Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas."

Transkrypt

1 Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas. W odróżnieniu od pamięci operacyjnej, nie pozwala na adresowanie pojedynczych bajtów, a jej czas dostępu jest wielokrotnie dłuższy. Urządzenia pamięci masowej należą do tzw. urządzeń blokowych. Wyróżniamy następujące rodzaje pamięci masowej: Nośnik magnetyczny dysk twardy pamięć magnetyczna dyskowa; dyskietka pamięć magnetyczna dyskietkowa; pamięć taśmowa pamięć magnetyczna taśmowa. Nośnik optyczny płyta CD-R, CD-RW, CD-ROM, DVD, BD-ROM, HD DVD pamięć zapisywana i odczytywana w napędzie optycznym zgodnym z odpowiednim typem płyty. Pamięć półprzewodnikowa karty pamięci (wszelkie rodzaje wymiennych kart pamięci); pamięć SSD (tzw. dysk SSD następca dysku twardego); pamięci USB (pendrive). Nośniki egzotyczne: Napęd Zip Napęd Jaz HHD Dysk magnetooptyczny Pamięci masowe łączą się z komputerem poprzez łącze zwane interfejsem. Typowe interfejsy pamięci masowych to: ATA (IDE) Serial ATA SCSI SAS RAID Dysk twardy, (ang. hard disk drive) rodzaj pamięci masowej, wykorzystujący nośnik magnetyczny do przechowywania danych. Nazwa "dysk twardy" wynika z zastosowania twardego materiału jako podłoża dla właściwego nośnika, w odróżnieniu od dyskietek (ang. floppy disk, czyli miękki dysk), w których nośnik magnetyczny naniesiono na podłoże elastyczne. Pierwowzorem twardego dysku jest pamięć bębnowa. Pierwsze dyski twarde takie, jak dzisiaj znamy, wyprodukowała w 1980 roku firma Seagate był przeznaczony do mikrokomputerów, miał pojemność 5 MB, czyli 5 razy więcej niż ówczesna, dwustronna dyskietka 8-calowa. Pojemność dysków wynosi od 5 MB (przez 10 MB, 20 MB i 40 MB dyski MFM w komputerach klasy XT 808x i 286) do 4 kilku TB. Opracowano również miniaturowe dyski twarde typu Microdrive, o pojemnościach od kilkuset MB do kilku GB, przeznaczone dla cyfrowych aparatów fotograficznych i innych urządzeń przenośnych. Dla dysków twardych najważniejsze są następujące parametry: pojemność, szybkość transmisji danych, czas dostępu do danych, prędkość obrotowa dysków magnetycznych (obr/min.) oraz średni czas bezawaryjnej pracy (MTBF). Historia Użycie sztywnych talerzy i uszczelnienie jednostki umożliwia większą precyzję zapisu niż na dyskietce, w wyniku czego dysk twardy może zgromadzić o wiele więcej danych niż dyskietka. Ma również krótszy czas dostępu do danych i w efekcie szybszy transfer. 4 września 1956 firma IBM skonstruowała pierwszy 24-calowy dysk twardy o nazwie RAMAC 350. Miał on pojemność 5 MB. W 1984 firma Seagate wprowadziła na rynek pierwszy dysk 5.25", ST-506 o pojemności 5

2 MB. W 1986 został opracowany kontroler IDE (Integrated Drive Electronics). W 1987 rozpoczęła się era dysków 3,5 cala W 2008 pojawiły się dyski SSD. Na początku technologia ta była bagatelizowana przez dużych graczy (np. Western Digital). Jednak stosunkowo duże zainteresowanie rynku mimo bardzo wysokiej ceny, duża wydajność dzięki minimalnemu czasowi dostępu do danych oraz malejąca cena za MB szybko zmieniła ich nastawienie. Od marca 2012 roku na rynku pozostało jedynie 3 producentów dysków twardych: Western Digital, Seagate Technology oraz Toshiba. BUDOWA DYSKU: Dysk stały składa się z zamkniętego w obudowie, wirującego talerza (dysku) lub zespołu talerzy, wykonanych najczęściej ze stopów aluminium, o wypolerowanej powierzchni, pokrytej nośnikiem magnetycznym o grubości kilku mikrometrów, oraz z głowic elektromagnetycznych umożliwiających zapis i odczyt danych. Na każdą powierzchnię talerza dysku przypada po jednej głowicy odczytu i zapisu. Głowice są umieszczone na elastycznych ramionach i w stanie spoczynku stykają się z talerzem blisko jego osi. W czasie pracy unoszą się, a ich odległość nad talerzem jest stabilizowana dzięki sile aerodynamicznej powstałej w wyniku szybkich obrotów talerza. Ramię głowicy dysku ustawia głowice w odpowiedniej odległości od osi obrotu talerza w celu odczytu lub zapisu danych na odpowiednim cylindrze. Najpopularniejszym obecnie jest tzw. voice coil czyli cewka, wzorowana na układzie magnetodynamicznym stosowanym w głośnikach. Umieszczona w silnym polu magnetycznym cewka porusza się i zajmuje położenie zgodnie z przepływającym przez nią prądem, ustawiając ramię w odpowiedniej pozycji. Dzięki temu czas przejścia między kolejnymi ścieżkami jest nawet krótszy niż 1 milisekunda, a przy większych odległościach nie przekracza kilkudziesięciu milisekund. Informacja jest zapisywana na dysk przez przesyłanie strumienia elektromagnetycznego przez antenę albo głowicę zapisującą, która jest bardzo blisko magnetycznie polaryzowalnego materiału, zmieniającego swoją polaryzacją magnetyczną. Informacja może być z powrotem odczytana w odwrotny sposób, gdyż zmienne pole magnetyczne powoduje indukowanie napięcia elektrycznego w cewce głowicy lub zmianę oporu w głowicy magnetyczno-oporowej. Ramiona połączone są zworą i poruszają się razem. Zwora kieruje głowicami promieniowo po talerzach a w miarę rotacji talerzy, daje każdej głowicy dostęp do całości jej talerza. Zintegrowana elektronika kontroluje ruch zwory, obroty dysku, oraz przygotowuje odczyty i zapisy na rozkaz od kontrolera dysku. Nowoczesne układy elektroniczne są zdolne do skutecznego szeregowania odczytów i zapisów na przestrzeni dysku oraz do zastępowania uszkodzonych sektorów zapasowymi. Obudowa chroni części napędu od pyłu, pary wodnej, i innych źródeł zanieczyszczenia. Jakiekolwiek zanieczyszczenie głowic lub talerzy może doprowadzić do uszkodzenia głowicy (head crash), awarii dysku, w której głowica uszkadza talerz, ścierając cienką warstwę magnetyczną. Awarie głowicy mogą również być spowodowane przez błąd elektroniczny, uszkodzenie, błędy produkcyjne dysku lub zużycie. Metody adresowania danych: CHS (ang. Cylinder-Head-Sector, czyli cylinder-głowica-sektor) jest metodą adresowania danych na dysku twardym. Każdy dysk twardy zawiera talerze i głowice do odczytu i zapisu. Głowice znajdują się po obydwu stronach talerza tzn. jeżeli dysk zawiera 2 talerze to posiada 4 głowice. Każdy talerz podzielony jest na ścieżki. Wartość cylindrów określa liczbę ścieżek znajdujących się po każdej ze stron talerza. Pojedynczy cylinder jest więc zbiorem ścieżek będących jedna nad drugą (jest ich tyle samo co głowic). Wartość sektorów określa liczbę sektorów w każdej ścieżce, każdy sektor zawiera 512 bajtów. Starsze dyski twarde stosujące metody zapisu MFM i RLL, dzieliły każdy cylinder na równą liczbę sektorów a wartości CHS odpowiadały fizycznej budowie dysku. Dysk z wartościami CHS 500x4x32 posiadał 500 ścieżek po każdej stronie talerza, 2 talerze, i 32 sektory na ścieżkę.

