeniem energii wibroakustycznej z jednego do drugiego punktu przestrzeni bez przenoszenia materii między tymi punktami. Jest to moŝliwe, poniewaŝ, energia jest przekazywana łańcuchowo od cząsteczki do cząsteczki wskutek drgań wokół połoŝenia równowagi. Kierunki i prędkości tych drgań oraz powstałej wskutek tego fali mogą być róŝne. Fala akustyczna rozchodzi się w ośrodku spręŝystym nawet po zakończeniu działania źródła zakłóceń. Gdyby to był ośrodek zachowawczy, to po pewnym czasie fala dotarłaby bez zniekształceń do kaŝdego punktu ośrodka leŝącego na kierunku rozprzestrzeniania się fali. Jednak rzeczywiste ośrodki mają zawsze pewne własności tłumiące i dlatego przenoszona energia wibroakustyczna ulega rozpraszaniu z upływem czasu, co powoduje zanikanie drgań cząsteczek ośrodka. W ruchu falowym powstającym w ośrodku spręŝystym ciągłym moŝna wyróŝnić: falę podłuŝną, w której cząsteczki materialne drgają w kierunku rozchodzenia się fali (rys. 1a), falę poprzeczną, w której cząsteczki materialne drgają prostopadle do kierunku rozchodzenia się fali (rys. 1b). Czas niezbędny do przekaza- a) b) Kierunek rozchodzenia się fali Kierunek drgań cząsteczek Rysunek 1. Drgania cząsteczek ośrodka w fali: a) podłuŝnej, b) poprzecznej 1

2 nia ruchu pomiędzy kolejnymi cząstkami, a wiec i prędkość propagacji zaburzeń (prędkość dźwięku) zaleŝy od modułu spręŝystości ośrodka. Prędkości rozchodzenia się fal są wyraŝone zaleŝnościami: dla fali podłuŝnej: c 1 = K G K - moduł odkształcenia objętościowego [MPa], G - moduł spręŝystości poprzecznej [MPa], ρ - gęstość ośrodka kg/m 3, ρ dla fali poprzecznej: c 2 = G ρ. Z porównania wyraŝeń znajdujących się pod pierwiastkami wynika, Ŝe zawsze c 1 >c 2. Dla stałego ciała izotropowego obowiązują zaleŝności: E K = 3 (1-2 ν ) E G = 2 (1 + ν ) E - moduł spręŝystości wzdłuŝnej [MPa], ν - liczba Poissona. Dla płynów o małej lepkości ( praktycznie pozbawionych sił stycznych) moŝna przyjąć, Ŝe G=0. Wtedy: c 1 = K ; c 2 = 0 ρ Oznacza to, Ŝe w cieczach i gazach mogą rozchodzić się tylko fale podłuŝne. Dla wody moŝna przyjąć: ρ=1000 kg/m 3 i K=2220 MPa. Stąd prędkość fali podłuŝnej w wodzie wynosi: c 1 =1480 m/s. Moduł spręŝystości objętościowej gazu jest określony zaleŝnością: K = lim p 0 p dp = = ρ * ρ dρ ρ 2

3 p - ciśnienie gazu N/m 2. Zakładając przemianę adiabatyczną wielkość K=κ p i stąd prędkość fali podłuŝnej w gazach moŝna wyrazić wzorem: c 1 = κ p ρ. Dla powietrza w temperaturze 273K moŝna przyjąć: κ=1,41, p=0,1mpa, ρ=1,2933kg/m 3. Stąd prędkość fali podłuŝnej w powietrzu, która w tym przypadku jest równieŝ prędkością dźwięku w powietrzu wynosi c o =330 m/s. Prędkość dźwięku w gazie zmienia się z temperaturą wg zaleŝności: c 1 = co 1 + t t 1 - temperatura gazu w o C, c o - prędkość dźwięku w temperaturze 0 o C. Element drgający powoduje lokalna kompresje ośrodka (np. powietrza), która rozprzestrzenia się z ta sama częstotliwością, co drganie wymuszające i o tym samym kształcie falowym. Uwzględniając stałość prędkości dźwięku w powietrzu, długość fali (λ) określić za pomocą odcinka czasu pomiędzy kolejnymi kompresjami tj. okresu fali (T) lub jego odwrotności, czyli częstotliwości (f) fali akustycznej: λ = c T = c f Dźwięk sensie ogólnym występuje w bardzo szerokim zakresie częstotliwości. Dźwięki słyszalne (przez młodych ludzi) zawierają się w zakresie od (16) 20 do Hz. Dźwięki o częstotliwościach poniŝej 16 Hz nazywane są infradźwiękami, a dźwięki w zakresie 20kHz do 10 GHz - ultradźwiękami, a dźwięki > 10GHz - hiperdźwiękami. Dźwięki słyszalne dla psa Hz, dla nietoperza: Hz) 2. Miary akustyczne Większość zjawisk akustycznych, które człowiek odbiera za pomocą ucha, jest przekazywana za pośrednictwem ośrodka gazowego, jakim jest powietrze. JeŜeli nie rozchodzą się w nim fale akustyczne, to istnieje w tym ośrodku ciśnienie statyczne zwane często ciśnieniem atmosferycznym. Obszar przestrzeni, w którym rozchodzą się fale akustyczne nazywa się polem akustycznym. W kaŝdym punkcie pola ciśnienie ośrodka zmienia się z czasem, oscylując wokół 3