3 Dyski IDE, które zastąpiły dyski z metodami zapisu MFM i RLL używają efektywniejszej metody zapisu danych ZBR. Przy metodzie zapisu Zone Bit Recording liczba sektorów w cylindrze zależy od jego położenia na dysku. Cylindry bliżej krawędzi talerza zawierają więcej sektorów niż te bliżej środka talerza. Adresowanie CHS nie działa na tych dyskach z powodu zróżnicowanej liczby sektorów w cylindrach. Każdy dysk IDE można dowolnie skonfigurować w BIOS, byle ustawienia CHS nie przekraczały pojemności dysku. Często należało także zaktualizować BIOS, aby obsługiwał on dyski w systemie CHS o większej pojemności, które pojawiały się wraz z rozwojem technologii. Dysk przekonwertuje podane adresowanie CHS na adresowanie specyficzne dla konfiguracji sprzętowej. LBA (ang. Logical Block Addressing) - metoda obsługi dysku twardego przez system operacyjny. Dla pokonania granicy 504 MB standard EIDE wykorzystuje metodę LBA, która powoduje przenumerowanie wszystkich sektorów, tzn. dokonuje tzw. translacji adresów, czyli zamiany rzeczywistych numerów głowicy, cylindra i sektora na ich logiczny odpowiednik; odpada więc skomplikowana adresacja za pomocą cylindrów, głowic i sektorów (ang. Cylinder Head Sector) (CHS). Wzór na obliczanie LBA: LBA = ( numer_cylindra * liczba_glowic_na_cylinder + numer_glowicy ) * liczba_sektorow_na_sciezke + numer_sektora -1 Dyskietka, inaczej dysk miękki dysk wymienny, przenośny nośnik magnetyczny o niewielkiej pojemności, umożliwiający zarówno odczyt, jak i zapis danych; nośnikiem danych jest wirujący krążek z wytrzymałego tworzywa sztucznego (najczęściej mylaru politereftalanu etylenu w postaci cienkiej folii) pokryty warstwą magnetyczną. Średnica krążka wraz ilością możliwych do zapisania danych stanowią podstawowe parametry dyskietki. Polska nazwa dyskietka została prawdopodobnie zaproponowana przez Jana Bieleckiego. Współcześnie dostępne są na rynku praktycznie tylko dyskietki 3,5-calowe i ich warianty. Są m.in. dostarczane przez producentów systemów operacyjnych i płyt głównych jako nośnik ze sterownikami lub plikami startowymi, gdzie w innym wypadku zapis tak małych plików na całej płycie CD lub innym nośniku byłby nieekonomiczny. Historia. Jako pierwsze pojawiły się dyskietki 8-calowe. Następnie zaczęto stosować dyskietki 5¼-cala o pojemności 360 KB (DD), a następnie 1,2 MB (HD). Miały miękką obudowę, nie było zamknięcia otworu odczytu należało je przechowywać w papierowych kopertach. Współcześnie dyskietki wyszły już z powszechnego użycia, jednakże są jeszcze dalej produkowane w niewielkich ilościach. Z uwagi na niewielką pojemność, zostały wyparte przez nowocześniejsze nośniki pamięci. Obecnie stacje dyskietek montuje się nadal w część stacjonarnych komputerów osobistych, głównie z przyczyn historycznych, dla zachowania łatwej komunikacji ze starszymi modelami. Istnieją też zewnętrzne urządzenia do odczytu dyskietek podłączane kablem do komputera, zazwyczaj przez port USB. W komputerach klasy PC obecnie najpowszechniej używane są dyskietki 3,5-calowe (wg innych oznaczeń 90 mm) HD (High Density) o pojemności 1.44 MB ( megabajt ten w rzeczywistości był jednostką mieszaną , a dyskietki te miały 1440 kb). Dyskietka taka składa się z twardej plastikowej obudowy z otworem dostępowym do nośnika zasuwanym sprężynowo metalową (później plastikową) zasuwką. Konstrukcja ta powstała z wcześniej używanych dyskietek identycznej budowy mechanicznej DD (Double Density) o pojemności 720 kb, powszechnie używanych w komputerach klasy Amiga. Rozwinięciem konstrukcji HD jest standard dyskietek ED (Extra Density) 2.88 MB. W roku 2008 ZUS ogłosił przetarg na dostarczenie mu 130 tysięcy dyskietek 3,5 cala ;-) Organizacja danych Najmniejszą fizyczną ilością danych jaką można zapisać i odczytać z dyskietki, jest sektor. Jego pojemność informacyjna wynosi w większości systemów plików 512 bajtów. Przed każdym

4 sektorem zapisywane są dane synchronizacyjne i informacyjne oraz suma kontrolna; informacje te są niedostępne z poziomu użytkownika systemu operacyjnego dla użytkownika (są to parametry dla kontrolera dysku oraz dane wymagane do korekcji błędów odczytu). Logiczną jednostką zapisu danych na dyskietkach jest klaster (ang. cluster), zwany także czasami JAP, czyli Jednostką Alokacji Pliku. W odróżnieniu od dysków twardych na dyskietce klaster ograniczony jest do maksymalnie dwóch sektorów (1024 bajty), aczkolwiek istniały programy, pozwalające obejść to ograniczenie. Cały nośnik podzielony jest na ścieżki (ang. track), których liczba zależy od formatu i zazwyczaj wynosi 40 lub 80, choć niektóre napędy umożliwiały zapisane kilka ścieżek ponad standard. Ścieżka, w zależności od typu dysku, może składać się z 8 lub nawet 36 sektorów. Dla przykładu dyskietka w gęstości HD zgodna z MS/DR-DOS zawiera 18 sektorów na ścieżce. Dyskietki wymagają procesu zwanego formatowaniem nośnika. Dzieli on powierzchnię nośnika na ścieżki i sektory poprzez zapisanie na niej przebiegu synchronizującego, dane informacyjne oraz testowe dane w sektorach, dane te są wykorzystywane do sprawdzenia poprawności formatowania. Zapisuje też dane systemowe. Dla dyskietki używanej pełne formatowane wiąże się z wymazaniem wszystkich danych. Pamięć taśmowa (ang. tape memory) typ masowej pamięci zewnętrznej, w której jako nośnik informacji jest wykorzystywana taśma magnetyczna. Informacje są zapisywane jako bloki o dowolnej długości. Wyróżniony blok, nazywany znacznikiem pliku (ang. file mark) lub znacznikiem taśmy (ang. tape mark), służy do organizowania bloków taśmowych w struktury: znacznik pliku może np. rozdzielać grupy bloków tworzące logiczne pliki na taśmie. Operacja zapisania bloku niszczy (logicznie) wszystkie bloki zapisane na dalszym odcinku taśmy. Chociaż operacje przewijania taśmy umożliwiają czytanie bloków w dowolnej kolejności, to jednak długi czas odnajdywania bloku powoduje, że pamięć ta jest w praktyce rozwiązaniem o dostępie sekwencyjnym i wydajnym tylko wtedy, gdy bloki są zapisywane lub czytane po kolei. Generalnie ten rodzaj pamięci służy do archiwizowania wielkich ilości danych. Szczególnymi implementacjami pamięci taśmowej były: kasety magnetofonowe wraz z dedykowanymi (rzadziej przerabianymi) magnetofonami przeznaczone do domowego użytku. strimery (ang. streamer) urządzenie do przenoszenia danych z systemów komputerowych na taśmę magnetyczną w celu archiwizacji. Obecnie najbardziej popularne napędy wykorzystują taśmy umieszczone w specjalnych kasetach. Kasety mieszczą nawet do kilkuset gigabajtów danych. Dodatkowo większość z napędów wykorzystuje kompresję, dzięki czemu możliwe jest zmieszczenie większej ilości danych. Są one wykorzystywane głównie do archiwizacji danych. Napędy różnicuje się ze względu na sposób zapisu na taśmie stosowanej w napędzie. Wyróżnia się m.in. napędy: DDS (ang. Digital Data Storage), DLT (ang. Digital Linear Tape) LTO (ang. Linear Tape-Open), AIT (ang. Advanced Intelligent Tape) QIC (ang. Quarter Inch Cartridge) Napędy taśmowe, ze względu na raczej profesjonalne zastosowanie, zazwyczaj wyposażane były w interfejs SCSI, a obecnie również w interfejsy sieciowe (Fibre-Channel), stając się częścią sieci SAN.