4 wartości średniej, jaką jest ciśnienie statyczne. RóŜnicę chwilowej wartości ciśnienia i ciśnienia statycznego nazwano ciśnieniem akustycznym, którego wartość podaje się w (Pa). Wartość fali dźwiękowej moŝe być opisana róŝnymi sposobami, ale zwykle najwygodniej jest mierzyć ciśnienie akustyczne (a nie przesunięcie cząstek czy ich prędkość). Intensywnością dźwięku jest średnią wartością mocy płynącej przez jednostkowa powierzchnie: I = p(t) v(t) = 1 p(t) v(t) dt T, v(t)-chwilowa prędkość cząstek p(t)-chwilowe ciśnienie akustyczne { Moc N=p(t) A v(t)}. Z teorii rozchodzenia się małych zaburzeń wiemy, Ŝe: p(t) = ρ c v(t) v(t) = p(t). ρ c T 0 Iloczyn ρ c nazywany jest impedancja akustyczna medium charakteryzująca jego własności, np. dla powietrza ρ c=407 kg/m 3 s. Uwzględniając powyŝsze w równaniu na intensywność otrzymamy: I = 1 T T 2 T 2 p (t) 1 2 p dt = p (t)dt = 0 ρ c ρ c T 0 RMS ρ c Szczególnie przydatnymi miarami są tzw. poziomy dźwięku. Z akustyki fizjologicznej wiadomo, Ŝe ucho ludzkie moŝe odbierać dźwięki o ciśnieniu z zakresu 10-5 do 10 2 Pa tzn. róŝniące się 10 milionów razy. Wiemy takŝe, Ŝe ludzkie odczucie głośności jest proporcjonalne do logarytmu ciśnienia lub intensywności. Dla tych powodów w akustyce uŝywa się jednostek względnych zwanych belami (decybelami), a mierzone tym sposobem wartości noszą nazwę poziomów. Moc akustyczną nazywa się ilość energii wysyłanej przez źródło dźwięku w jednostce czasu. Moc tę określa się w watach (W). Moce akustyczne spotykanych zazwyczaj źródeł dźwięków bardzo się róŝnią między sobą. Na przykład cichy szept odpowiada mocy akustycznej 10-9 W, głos w czasie normalnej rozmowy W, natomiast startujący samolot odrzutowy emituje hałas o mocy równej 10 7 W. Posługiwanie się tak znacznie róŝniącymi się wartościami wyraŝonymi w skali liniowej byłoby w praktyce bardzo niewygodne. Z tych względów w akustyce wprowadzono bezwymiarową skalę logarytmiczną określoną wzorem: L N = 10 log N L N - poziom mocy akustycznej [db], N - moc akustyczna źródła dźwięku [W], N 0 - moc odniesienia, równa W. N 0 4

5 Wartość mocy akustycznej fali przechodzącej przez jednostkową powierzchnię prostopadłą do kierunku rozchodzenia się fali nazywa się natęŝeniem dźwięku I. Oblicza się je za pomocą zaleŝności: I = N S N - oznacza moc akustyczną fali przechodzącej przez powierzchnię o polu S [m 2 ]. Jednostką natęŝenia dźwięku jest 1W/m 2. Podobnie jak dla mocy akustycznej wprowadzono równieŝ dla natęŝenia dźwięku bezwymiarową skalę logarytmiczną określoną wzorem: I L = 10 log I 0 L - poziom natęŝenia dźwięku [db], I 0 =N 0 /S 0 - natęŝenia odniesienia = W/m 2, S 0 - powierzchnia odniesienia = 1m 2. Między oboma wyŝej wymienionymi zaleŝnościami jest zachowana zaleŝność: L N = L +10 log S. Między natęŝeniem dźwięku I a ciśnieniem akustycznym p istnieje związek określony zaleŝnością: I = p Z Z - impedancja akustyczna właściwa ośrodka [N s/m 3 ]. Po wykorzystaniu ostatniego związku poziom intensywności (natęŝenia) dźwięku moŝna przedstawić jako: L = 10 log 2, p p p 0 - ciśnienie odniesienia występujące przy natęŝeniu odniesienia I 0, jest to tzw. umowne ciśnienie progowe wynoszące 20µPa. A stąd moŝna określić tzw. poziom ciśnienia dźwięku L p jako: L 0 p = 20 log p p