5 Napęd optyczny ang. Optical Disc Drive - ODD) jest to urządzenie, które za pomocą wiązki lasera odczytuje lub zapisuje dane na tzw. nośnikach optycznych. Do najpopularniejszych napędów optycznych zalicza się (chronologicznie): CD-ROM - napęd czytający płyty CD w formatach CD-R, CD-ROM, CD-RW, CD-DA, CD-Extra, CD-TEXT, Photo-CD, Video-CD, Multisession CD nagrywarka CD - napęd czytający oraz zapisujący płyty CD w wyżej wymienionych formatach DVD-ROM - napęd czytający płyty CD (patrz CD-ROM) oraz DVD w formatach DVD±R, DVD±RW, DVD±R DL, DVD-ROM, DVD-RAM, DVD-Video combo CD/DVD - napęd będący hybrydą nagrywarki CD oraz DVD-ROM nagrywarka DVD - napęd czytający oraz nagrywający płyty CD oraz DVD w formatach DVD±R, DVD±RW, DVD±R DL, DVD-ROM, DVD-RAM, DVD-Video combo Blu-Ray - napęd będący hybrydą nagrywarki DVD oraz czytający płyty Blu-Ray w formatach BD-ROM, BD-R, BD-RE nagrywarka Blu-Ray napęd czytający oraz nagrywający płyty CD, DVD oraz Blu-Ray We wszystkich powyższych napędach, podstawowym formatem nośnika są płyty o średnicy 12cm (występują też pochodne o średnicy 8cm oraz nośniki w kształcie kart kredytowych). Prędkość napędów optycznych podaje się w wielokrotnościach podstawowej prędkości 1x, która odpowiada przepustowości 150 kb/s (napędy CD), 1350 kb/s (napędy DVD) lub 4500 kb/s (napędy Blu-Ray). Np. maksymalny transfer CD-ROM-u o prędkości 8x wynosi 1,2 MB/s. Stały, niezależnie od rodzaju technologii nośnika, jest czas potrzebny na odczyt (zapis) całkowicie zapełnionego nośnika odpowiadający mnożnikowi, np. dla mnożnika 4x jest to ok. 22 minut (dla strategii ze stałą prędkością liniową). Napęd optyczny może znajdować się we wnętrzu komputera. Jest wówczas podłączony za pomocą interfejsu ATA, SATA lub SCSI. Może też stanowić odrębne, zewnętrzne urządzenie, podłączane do komputera za pomocą złącza USB, FireWire, SCSI, esata lub do sieci komputerowej poprzez złącze LAN. Płyta kompaktowa (ang. Compact Disc, CD-ROM Compact Disc Read Only Memory) poliwęglanowy krążek z zakodowaną cyfrowo informacją do bezkontaktowego odczytu światłem lasera optycznego. Zaprojektowany w celu nagrywania i przechowywania dźwięku, przy użyciu kodowania PCM, który dzisiaj jest tylko jednym ze standardów cyfrowego zapisu dźwięku. Taką płytę nazywa się CD-Audio. Dzięki dużej jak na swoje czasy pojemności, niezawodności i niskiej cenie, dysk kompaktowy stał się popularnym medium do zapisywania danych. Standardowa płyta CD ma średnicę 120 mm i jest w stanie pomieścić 650 MB danych lub 74 minuty dźwięku. Płyta kompaktowa została opracowana wspólnie przez koncerny Philips i Sony pod koniec lat 70. Budowa nośnika, zapis danych Płyty kompaktowe wykonane są z poliwęglanowej płytki o grubości 1,2 mm i średnicy 12 cm pokrytej cienką warstwą glinu (aluminium), w której zawarte są informacje (w postaci kombinacji mikrorowków i miejsc ich pozbawionych). Odczytywane są one laserem półprzewodnikowym (AlGaAs) o długości fali około 780 nm. Zapis tworzy spiralną ścieżkę biegnącą od środka do brzegu płyty. Prędkość obrotowa płyty zmienia się w taki sposób, że stała jest prędkość liniowa głowicy odczytującej względem ścieżki i dla prędkości odczytu x1 zawiera się w zakresie od 1,2 do 1,4 m/s. Odczyt płyty odbywa się od środka na zewnątrz, a prędkość obrotowa maleje wraz z oddalaniem się od środka płyty. Dane są zapisywane w postaci pól (ang. land) i wgłębień (ang. pit). W płytach tłoczonych wgłębienia mają głębokość 1/4 długości fali w materiale płyty lasera odczytującego (około 125

6 nm), w wyniku interferencji światła odbitego od otoczenia i wgłębienia następuje wygaszenie fali. Wgłębienia mają szerokość 500 nm, a odległości między kolejnymi ścieżkami wynosi 1,6 µm. Różnice w odbiciu światła są wykorzystywane przez serwomechanizm soczewki do prowadzenia wiązki po ścieżce i jej ogniskowania. Budowa płyty CD-R wchodzą 4 warstwy: Poliwęglanowa warstwa nośna w postaci plastikowego krążka Warstwy odbijającej złotej lub aluminiowej Warstwy barwnika który ulega stopieniu w momencie zapisu Warstwy ochronnej z lakieru. Budowa płyty CD-RW Nośnik CD-RW (ReWritable), jak sama nazwa wskazuje to płyta umożliwiająca nam zapis, odczyt i dodatkowo kasowanie informacji. Moc lasera użytego do zapisu płyty powoduje, że część obszarów ma postać krystaliczną a pozostała amorficzną. To powoduje że promieniowanie odczytujące jest przekazywane lub pochłaniane. Wynika to z zastosowania specjalnego stopu metali, ale jest to tajemnica producentów. Warstwa poliwęglanu posiada rowek prowadzący, nad nią znajduje się warstwa ZnS-SiO2, zapewnia ona odpowiedni odbiór ciepła podczas zapisu laserowego płyty. Wyżej naniesiono odbijającą warstwę aluminiową, całość kończy specjalna powłoka lakierowana na której zazwyczaj występuje napis z logo producenta. Budowane w ten sposób płyty CD-RW powodują pewne ograniczenia w zapisie danych, może on się odbywać z niskimi prędkościami. Również trwałość nośnika jest niska, producenci zapewniają tylko do ok skasowań. Pojemność i rozmiar Standardowa płyta kompaktowa mieści 74 minuty muzyki, zapisanej przy użyciu kodowania PCM, co odpowiada 650 MB danych. Standardowo dźwięk na płycie CD nie jest poddawany kompresji. Powstały również nośniki mieszczące: 700 MB (80 min.) obecnie najpopularniejsze w sprzedaży, 800 MB (90 min.), 870 MB (99 min.), a nawet 1,4 GB płyty [dwustronne], przy czym dwie ostatnie występują niemal wyłącznie jako płyty jednokrotnego zapisu. Wśród płyt pierwotnie tłoczonych (komercyjnych) dominują wyłącznie rozmiary 650 MB, 700 MB. Rozmiar 800 MB jest dosyć rzadko spotykany. Płyty większe niż 700 MB często sprawiają problemy podczas odczytu, zwłaszcza w starszych odtwarzaczach. Początkowo koncern Sony postulował, by średnica płyty wynosiła 12 cali. Ostatecznie zdecydowano by płyta miała średnicę 12 cm (czyli tyle co popularna wówczas dyskietka 5,25 cala), co pozwala zapisać od 74 do 80 minut muzyki. Po wprowadzeniu standardu trwałość płyt szacowano na kilkaset lat. Dla płyt produkowanych w latach 80. i początkach lat 90. te szacunki były prawdziwe - ówczesne płyty były wysokiej jakości. Wraz z popularyzacją standardu i spadkiem cen samych płyt spadała także ich jakość, co negatywnie odbija się na trwałości zapisu - choć dla odpowiednio przechowywanych płyt tłoczonych wciąż liczony on jest w dziesiątkach lat. Kolor Nagrywarki zapisują dane na płytach pokrytych różnymi kolorami. Jest to powiązane z barwnikiem użytym w warstwie odbijającej. Płyty zmieniają swój kolor na zielony, niebieski, żółty, złoty oraz czarny. Kolor nośnika nie ma znaczenia przy odczycie danych, aktualnie wszystkie nowoczesne CD-ROM-y i nagrywarki potrafią odczytywać i zapisywać na nich dane. DVD+/DVD- Jedną z głównych różnic na korzyść plusów to adresowanie każdego sektora na tak zwanej ścieżce prowadzącej, dzięki temu pozycjonowanie lasera trwa znacznie krócej. W przypadku minusów zadanie ścieżki prowadzącej ma o wiele mniejsze znaczenie, a tzw. prepity pozwalają nam na szybkie odszukanie jedynie bloku danych, a nie konkretnego sektora. Obecnie różnice te nie maja żadnego znaczenia... no może po za tym gdzie będzie się odtwarzać daną płytę bo jeżeli na odtwarzaczu który nie lubi nagrywanych płyt to lepiej nagrać +R. Różnice powstały z powodu uporu w lansowaniu rożnych standardów prze konkurencyjne firmy.

7 Pamięć półprzewodnikowa Pamięć flash (ang. flash memory) rodzaj nieulotnej pamięci komputerowej, stanowiącej rozwinięcie konstrukcyjne i kontynuację pamięci typu EEPROM. Dostęp do danych zapisanych w pamieci flash wykorzystuje tzw. stronicowanie pamięci: operacje odczytu, zapisu lub kasowania wykonywane są jednocześnie na ustalonej konstrukcyjnie liczbie komórek, pogrupowanych w strukturę będącą wielokrotnością słowa maszynowego (bajtu). Cechą wyróżniającą pamięć flash jest wykorzystanie technologii komórek wielostanowych (ang. multi level cell, MLC). W zależności od wykorzystanego typu bramki logicznej, można wyróżnić dwa rodzaje pamięci flash: pamięć flash typu NOR wykorzystuje funktor binegacji logicznej (NOR) pamięć flash typu NAND wykorzystuje funktor dysjunkcji logicznej (NAND) Pamięć flash typu NOR umożliwia bezpośredni dostęp do każdej komórki pamięci, ale ma stosunkowo długie czasy zapisu i kasowania. Z tego względu nadaje się do przechowywania danych, które nie wymagają częstej aktualizacji, jak np. firmware różnego rodzaju urządzeń. Wytrzymuje od 10 do 100 tys. cykli programowania. Stosowano ją w pierwszych wersjach kart pamięci CompactFlash, ale później zastąpiono tańszymi pamięciami flash typu NAND. Pamięć flash typu NAND, w stosunku do pamięci typu NOR, ma krótszy czas zapisu i kasowania, większą gęstość upakowania danych, korzystniejszy stosunek kosztu do pojemności oraz dziesięciokrotnie większą trwałość. Jednak główną cechą pamięci tego typu jest sekwencyjny dostęp do danych. Ogranicza to zakres zastosowań tylko jako pamięć masowa, np. w kartach pamięci. Standardowe pamięci EEPROM pozwalają zapisywać lub kasować tylko jedną komórkę pamięci na raz, co oznacza, że pamięci flash są znacznie szybsze, jeśli system je wykorzystujący zapisuje i odczytuje komórki o różnych adresach w tym samym czasie. Wszystkie rodzaje pamięci EEPROM, w tym pamięci flash, mają technologicznie ograniczoną liczbę cykli kasowania (zapisu) przekroczenie tej liczby powoduje nieodwracalne uszkodzenia. Pamięci flash są powszechnie stosowane we wszelkich kartach pamięci, pamięciach USB (pendrive) oraz pamięciach SSD (dysk SSD). Obecnie w użyciu są następujące karty pamięci stosujące jako nośnik danych pamięć flash: MultiMedia Card (MMC),,Secure Digital (SD), Memory Stick (MS), CompactFlash (CF), SmartMedia (SM), xd Picture Card (xd) Pamięć USB (znana także pod nazwami: pendrive, USB Flash Drive, Flash Disk, Flashdrive, Finger Disk, Massive Storage Device, Flash Memory Stick Pen Drive, USB-Stick) urządzenie przenośne zawierające pamięć nieulotną typu Flash EEPROM, zaprojektowane do współpracy z komputerem poprzez port USB i używane do przenoszenia danych między komputerami oraz urządzeniami obsługującymi pamięci USB. Dysk SSD Termin "solid-state" nawiązuje do fizyki ciała stałego (ang. solid-state physics) i zwykle oznacza zastosowanie w danym urządzeniu tranzystorów, w odróżnieniu od technologii wykorzystujących lampy elektronowe. W odniesieniu do SSD określenie solid state akcentuje ponadto zastosowanie w tym urządzeniu wyłącznie elementów nieruchomych w odróżnieniu od dysków twardych zawierających również mechanizmy. Aby zachować zgodność z wcześniejszymi rozwiązaniami większość napędów SSD wyposażono w interfejs serial ATA (SATA), charakterystyczny dla współczesnych dysków twardych i dlatego skrótowiec SSD tłumaczony jest też czasem jako solid state disk w analogii do hard disk. Dostępne są także urządzenia SSD zainstalowane na kartach PCI Express. Napęd Zip, Iomega Zip przenośny napęd produkowany przez firmę Iomega, który obsługiwał 3,5-calowe dyski Zip występujące w trzech odmianach: 100 MB, 250 MB i 750 MB. Dyskietki o mniejszych pojemnościach są kompatybilne z napędami obsługującymi większe pojemności. Napęd oferował szybkość dostępu 25 ms i szybkość transferu do 1,4 MB/s. Był łączony z komputerem za