6 Oznacza to, Ŝe poziom natęŝenia dźwięku moŝna wyznaczyć za pomocą pomiaru ciśnienia akustycznego. Pomiar taki wykonuje się przewaŝnie za pomocą specjalnych mikrofonów spełniających rolę czujników ciśnienia. Warto tu zaznaczyć, Ŝe dla fali płaskiej poziom ciśnienia dźwięku odpowiada poziomowi natęŝenia dźwięku: L = 10 log 2 I p RMS p = 10 log = 20 log 2 I u p u pu ρ c Poziom natęŝenia dźwięku podany w db wyraŝa stosunek natęŝenia do przyjętego natęŝenia odniesienia, a więc jest wielkością bezwymiarową. Przyjęta wartość odniesienia I 0 =10-12 W/m 2 odpowiada progowi słyszalności ucha ludzkiego (0 db). Oznacza to, Ŝe poziom natęŝenia dźwięku podany w db moŝe być uwaŝany ze względów fizjologicznych za bezwzględną miarę natęŝenia. NaleŜy przy tym zdawać sobie sprawę z tego, Ŝe dwukrotne powiększenie natęŝenia I nie podwaja wartości poziomu natęŝenia L, lecz tylko zwiększa tę wartość o 3 db. RMS = L p 3. Percepcja dźwięku - głośność Miary dźwięku umoŝliwiają obiektywny opis dźwięku, ale nie uwzględniają jego ludzkiej percepcji. Relacje pomiędzy fizycznym poziomem dźwięku, a odczuciem głośności jak równieŝ uciąŝliwość i szkodliwość hałasu są ciągle obiektem badań. To co wiemy dziś to: - ucho ludzkie nie odbiera wzrostu poziomu akustycznego jako proporcjonalnego przyrostu głośności, do podwojenia odczucia głośności niezbędny jest 10dB przyrost poziomu), - odpowiedź częstotliwościowa ucha nie jest liniowa i zmienia się wraz z poziomem. Ucho najbardziej czule jest w zakresie od 2 do 5 khz, a najmniej dla bardzo duŝych i małych częstotliwości, - ucho ma pewna skłonność do ignorowania dźwięków słabych pojawiających się wraz z głośnymi,- krótkie dźwięki impulsowe odbierane są jako mniej głośne niŝ dźwięki krótkie o tym samym poziomie. Nie oznacza to jednak mniejszego zagroŝenia słuchu, - rozróŝnienie dźwięku wymaga odpowiedniego czasu trwania. Czas niezbędny do oceny głośności wynosi s; do oceny wysokości tonu - ok.0.05 s; zdolność rozdzielcza słuchu wynosi ok.0.1s. PrzybliŜenie charakterystycznego dla ludzkiego ucha sposobu odbioru dźwięku prezentują krzywe jednakowej głośności wyraŝonej w fonach (fon - jednostka głośności; poziom głośności jest równy poziomowi ciśnienia przy częstotliwości 1kHz), które pokazują poziom ciśnienia dźwięku niezbędny do zapewnienia odczucia stałej głośności (wedle opinii reprezentatywnej populacji badanych). Krzywe te charakteryzują czułość ludzkiego ucha na dźwięki proste i są rezultatem bardzo wielu doświadczeń. Polega ono na zadawaniu słuchaczowi pytań, czy dźwięk o określonej częstotliwości i pewnym poziomie natęŝenia ma taki sam poziom głośności jak dźwięk o częstotliwości 1000 Hz i takim samym poziomie natęŝenia. Na przykład na rys. 2 przedstawiono dźwięk o częstotliwości 100 Hz i poziomie 50 db, którego poziom głośności odpowiada dźwiękowi o częstotliwości 1000 Hz i poziomie natęŝenia 40 db. 6