8 pomocą interfejsu SCSI, IDE, portu równoległego Centronics lub USB. W przypadku portu Centronics, napęd Zip można połączyć w łańcuch wraz z drukarką, co pozwala na podłączenie obydwu urządzeń naraz. Przeniesienie danych wymagało albo noszenia ze sobą całego napędu i podłączania go do innego komputera, albo obecności napędu w innej maszynie, co przy ich stosunkowo małej popularności było rzadko możliwe. Napęd Jaz - produkowany przez firmę Iomega przenośny napęd dysków o pojemności 1 GB i 2 GB, czasie dostępu ms i szybkości transferu 7,4 MB/s, łączony z komputerem za pomocą interfejsu SCSI. Napęd ten z założenia miał zastąpić wcześniej zaprojektowane napędy Zip, których pojemność ograniczona była wówczas do 100 i 250 MB. Istotą technologii Jaz jest oddzielenie talerzy dysku twardego od jego układów elektronicznych. Dwa talerze dysku twardego zostały zamknięte w kasetce z tworzywa sztucznego, zaś głowica, układ pozycjonujący i cała elektronika zostały przeniesione do napędu. W konsekwencji tego podziału otrzymano pełnoprawny wymienny dysk twardy podłączany przez magistralę SCSI, który może być nawet jedynym twardym dyskiem systemowym. HHD (ang. Hybrid Hard Disk) komputerowy hybrydowy 'dysk twardy'. Podstawę konstrukcji stanowi tradycyjny dysk twardy, w którego obudowie umieszczono moduł pamięci flash typu SLC NAND (stosowaną m.in. w dyskach SSD, pendrive'ach i kartach pamięci)któ y stanowi swego rodzaju Cache dla dysku. Dysk ten jest połączeniem tych dwóch typów pamięci, łączącym zalety obydwu technologii: szybkość odczytu i dostępu do danych pamięci flash oraz pojemność 'zwykłego' dysku twardego. Dyski HHD współpracują z interfejsem SATA. Dysk magnetooptyczny (z ang. magneto-optical disk, skrót M.O.). Rodzaj dysku wymiennego w postaci krążka z tworzywa sztucznego pokrytego warstwą materiału magnetycznego, zabezpieczony ochronną powłoką z plastiku lub szkła umieszczony w kasecie chroniącej nośnik przed uszkodzeniem mechanicznym. Wymiary dysków magnetooptycznych są typowymi wymiarami nośników (i napędów) stosowanych w urządzeniach komputerowych. Dyski magnetooptyczne 3,5 cala mają pojemności od 128 MB do 2,3 GB, dyski magnetooptyczne 5,25 cala maja pojemność od 650 MB do 9,1 GB. Wykonywane są w dwóch wersjach. Dyski magnetooptyczne "write-once" przeznaczone są wyłącznie do jednokrotnego zapisu danych na dysku. Raz zapisanych danych nie można potem skasować, na takim dysku nie można nic ponownie zapisać. Dyski "rewritable" są dyskami do wielokrotnego zapisu. Technologia zapisu magnetooptycznego to najbezpieczniejszy sposób przechowywania danych. Największą jego zaleta jest odporność na działanie sił pola elektromagnetycznego, a gwarancja dostępu do danych określana jest na kilkadziesiąt lat. ATA (IDE) (ang. Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się także zamiennie skrótu IDE (ang. Integrated Drive Electronics), od 2003 roku (kiedy wprowadzono Serial ATA) standard ten jest określany jako PATA (od "Parallel ATA"). ATAPI (ang. Advanced Technology Attachment Packet Interface) interfejs systemowy w komputerach klasy PC. ATAPI to de facto rozszerzona wersja standardu ATA, wprowadzająca wiele usprawnień pod kątem obsługi wymiennych mediów. Głównie dotyczyło to napędów CD-ROM/DVD, napędów taśmowych, czy też dyskietek o dużych rozmiarach ZIP, SuperDisk. W wyniku wprowadzonych zmian w standardzie ATA, od tamtej pory przyjął on nazwę ATA/ATAPI Standardowo na płycie główne znajdują się 2 gniazda na taśmy ATA do której można podłączyć maksymalnie 2 urządzenia. Transfer pomiędzy urządzeniem pamięci masowej płytą główna odbywać się może w kilku trybach pracy: PIO (z ang. Programmed Input Output programowane wejście/wyjście) technika obsługi operacji wejścia/wyjścia między CPU a urządzeniami IDE/ATA polegająca na wykorzystaniu procesora jako układu je nadzorującego. Wymaga dużego zaangażowania procesora w procesie

9 transferu danych, dlatego jest używana coraz rzadziej, zwłaszcza, gdy wymagane są duże prędkości transmisji. DMA Direct Memory Access, (z ang. bezpośredni dostęp do pamięci) technika, w której sprzęt komputerowy podłączony do płyty głównej, np. karta graficzna, karta dźwiękowa, karta sieciowa czy kontroler dysku twardego, mogą korzystać z pamięci operacyjnej RAM lub portów we-wy, pomijając przy tym CPU. Wymaga to niewielkiej współpracy ze strony procesora, który musi zaprogramować kontroler DMA do wykonania odpowiedniego transferu danych, a następnie na czas przesyłania danych zwolnić magistralę systemową. Natomiast sam transfer danych jest już zadaniem wyłącznie kontrolera DMA. Realizacja cykli DMA może być przejmowana przez dedykowany układ cyfrowy, tak jak np. w komputerach PC, lub być realizowana programowo przez dane urządzenie. DMA ma za zadanie odciążyć procesor główny od przesyłania danych (np. z urządzenia wejściowego do pamięci). Procesor może w tym czasie zająć się innymi działaniami, wykonując kod programu pobrany uprzednio z pamięci RAM do pamięci podręcznej. Standard DMA w odniesieniu do dysków twardych został rozwinięty w: UDMA (Ultra-DMA Ultra-Direct Memory Access, - standard interfejsu transferu danych między pamięcią RAM a dyskami twardymi, w którym wykorzystywane jest równoległe przesyłanie danych. W historii pojawiło się siedem generacji UDMA. Tryb Transfer Nazwa Mode 0 16,7 MByte/s UDMA16 Mode 1 25,0 MByte/s UDMA25 Mode 2 33,3 MByte/s UDMA33 Mode 3 44,4 MByte/s UDMA44 Mode 4 66,7 MByte/s UDMA66 Mode 5 100,0 MByte/s UDMA100 Mode 6 133,3 MByte/s UDMA133 Mode 7 166,0 MByte/s UDMA166 Generacje UDMA Standard ATA nie jest już rozwijany w kierunku zwiększania szybkości transmisji. Początkowo stosowano oznaczenia ATA-1, ATA-2 itd., obecnie używa się określeń związanych z przepustowością interfejsu (ATA/33, ATA/66, ATA/100, ATA/133). ATA-1 Tryby DMA: Single word DMA 0, 1, 2 oraz Multiword DMA 0 CHS (Cylinder/Head/Sector) 24 - bitowy tryb adresowania napędów dyskowych przez BIOS przy użyciu # 13 przerwania. Ten sposób umożliwiał teoretyczne zaadresowanie dysków o maksymalnej pojemności 8.4 GB (224x512 bajtów/sektor = 8.4GB) w rzeczywistości o rozmiarze 524 MB (1024x16x64) z powodu ograniczeń Bios u produkowanych w tamtych czasach komputerów. Specyfikaca ATA 1 Trybt transmisji: PIO 0,1,2,Single Word DMA 0, 1, 2, Multiword DMA 0 Przepustowość: MB/s Max. Liczba urządzeń: 2 Przewód połączeniowy: 40-pin Data wprowadzenia: 1981