7 130 L [db] poziom głośności [fon] f [Hz] Rysunek 2. Krzywe równego poziomu głośności dźwięków prostych w polu swobodnym (krzywe Fletchera-Munsona). Jednostką poziomu głośności dźwięku jest fon. Według przyjętego określenia jest on równy poziomowi natęŝenia dźwięku przy częstotliwości 1000 Hz. Wskutek tego krzywa izofoniczna osiągająca poziom 40 db przy częstotliwości 1000 Hz nazywa się krzywą o poziomie głośności 40 fonów. Taki sam poziom głośności ma dźwięk prosty o częstotliwości 100 Hz i poziomie natęŝenia równym 50 db. Przy ocenie głośności dźwięku uŝywa się równieŝ jednostki 1 son. Jest to głośność dźwięku, którego poziom wynosi 40 fonów. Poziom głośności L g podany w fonach jest związany z głośnością G podaną w sonach za pomocą zaleŝności (20): G = 2 Odpowiednikiem tych krzywych (w układzie odwrotnym ) są linie stałego poziomu dźwięku opisujące odpowiedz (odczucie głośności) ludzkiego ucha na czyste tony o stałym poziomie ciśnienia dźwięku. L g

8 4. Pomiar poziomu dźwięku Najprostszym sposobem pomiaru dźwięku byłoby określenie poziomu ciśnienia akustycznego. Niestety taki pomiar nie charakteryzuje dźwięku pod względem częstotliwości, ani nie uwzględnia ludzkiego sposobu percepcji. W celu przybliŝenia charakterystyki przyrządu pomiarowego charakterystyki ucha opracowano i znormalizowano tzw. krzywe (charakterystyki) korekcyjne oznaczone literami A, B, C, D, a ostatnio takŝe E i SI oparte na własnościach krzywych jednakowej głośności (rys. 3). Krzywa A najlepiej koreluje z subiektywnym odczuciem głośności i dlatego jest najczęściej stosowana. Krzywe B i C aproksymują kontury linii odpowiednio 70 i 100 fonów, krzywa D ( nie pokazana na rysunku) stosowana jest w pomiarach jednego typu hałasu - hałasu samolotów. W filtry o takich charakterystykach wyposaŝa się mierniki poziomu dźwięku. Rysunek 3. Krzywe korekcyjne 8

9 5. Miernik poziomu dźwięku Mikrofon przetwarza zmiany ciśnienia powietrza na odpowiednie napięcie elektryczne. Zadaniem umieszczonego za nim przedwzmacniacza jest przetransformowanie wysokiej impedancji wyjściowej mikrofonu na niŝszy poziom, aby moŝliwe było uŝycie długich kabli łączących mikrofon z sonometrem. Po dwustopniowym wzmocnieniu (tłumiki na wejściu wzmacniaczy zapewniają dopasowanie zakresu dynamicznego do poziomu mierzonego sygnału) i skorygowaniu w filtrze o odpowiedniej charakterystyce (A, B, C itp.) sygnał podawany Rysunek 4.Schemat blokowy szeregowego analizatora: M-mikrofon, W-zespół wzmacniaczy, A-analizatory jest do prostownika, na którego wyjściu otrzymuje się sygnał stałoprądowy (DC) proporcjonalny do wartości RMS lub (przy odpowiedniej stałej czasowej) do wartości szczytowej. Przetwornik Lin/Log umoŝliwia wskazanie sygnału na mierniku bezpośrednio w db. Wskaźniki przeciąŝenia sygnalizują poprawne ustawienie tłumików, a wyjścia zmiennoprądowe (AC) i (lub) DC zapewniają współpracę z przyrządami rejestrującymi. Przyrządy ze wskazaniem cyfrowym posiadają dodatkowo przetwornik A/C umoŝliwiający uzyskanie sygnału w postaci kodu cyfrowego. Istnieje takŝe moŝliwość wbudowania dodatkowych obwodów rozszerzających uniwersalność przyrządu. Do pomiarów L eq (ekwiwalentnego ciągłego poziomu dźwięku) dostępne są specjalne przyrządy automatycznie obliczające końcowy wynik uwzględniając zarówno poziom jak i czas trwania hałasu. Rys. 4 przedstawia schemat blokowy szeregowego analizatora do pomiaru poziomu dźwięku. Natomiast na rysunku 5 przedstawiono schemat blokowy miernika natęŝenia dźwięku. Rysunek 5. Schemat blokowy miernika natęŝenia dźwięku 9