10 ATA 2 Wprowadzenie w 1994 roku nowego interfejsu dla dysków IDE, było podyktowane sprzedażą komputerów, wyposażonych w taktowane wysokimi częstotliwościami procesory 486 oraz pierwsze układy Pentium, które wymagały bardzo szybkich pamięci masowych. Parametry ATA2 Dwa nowe, szybkie tryby PIO: PIO 3 i 4 Nowe tryby Multiword DMA: 1 i 2 Block Mode - tryb transmisji blokowej zwany czasami Multi-SectorTransfers: zwiększa wydajność urządzenia dzięki możliwości odczytu lub zapisu kilku sektorów jednocześnie LBA - Logical Block Addressing: nowy 28-bitowy tryb adresowania danych zgromadzonych na nośniku, umożliwiający przekroczenie bariery 504 MB (możliwość zaadresowania 137.4GB danych = 228x512 bajtów/sektor) Plug and Play ATA - wprowadzone dodatkowe rozkazy identyfikujące napędy (geometria, tryby transmisji, rodzaj adresowania), sterujące zasilaniem (komendy STANDBY), automatyczną konfiguracją master/slave tzw. CS - Cable Select Specyfikacja: ATA-2 Tryby transmisji: PIO 0,1,2,3,4, Single word DMA,1,2, Multiword DMA 0,1, Przepustowość: MB/s Max. liczba urządzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin Data wprowadzenia: 1994 ATA-3 jest naturalnym rozwinięciem interfejsu ATA-2, rozszerzonym o dodatkowe funkcje zwiększające bezpieczeństwo składowanych i transmitowanych danych. Zgodność z wcześniejszymi interfejsami Self-Monitoring Analysis and Reporting Technology - S.M.A.R.T. Simple Password - proste zabezpieczenie dostępu hasłem Zmodyfikowany Power Management Specyfikacja: ATA-3 Tryb transmisji: PIO 0,1,2,3,4, Single word DMA 0,1,2, Multiword DMA 0,1,2 Przepustowość: MB/s Max. liczba urządzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin Data wprowadzenia: 1996 ATA 4/ATAPI Ta specyfikacja interfejsu ATA została wprowadzona w 1997 roku, a na rynku spotyka się kilka jej określeń: ATA 4, Ultra ATA, UDMA/33 ATA - 4 do transmisji danych stosuje nowy, szybszy tryb komunikacji Ultra DMA mode 2, który pozwala na przesył danych w trybie Burst (tzw. transferu chwilowego) z prędkością 33.3 MB/s. Specyfikacja: ATA 4/UDMA-33

11 Tryb transmisji: PIO 0,1,2,3,4, Single word DMA 0,1,2, Multiword DMA 0,1,2, Ultra DMA 2 Przepustowość: MB/s Max. liczba urzadzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin Data wprowadzenia: 1997 ATA - 5/ATAPI Specyfikacja: ATA - 5/UDMA 66 Tryby transmisji:pio 0,1,2,3,4, Single word DMA 0,1,2, Multiword DMA 0,1,2, Ultra DMA 2, 3, 4 Przepustowość: MB/s Max. liczba urzadzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin (80 żyłowy) Data wprowadzenia: 1999 ATA - 6/ATA Tryby transmisji:pio 0,1,2,3,4, Single word DMA 0,1,2, Multiword DMA 0,1,2, Ultra DMA 2, 3, 4,5 Przepustowość: MB/s Max. liczba urzadzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin (80 żyłowy) Data wprowadzenia: 2002 rok ATA - 7/ATA Tryby transmisji:pio 0,1,2,3,4, Single word DMA 0,1,2, Multiword DMA 0,1,2, Ultra DMA 2, 3, 4,5,6 Przepustowość: MB/s Max. liczba urządzeń: 4 (dwa na kanał) Przewód połączeniowy: 40-pin (80 żyłowy) Data wprowadzenia: 2005 rok Serial ATA (ang. Serial Advanced Technology Attachment, SATA) szeregowa magistrala komputerowa, opracowana i certyfikowana przez SATA-IO[1], służąca do komunikacji pomiędzy adapterami magistrali hosta (HBA) a urządzeniami pamięci masowej, takimi jak dyski twarde, SSD, napędy optyczne i taśmowe. Kable SATA są węższe i bardziej elastyczne od kabli ATA, co ułatwia układanie oraz poprawia warunki chłodzenia wnętrza komputera. Również złącza SATA wykonane w technologii LIF (ang. Low Insertion Force) są zminiaturyzowane, umożliwiając zastosowanie SATA w coraz to mniejszych urządzeniach (msata). a także zmniejszając ilość potrzebnego miejsca na gniazda kontrolera płyty głównej. Dodatkowo zespół złącz SATA (zasilający + sygnałowy) został tak zaprojektowany, że może być stosowany jako zintegrowane złącze typu hot

12 plug. Długość przewodu SATA może dochodzić do 1 metra. Wersje standardu Jak dotąd, opracowano trzy generacje interfejsu SATA. Pierwsza, najstarsza wersja SATA I umożliwia transmisję danych z maksymalną przepustowością 1,5 Gbit/s (ok. 179 MiB/s). Druga generacja (SATA II) oferuje przepustowość 3,0 Gbit/s (ok. 358 MiB/s). Trzecia generacja (SATA 3), zaprezentowana oficjalnie po raz pierwszy 27 maja 2009 roku udostępnia przepustowość 6,0 Gbit/s (ok. 715 MiB/s). Rodzaje złącz: esata (external SATA) to zewnętrzny port SATA 3 Gbit/s, przeznaczony do podłączania pamięci masowych zewnętrznych. Główną ideą esata jest zapewnienie identycznej prędkości przesyłania danych w urządzeniach zewnętrznych, jaka osiągalna jest dla napędów wewnętrznych. W przeciwieństwie do USB port esata nie musi zapewniać zasilania - oryginalny port esata był bez zasilania, dopiero port esatap będący w istocie hybrydą esata i USB dostarcza zasilanie. Porty esata i esatap są fizycznie niekompatybilne. xsata to rozwinięcie standardu esata. Jest to zewnętrzne połączenie SATA o długości do 8 metrów przy użyciu ekranowanych kabli i złącz. msata (mini-sata) W związku z wciąż postępującą miniaturyzacją pamięci masowych oraz elektroniki w komputerach mobilnych, SATA-IO opracowała nową generację złącza do zastosowań w takich urządzeniach jak netbooki oraz dyski SSD 1.8". Maksymalna przepustowość msata wynosi 6 Gbit/s. SCSI (skrót z ang. Small Computer Systems Interface) równoległa magistrala danych przeznaczona do przesyłania danych między urządzeniami. System SCSI do niedawna był powszechnie wykorzystywany głównie w wysokiej klasy serwerach i stacjach roboczych. Obecnie jest on stopniowo wypierany przez nowszy interfejs SAS. Tańsze komputery domowe wykorzystują przeważnie standard Serial ATA II, który i tak jest szybszy od SCSI (wcześniej najpowszechniejszy był standard ATA/IDE). Właściwości Wszystkie urządzenia podłączone do magistrali są równorzędne, każde z nich może pełnić rolę zarówno inicjatora (rozpoczynać operację), jak i celu (wykonywać operację zleconą przez inicjatora). Niektóre urządzenia potrafią pełnić tylko jedną z ról. Elektryczna budowa magistrali SCSI wymaga zakończenia jej specjalnym terminatorem. Każde z urządzeń podłączonych do magistrali SCSI posiada unikatowy w obrębie magistrali adres identyfikator (ang. SCSI ID). Pierwotnie do adresowania urządzeń wykorzystywane były trzy bity magistrali, co pozwalało na połączenie ze sobą maksymalnie 8 urządzeń. W chwili, gdy magistrala danych rozrosła się do szerokości 16 bitów, została również rozszerzona do 4 bitów część adresująca urządzenia. Identyfikator pełni również rolę priorytetu przy rozstrzyganiu próby jednoczesnego dostępu więcej niż jednego urządzenia do magistrali. Zwyczajowo kontroler posługuje się identyfikatorem 7. W obrębie jednego identyfikatora istnieją również tzw. LUN (ang. Logical Unit Number) identyfikujące tzw. urządzenie logiczne na jakie może być podzielone urządzenie fizyczne SCSI. Przykładem takiego urządzenia mogą być zmieniarki płyt CD, w których poszczególne elementy składowe (magazynki, czytniki) mogą być identyfikowane przy pomocy LUN. Najczęściej do magistrali poprzez kontroler podłączony jest jeden komputer oraz urządzenia pamięci masowej (dyski twarde oraz napędy taśmowe). Spotykane są też inne urządzenia, np. skanery, drukarki, nagrywarki. Magistrala SCSI pozwala na podłączenie dysku do więcej niż jednego komputera (tzw. układ V). Możliwe jest również przesyłanie danych bezpośrednio pomiędzy urządzeniami bez ingerencji komputera (np. wykonanie kopii macierzy dyskowej na taśmie magnetycznej).