10 6. Praktyka pomiarowa Większość pomiarów akustycznych przeprowadzana jest w pomieszczeniach, które nie są całkowicie bezodbiciowe. Utrudnia to prawidłowy wybór punktu pomiarowego i interpretacje wyników. W trakcie pomiarów wykonywanych zbyt blisko źródła dźwięku, poziom dźwięku moŝe się znacząco zmieniać przy minimalnych zmianach połoŝenia punktu pomiarowego. Ma to miejsce przy odległościach mniejszych od długości fali emitowanej z najniŝszą częstotliwością lub odległościach mniejszych od podwojonego rozmiaru obiektu badanego. Większa z tych dwu odległości określa bliskie pole dźwiękowe. W zasadzie, w polu tym nie powinno się prowadzić pomiarów. Przy dokładnej analizie pola akustycznego ustalono, Ŝe w pobliŝu pulsującej kuli cząsteczki powietrza drgają nie w kierunku promieniowym, a ich prędkość jest przesunięta o pewien kąt fazowy względem ciśnienia akustycznego. Drgania takie nazywamy pseudodźwiękami, a pole akustyczne, w którym one dominują to właśnie pole bliskie. W całym jego obszarze natęŝenie dźwięku zaleŝy nie tylko od odległości od źródła dźwięku, lecz równieŝ od charakterystyki promieniowania źródła dźwięku. Dopiero po przekroczeniu określonej odległości od pulsującego źródła dźwięku kierunki drgań cząstek powietrza pokrywają się dokładnie z kierunkiem rozchodzenia się fali i jednocześnie występuje zgodność faz między prędkością cząsteczek a ciśnieniem akustycznym. Takie pole nazywane jest polem dalekim. JeŜeli znajduje się ono w przestrzeni otwartej, to ma własności pola swobodnego. L Pole bliskie Pole swobodne Pole dalekie Pole rozproszone Rysunek 6. ZaleŜność poziomu natęŝenia dźwięku L w pomieszczeniu zamkniętym od odległości r źródła dźwięku W przybliŝeniu moŝna przyjąć, Ŝe warunki określające pole dalekie są juŝ spełnione w odległości od źródła dźwięku większej od długości fali lub dwa razy większej od największego wymiaru tego źródła. Innym źródłem błędu charakteryzują się pomiary w punkcie, w którym odbicia od ścian lub innych obiektów mogą mieć taki sam poziom, co dźwięk mierzony. Wskutek tego ciśnienie akustyczne przed przeszkodą składa się na ogół z ciśnienia wywołanego falą bezpośrednio wypromieniowaną przez źródło i ciśnienia wytworzonego przez falę odbitą. W ten sposób powstaje pole rozproszone (pole pogłosowe). Rzetelny pomiar jest wiec niemoŝliwy. Prawidłowy pomiar powinien być dokonywany pomiędzy polem bliskim a polem pogłosowym tj. w tej części obszaru otaczającego obiekt badany, która charakteryzuje się spadkiem poziomu dźwięku o 6dB na kaŝde podwojenie odległości od źródła hałasu. r 10

11 6.1 Odejmowanie poziomów dźwięku Jednym z czynników mających ewidentny wpływ na dokładność pomiarów jest relacja poziomu szumów otoczenia do poziomu hałasu badanego. Aby sygnał ten nie utonął w szumie otoczenia, musi być on, co najmniej o 3dB wyŝszy od poziomu tła. W ogólnym przypadku przeprowadzić naleŝy korekcje wyników pomiarów. Procedura jest następująca. Po wyłączeniu badanej maszyny mierzy się poziom dźwięku tła akustycznego L t, następnie po uruchomieniu maszyny mierzy się w tym samym miejscu całkowity poziom dźwięku L c. Okazuje się, Ŝe w miejscu pomiaru poziom hałasu powiększył się o wartość L=L c -L t, jeŝeli róŝnica jest mniejsza niŝ 3dB, to poziom tła jest zbyt wysoki dla pomiarów dokładnych, natomiast jeŝeli róŝnica jest zawarta w przedziale 3dB do 10dB dokonać naleŝy korekcji uwzględniając odpowiednia poprawkę z krzywej korekcyjnej (rys. 7). Korekcja polega na odjęciu poprawki od poziomu całkowitego. Wynik odejmowania jest szukanym poziomem hałasu obiektu. Taka procedurę nazywamy korekcja tła lub odejmowaniem poziomów dźwięku. JeŜeli róŝnica jest większa niŝ 10 db, to wpływ tła kaustycznego na wynik pomiaru moŝna pominąć. Rysunek 7. Poprawki korekcyjne przy odejmowanie poziomów dźwięku. 11