13 Magistralę SCSI można podzielić ze względu na kilka kryteriów: sposób transmisji: asynchroniczny synchroniczny prędkość transmisji 5 MB/s 10 MB/s 20 MB/s 40 MB/s 80 MB/s 160 MB/s 320 MB/s 640 MB/s szerokość magistrali 8 bitów 16 bitów parametry elektryczne sterowanie napięciowe (Single Ended) oznaczane jako SE sterowanie różnicowe (Differential lub High Voltage Diferenetial) HVD (5,0 V, długość kabla w zależności od wersji do 25 m) sterowanie różnicowe niskonapięciowe (Low Voltage Differential) LVD (3,3 V, długość kabla do 12 m) Uwaga: wersja Differental (HVD) jest elektrycznie niekompatybilna z pozostałymi wersjami - podłączenie urządzenia HVD do innych urządzeń skutkuje ich zniszczeniem. Ze względu na jednakowe wtyki takie pomyłki były możliwe. Odmiany SCSI SCSI-1: pierwsza wersja standardu. Pozwalała na transfer z prędkością 5 MB/s na odległość 6 m, SCSI-2: kolejna wersja standardu. Składa się z dwóch wariantów, zwiększających transfer do 10 lub 20 MB/s (odpowiednio Fast SCSI i Wide SCSI). Maksymalna odległość to około 3 metry, SCSI-3: znany jako Ultra SCSI, prędkość transferu MB/s, teoretycznie maksymalna odległość zostaje nadal 3 metry, Ultra2 SCSI: wprowadzono technologię Low Voltage Differential, pozwalającą na zwiększenia maksymalnej odległości do ~12 m. Prędkość transferu MB/s, Ultra3 SCSI (Ultra160 SCSI): maksymalny transfer 160 MB/s, dodano funkcje wspomagające wykrywanie i usuwanie przekłamań. Ultra4 SCSI (Ultra320 SCSI): maksymalny transfer 320 MB/s. Ultra 640 SCSI: maksymalny transfer 640 MB/s. SAS Serial Attached SCSI - interfejs komunikacyjny, będący następcą SCSI, używany do podłączania napędów (głównie dysków twardych). Stosowany przede wszystkim w serwerach. SAS jest częściowo kompatybilny z SATA - dyski SATA prawidłowo współpracują z kontrolerami SAS. Standard SAS zawiera następujące protokoły: Serial SCSI Protocol (SSP) do obsługi napędów SAS. Serial ATA Tunneling Protocol (STP) do obsługi dysków SATA.

14 Serial Management Protocol (SMP) do zarządzania ekspanderami SAS SAS określa rodzaj złączy i poziomy napięcia. Choć nie są one identyczne, charakterystyka fizyczna okablowania SAS i SATA są tak do siebie zbliżone, że prawdopodobnie żadna z technologii nigdy nie będzie wyraźnie szybsza od drugiej. Złącza SAS są znacznie mniejsze niż SCSI, dzięki czemu umożliwiają podłączanie także małych napędów. Obecnie SAS oferuje prędkości transferu osiągające 3 Gbit/s i 6 Gbit/s, ale oczekuje się, że do roku 2012 zostanie osiągnięta prędkość 12 Gbit/s. RAID (ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków) polega na współpracy dwóch lub więcej dysków twardych w taki sposób, aby zapewnić dodatkowe możliwości, nieosiągalne przy użyciu jednego dysku jak i kilku dysków podłączonych jako oddzielne. RAID używa się w następujących celach: zwiększenie niezawodności (odporność na awarie), zwiększenie wydajności transmisji danych, powiększenie przestrzeni dostępnej jako jedna całość. Podczas projektowania macierzy RAID uwzględniane są różnorodne zastosowania pamięci masowej w systemach komputerowych. Przeznaczenie macierzy implikuje wybór odpowiednich technologii w zakresie dysków, kontrolerów, pamięci podręcznej, sposobu przesyłania danych oraz poziomu niezawodności (odpowiedniej nadmiarowości/redundancji podzespołów i połączeń). Spotykane są zarówno rozwiązania programowe, gdy odpowiedni moduł systemu operacyjnego zajmuje się odczytem/zapisem danych w macierzy, jak również sprzętowe, w których stosuje się dedykowane sprzętowe kontrolery RAID Każde z wymienionych rozwiązań ma swoje zalety i wady. RAID sprzętowy większa wydajność poprzez zmniejszenie obciążenia CPU, możliwość bezpośredniego startu systemu z macierzy dyskowej w związku z przezroczystością macierzy dyskowej dla systemu operacyjnego RAID programowy relatywnie mniejsza wydajność związana z większym obciążeniem CPU, partycja startowa powinna znajdować się poza macierzą, co wiąże się z koniecznością zastosowania dodatkowego nośnika wyłącznie do celu ładowania systemu większa kompatybilność z mniej popularnymi nie wszystkie systemy operacyjne obsługują systemami operacyjnymi; konfiguracja macierzy technologię RAID, co czasami może odbywa się poprzez menu podobne do menu BIOS, oznaczać instalację dodatkowego dostępne jeszcze przed startem systemu operacyjnego, oprogramowania dedykowanego dla danego dla OS sama macierz zachowuje się jak każdy inny systemu dysk twardy niestandardowy sposób zapisu danych na nośnikach wykorzystujący własnościowe protokoły i struktury danych inne dla każdego producenta, co w przypadku uszkodzenia kontrolera może uniemożliwić odzyskanie danych pomimo sprawnie działających dysków twardych standardowy (często również otwarty) sposób zapisu danych pozwalający na korzystanie z macierzy dyskowej po podłączeniu do innego systemu obsługującego ten standard możliwość łączenia różnych interfejsów takich jak ATA, SCSI, SATA, USB w obrębie jednej macierzy

15 Standardowe poziomy RAID RAID 0 (STRIPING) Polega na połączeniu ze sobą dwóch lub więcej dysków fizycznych tak, aby były widziane jako jeden dysk logiczny. Powstała w ten sposób przestrzeń ma rozmiar taki jak N*rozmiar najmniejszego z dysków. Dane są przeplecione pomiędzy dyskami. Korzyści: Wady: przestrzeń wszystkich dysków jest widziana jako całość, przyspieszenie zapisu i odczytu w porównaniu do pojedynczego dysku. brak odporności na awarię dysków, N*rozmiar najmniejszego z dysków (zwykle łączy się jednakowe dyski), zwiększenie awaryjności. Awaria pojedynczego dysku powoduje utratę wolumenu, RAID 1 (lustrzany) Polega na replikacji pracy dwóch lub więcej dysków fizycznych. Powstała przestrzeń ma rozmiar najmniejszego nośnika. RAID 1 jest zwany również lustrzanym (ang. mirroring). Szybkość zapisu i odczytu zależy od zastosowanej strategii: Korzyści: Wady: odporność na awarię N 1 dysków przy N-dyskowej macierzy możliwe zwiększenie szybkości odczytu możliwe zmniejszenie czasu dostępu możliwa zmniejszona szybkość zapisu utrata pojemności (całkowita pojemność jest taka jak pojemność najmniejszego dysku) RAID 2 Dane na dyskach są paskowane. Zapis następuje po 1 bicie na pasek. Potrzebujemy minimum 8 powierzchni do obsługi danych oraz dodatkowe dyski do przechowywania informacji generowanych za pomocą kodu Hamminga potrzebnych do korekcji błędów. Korzyści: Wady: każdy dowolny dysk (zarówno z danymi jak i z kodem Hamminga) może w razie uszkodzenia zostać odbudowany przez pozostałe dyski konieczność dokładnej synchronizacji wszystkich dysków zawierających kod Hamminga (w przeciwnym wypadku dezorganizacja i całkowita nieprzydatność tych dysków) długotrwałe generowanie kodu Hamminga przekładające się na wolną pracę całego systemu