12 6.2 Dodawanie poziomów dźwięku Dodawanie poziomów dźwięku ma miejsce wtedy, gdy znany jest poziom hałasu pojedynczych obiektów, a poŝądana jest znajomość poziomu sumarycznego (np. w trakcie ich wspólnej pracy). W skali logarytmicznej wynik syntezy hałasów pochodzących z róŝnych źródeł nie jest sumą arytmetyczną wielkości zmierzonych dla oddzielnych źródeł. W ogólnym przypadku przy n źródłach hałasu, poziom wypadkowy określa zaleŝność: L i=n 0.1Li = 10 log 10. Σ i=1 Dla dwu źródeł hałasu moŝna wprowadzić oznaczenie L 1 -L 2 = L, przyjmując, Ŝe L 1 >L 2, a stąd wynika, Ŝe L>0, hałas wypadkowy jest określony jako: L = L + δl Σ 1 L - oznacza nadwyŝkę poziomu natęŝenia dźwięku wywołaną wystąpieniem drugiego źródła hałasu. W tym pomiaru hałasu wypadkowego naleŝy: określić poziomy dźwięku obiektu 1 i 2, określić róŝnicę L 1 -L 2, dla tej róŝnicy odczytać poprawkę na wykresie korekcyjnym (rys. 8), wartość poprawki dodać do wyŝszego z wyników. Z powyŝszych rozwaŝań wynikają następujące ogólne wnioski: o poziomie natęŝenia hałasu wypadkowego decyduje zawsze najgłośniejsze źródło, poziom hałasy wywołanego przez dwa identyczne źródła ( L=0) jest zawsze o 3 db większy od poziomu hałasu emitowanego tylko przez jedno źródło. Rysunek 8. Dodawanie poziom dźwięku 12

POMIARY AKUSTYCZNE 1. WSTĘP

POMIARY AKUSTYCZNE 1. WSTĘP POMIARY AKUSTYCZNE 1. WSTĘP Z fizycznego punktu widzenia dźwięk to drgania mechaniczne gazowego, płynnego lub stałego elastycznego medium, w trakcie których energia odprowadzana jest ze źródła za pomocą

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Ćwiczenie nr 25: Interferencja fal akustycznych

Ćwiczenie nr 25: Interferencja fal akustycznych Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja

Bardziej szczegółowo

Temat ćwiczenia. Wyznaczanie mocy akustycznej

Temat ćwiczenia. Wyznaczanie mocy akustycznej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Wyznaczanie mocy akustycznej Cel ćwiczenia Pomiary poziomu natęŝenia dźwięku źródła hałasu. Wyznaczanie mocy akustycznej źródła hałasu. Wyznaczanie

Bardziej szczegółowo

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus Ochrona przeciwdźwiękowa (wykład 2 06.03.2008) Józef Kotus Wpływ hałasu na jakośćŝycia i zdrowie człowieka Straty związane z występowaniem hałasu Hałasem nazywa się wszystkie niepoŝądane, nieprzyjemne,

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

5(m) PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ 1. CEL I ZAKRES ĆWICZENIA

5(m) PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ 1. CEL I ZAKRES ĆWICZENIA PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ Instrukcja Wykonania ćwiczenia 5(m) 1. CEL I ZAKRES ĆWICZENIA Poziom mocy akustycznej

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

I. Pomiary charakterystyk głośników

I. Pomiary charakterystyk głośników LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 4 Pomiary charakterystyk częstotliwościowych i kierunkowości mikrofonów i głośników Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej części ćwiczenia

Bardziej szczegółowo

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub liniach omiatania na półkulistej powierzchni

Bardziej szczegółowo

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa.

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa. POLTECHKA ŚLĄSKA. WYDZAŁ ORGAZACJ ZARZĄDZAA. Strona: 1 1. CEL ĆWCZEA Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów hałasu maszyn, zależności zachodzących pomiędzy ciśnieniem, natężeniem

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Temat ćwiczenia. Pomiary drgań

Temat ćwiczenia. Pomiary drgań POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary drgań 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodami pomiarów drgań urządzeń mechanicznych oraz zasadą działania przetwornika

Bardziej szczegółowo

Aktywne tłumienie drgań

Aktywne tłumienie drgań Aktywne tłumienie drgań wykład dla specjalności Komputerowe Systemy Sterowania dla kierunku Automatyka i Robotyka Dr inŝ. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu Podstawowe

Bardziej szczegółowo

INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM POMIARY AKUSTYCZNE

INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM POMIARY AKUSTYCZNE INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM POMIARY AKUSTYCZNE Zakres ćwiczenia: 1. Miernik poziomu dźwięku budowa, zasada działania. 2. Charakterystyki filtrów korekcyjnych stosowanych w miernikach poziomu

Bardziej szczegółowo

AKUSTYKA. Matura 2007

AKUSTYKA. Matura 2007 Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

P 13 HAŁAS NA STANOWISKU PRACY

P 13 HAŁAS NA STANOWISKU PRACY PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w Nowym Sączu P 13 HAŁAS NA STANOWISKU PRACY Spis treści 1. Pojęcia i parametry dźwięku 2. Wartości dopuszczalne hałasu 3. Pomiary hałasu 4. Wnioski Zespół ćwiczeniowy:

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość dr inż. Romuald Kędzierski Czym jest dźwięk? Jest to wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku

Bardziej szczegółowo

LABORATORIUM AUDIOLOGII I AUDIOMETRII

LABORATORIUM AUDIOLOGII I AUDIOMETRII LABORATORIUM AUDIOLOGII I AUDIOMETRII ĆWICZENIE NR 4 MASKOWANIE TONU TONEM Cel ćwiczenia Wyznaczenie przesunięcia progu słyszenia przy maskowaniu równoczesnym tonu tonem. Układ pomiarowy I. Zadania laboratoryjne:

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH

INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH 1. ODBICIE, POCHŁANIANIE I PRZEJŚCIE FALI AKUSTYCZNEJ Przy przejściu fali do ośrodka o innej oporności akustycznej

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Nauka o słyszeniu Wykład IV Głośność dźwięku

Nauka o słyszeniu Wykład IV Głośność dźwięku Nauka o słyszeniu Wykład IV Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 26.10.2016 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1 RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

Hałas w środowisku. Wstęp. Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne.

Hałas w środowisku. Wstęp. Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne. Hałas w środowisku Wykład dla kierunku OCHRONA ŚRODOWISKA UWM w Olsztynie Wstęp Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne. Dźwięk to pojęcie czysto fizyczne, natomiast

Bardziej szczegółowo

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie.

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie. Fale dźwiękowe wstęp Falami dźwiękowymi nazywamy fale podłużne, które rozchodzą się w ośrodkach sprężystych Ludzkie ucho rozpoznaje fale dźwiękowe o częstotliwości od około 20 Hz do około 20 khz (zakres

Bardziej szczegółowo

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura orientacyjna wyznaczania poziomu mocy źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub metodą omiatania na powierzchni pomiarowej prostopadłościennej

Bardziej szczegółowo

Temat ćwiczenia. Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe

Temat ćwiczenia. Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiar hałasu zewnętrznego emitowanego przez pojazdy samochodowe POLSKA NORMA PN-92/S-04051 (zamiast PN-83/S-04051) Pojazdy samochodowe i motorowery

Bardziej szczegółowo

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. 3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane

Bardziej szczegółowo

Pomiar poziomu hałasu emitowanego przez zespół napędowy

Pomiar poziomu hałasu emitowanego przez zespół napędowy POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ MECHANICZNY Katedra Budowy i Eksploatacji Maszyn Instrukcja do zajęć laboratoryjnych z przedmiotu: EKSPLOATACJA MASZYN Pomiar poziomu hałasu emitowanego przez zespół napędowy

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz AKUSTYKA WYKŁAD Z PRZEDMIOTU: Fizyka Budowli Akustyka techniczna Kształtowaniem właściwych warunków akustycznych w miejscu pobytu ludzi zajmuje się dyscyplina naukowa zwana akustyką techniczną. W budownictwie

Bardziej szczegółowo

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv. Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. 2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. pokaz ruchu falowego 2. opis ruchu falowego słowami, wykresami, równaniami

Bardziej szczegółowo

Badanie efektu Dopplera metodą fali ultradźwiękowej

Badanie efektu Dopplera metodą fali ultradźwiękowej Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie

Bardziej szczegółowo

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ

Bardziej szczegółowo

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),

Bardziej szczegółowo

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ

ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz

Bardziej szczegółowo

Zastosowanie ultradźwięków w technikach multimedialnych

Zastosowanie ultradźwięków w technikach multimedialnych Zastosowanie ultradźwięków w technikach multimedialnych Janusz Cichowski, p. 68 jay@sound.eti.pg.gda.pl Katedra Systemów Multimedialnych, Wydział Elektroniki Telekomunikacji i Informatyki, Politechnika

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej jest mierzone ciśnienie akustyczne

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Temat: Diagnostyka akustyczna obrabiarek i pomiary laserowe

Temat: Diagnostyka akustyczna obrabiarek i pomiary laserowe Laboratorium: Diagnostyka akustyczna obrabiarek i pomiary laserowe 1 LABORATORIUM Temat: Diagnostyka akustyczna obrabiarek i pomiary laserowe 1. Wprowadzenie Pracy kaŝdego urządzenia mechanicznego towarzyszą

Bardziej szczegółowo

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych LABORATORIUM Pomiar poziomu mocy akustycznej w komorze pogłosowej Instrukcja do zajęć laboratoryjnych Kraków 2010 Spis treści 1. Wstęp...3 2. Wprowadzenie teoretyczne...4 2.1. Definicje terminów...4 2.2.

Bardziej szczegółowo

Rys Ruch harmoniczny jako rzut ruchu po okręgu

Rys Ruch harmoniczny jako rzut ruchu po okręgu 3. DRGANIA I FALE 3.1. Ruch harmoniczny W szkole poznajemy ruch harmoniczny w trakcie analizy ruchu jednostajnego po okręgu jako rzut na prostą (rys. 3.1). Tak jest w istocie, poniewaŝ ruch po okręgu to

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku.

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku. Nazwisko i imię: Zespół: Data: Ćwiczenie nr 25: Interferencja fal akustycznych. Prędkość dźwięku. Cel ćwiczenia: Pomiar prędkości dźwięku w powietrzu oraz w niektórych wybranych gazach przy użyciu rury

Bardziej szczegółowo

POMIARY AUDIOMETRYCZNE

POMIARY AUDIOMETRYCZNE Laboratorium Elektronicznej Aparatury Medycznej Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Katedra Inżynierii Biomedycznej ĆWICZENIE NR 9 POMIARY AUDIOMETRYCZNE Cel ćwiczenia Zapoznanie

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem

Bardziej szczegółowo

LIGA klasa 2 - styczeń 2017

LIGA klasa 2 - styczeń 2017 LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V

Bardziej szczegółowo

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi Ć w i c z e n i e 5a Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi 1. Wprowadzenie Celem ćwiczenia jest zapoznanie się z przyrządami stosowanymi do pomiarów prędkości w przepływie

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

FALE DŹWIĘKOWE. fale podłużne. Acos sin

FALE DŹWIĘKOWE. fale podłużne. Acos sin ELEMENTY AKUSTYKI Fale dźwiękowe. Prędkość dźwięku. Charakter dźwięku. Wysokość, barwa i natężenie dźwięku. Poziom natężenia i głośności. Dudnienia. Zjawisko Dopplera. Fala dziobowa. Fala uderzeniowa.

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje

Bardziej szczegółowo

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie. Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony

Bardziej szczegółowo

Fale w przyrodzie - dźwięk

Fale w przyrodzie - dźwięk Fale w przyrodzie - dźwięk Fala Fala porusza się do przodu. Co dzieje się z cząsteczkami? Nie poruszają się razem z falą. Wykonują drganie i pozostają na swoich miejscach Ruch falowy nie powoduje transportu

Bardziej szczegółowo

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe

Bardziej szczegółowo

Temat ćwiczenia. Pomiary hałasu komunikacyjnego

Temat ćwiczenia. Pomiary hałasu komunikacyjnego POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary hałasu komunikacyjnego 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów pomiarów hałasu komunikacyjnego oraz z wpływem parametrów

Bardziej szczegółowo

FALE AKUSTYCZNE. Wytwarzanie fali akustycznej

FALE AKUSTYCZNE. Wytwarzanie fali akustycznej FALE AKUSTYCZNE Fale akustyczne to fale podłuŝne, rozchodzące się w ośrodkach ciągłych. Są słyszalne przez ucho ludzkie w zakresie częstości: Hz Hz. Mogą powstać wskutek drgań strun, słupów powietrza (np.

Bardziej szczegółowo

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1 Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,

Bardziej szczegółowo

Teoria błędów pomiarów geodezyjnych

Teoria błędów pomiarów geodezyjnych PodstawyGeodezji Teoria błędów pomiarów geodezyjnych mgr inŝ. Geodeta Tomasz Miszczak e-mail: tomasz@miszczak.waw.pl Wyniki pomiarów geodezyjnych będące obserwacjami (L1, L2,, Ln) nigdy nie są bezbłędne.

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia

Bardziej szczegółowo

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Efekt Dopplera Cel ćwiczenia Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Wstęp Fale dźwiękowe Na czym

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia wymagania ogólne II. Przeprowadzanie doświadczeń i wyciąganie wniosków

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku

Wyznaczanie prędkości dźwięku Wyznaczanie prędkości dźwięku OPRACOWANIE Jak można wyznaczyć prędkość dźwięku? Wyznaczanie prędkości dźwięku metody doświadczalne. Prędkość dźwięku w powietrzu wynosi około 330 m/s. Dokładniejsze jej

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO

Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO INSTYTUT KONSTRUKCJI MASZYN Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO Measurement of vibrations in assessment of dynamic state of the machine Zakres ćwiczenia:

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych uczniów Pracownia

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Jest to graficzna ilustracja tzw. prawa Plancka, które moŝna zapisać następującym równaniem:

Jest to graficzna ilustracja tzw. prawa Plancka, które moŝna zapisać następującym równaniem: WSTĘP KaŜde ciało o temperaturze powyŝej 0 0 K, tj. powyŝej temperatury zera bezwzględnego emituje promieniowanie cieplne, zwane teŝ temperaturowym, mające naturę fali elektromagnetycznej. Na rysunku poniŝej

Bardziej szczegółowo