16 RAID 3 Dane składowane są na N-1 dyskach. Ostatni dysk służy do przechowywania sum kontrolnych. Działa jak striping (RAID 0), ale w macierzy jest dodatkowy dysk, na którym zapisywane są kody parzystości obliczane przez specjalny procesor. Korzyści: Wady: odporność na awarię 1 dysku zwiększona szybkość odczytu zmniejszona szybkość zapisu z powodu konieczności kalkulowania sum kontrolnych w przypadku awarii dysku dostęp do danych jest spowolniony z powodu obliczeń sum kontrolnych odbudowa macierzy po wymianie dysku jest operacją kosztowną obliczeniowo i powoduje spowolnienie operacji odczytu i zapisu pojedynczy, wydzielony dysk na sumy kontrolne zazwyczaj jest "wąskim gardłem" w wydajności całej macierzy RAID 4 RAID 4 jest bardzo zbliżony do RAID 3, z tą różnicą, że dane są dzielone na większe bloki (16, 32, 64 lub 128 kb). Takie pakiety zapisywane są na dyskach podobnie do rozwiązania RAID 0. Dla każdego rzędu zapisywanych danych blok parzystości zapisywany jest na dysku parzystości. Przy uszkodzeniu dysku dane mogą być odtworzone przez odpowiednie operacje matematyczne. Parametry RAID 4 są bardzo dobre dla sekwencyjnego zapisu i odczytu danych (operacje na bardzo dużych plikach). RAID 5 Poziom piąty pracuje bardzo podobnie do poziomu czwartego z tą różnicą, iż bity parzystości nie są zapisywane na specjalnie do tego przeznaczonym dysku, lecz są rozpraszane po całej strukturze macierzy. RAID 5 umożliwia odzyskanie danych w razie awarii jednego z dysków przy wykorzystaniu danych i kodów korekcyjnych zapisanych na pozostałych dyskach. Korzyści: Wady: odporność na awarię jednego dysku, zwiększona szybkość odczytu porównywalna do macierzy RAID 0 zmniejszona szybkość zapisu z powodu konieczności obliczania sum kontrolnych w przypadku awarii dysku dostęp do danych jest spowolniony z powodu obliczeń danych, odbudowa macierzy po wymianie dysku jest operacją kosztowną zarówno w sensie obliczeniowym jak i I/O, co powoduje spowolnienie operacji odczytu i zapisu.

17 RAID 6 Macierz z podwójną parzystością, realizowana np. jako 5+2, albo Kosztowniejsza w implementacji niż RAID 5, ale dająca większą niezawodność. Awaria dwóch dowolnych dysków w tym samym czasie nie powoduje utraty danych. Korzyści: odporność na awarię maksimum 2 dysków szybkość pracy większa niż szybkość pojedynczego dysku. RAID 0+1 Macierz realizowana jako RAID 1, którego elementami są macierze RAID 0. Macierz taka posiada zarówno zalety macierzy RAID 0 szybkość w operacjach zapisu i odczytu jak i macierzy RAID 1 zabezpieczenie danych w przypadku awarii pojedynczego dysku. Pojedyncza awaria dysku powoduje, że całość staje się w praktyce RAID 0. Potrzebne są minimum 4 dyski o tej samej pojemności. Korzyści: Wady: szybkość macierzy RAID 0 zyskuje się dużą dowolność w kwestii wielkości dysków fizycznych składających się na dyski logiczne. znacznie prostsza w implementacji niż RAID 3, 5 i 6 tworzymy lustrzaną kopię dysku logicznego. Jeżeli pada jeden dysk fizyczny, cały dysk logiczny który tworzył zostaje wyłączony. większy koszt przechowywania danych niż w przypadku RAID 0,2,3,4,5,6 RAID 1+0 Nazywana także RAID 10. Macierz realizowana jako RAID 0, którego elementami są macierze RAID 1. W porównaniu do swojego poprzednika (RAID 0+1) realizuje tę samą koncepcję połączenia zalet RAID 0 (szybkość) i RAID 1 (bezpieczeństwo) lecz w odmienny sposób. Korzyści: Wady: szybkość macierzy RAID 0 klonowanie następuje na poziomie poszczególnych dysków fizycznych a nie logicznych. w szczególnym przypadku przetrwa pady N 1 dysków (N liczba dysków fizycznych mirrorów) z każdego mirrora składającego się na RAID 0 znacznie prostsza w implementacji niż RAID 3, 5 i 6 RAID 1 powinien łączyć dyski o tej samej wielkości a najlepiej i szybkości zapisu. większy koszt przechowywania danych niż w przypadku RAID 0,2,3,4,5,6.

18 Matrix RAID Polega na połączeniu ze sobą dwóch dysków fizycznych tak, aby część dysku działała jak RAID 0 (striping), a inna część jak RAID 1 (mirroring) (szczegóły działania macierzy RAID 0 i RAID 1 znajdziesz powyżej). De facto sprowadza się to do tworzenia układów RAID na poziomie logicznych partycji dyskowych niezależnie dla każdej z partycji. Korzyści wynikają z połączenia zalet poszczególnych trybów RAID: Wady: ważne pliki, takie jak dokumenty czy inne informacje, których odtworzenie w razie awarii byłoby zbyt kosztowne, czasochłonne lub wręcz niemożliwe, mogą być zduplikowane na obu dyskach (np. katalogi /home, /var, C:\Documents and Settings), mniej istotne dane, na których często wykonywane są operacje dyskowe, pliki i biblioteki systemu operacyjnego (np. /usr, C:\WINDOWS), pliki wykonywalne bądź biblioteki zainstalowanych aplikacji (np. /usr, C:\Program Files), pliki wymiany, partycja SWAP), mogą być wykonywane ze zwiększoną szybkością. częściowy spadek pojemności (część mirrorowana) część danych jest podatna na awarię (część w stripingu)

Pamięci masowe. ATA (Advanced Technology Attachments)

Pamięci masowe. ATA (Advanced Technology Attachments) Pamięci masowe ATA (Advanced Technology Attachments) interfejs systemowy w komputerach klasy PC i Amiga przeznaczony do komunikacji z dyskami twardymi zaproponowany w 1983 przez firmę Compaq. Używa się

Bardziej szczegółowo

Twardy dysk. -urządzenie pamięci masowej

Twardy dysk. -urządzenie pamięci masowej Twardy dysk -urządzenie pamięci masowej Podstawowe wiadomości: Dysk twardy jeden z typów urządzeń pamięci masowej wykorzystujących nośnik magnetyczny do przechowywania danych. Nazwa "dysk twardy" (hard

Bardziej szczegółowo

Macierze RAID MARCEL GAŃCZARCZYK 2TI 1

Macierze RAID MARCEL GAŃCZARCZYK 2TI 1 Macierze RAID MARCEL GAŃCZARCZYK 2TI 1 Macierze RAID (Redundant Array of Independent Disks - nadmiarowa macierz niezależnych dysków Redundant Array of Inexpensive Disks - nadmiarowa macierz niedrogich

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 10 Pamięć zewnętrzna Dysk magnetyczny Podstawowe urządzenie pamięci zewnętrznej. Dane zapisywane i odczytywane przy użyciu głowicy magnetycznej (cewki). Dane zapisywane

Bardziej szczegółowo

Cele RAID. RAID z ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków.

Cele RAID. RAID z ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków. Macierze RAID Cele RAID RAID z ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków. - zwiększenie niezawodności (odporność na awarie), - zwiększenie wydajności transmisji

Bardziej szczegółowo

Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas.

Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas. Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas. W odróżnieniu od pamięci operacyjnej, nie pozwala na adresowanie pojedynczych

Bardziej szczegółowo

Pamięci zewnętrzne Dysk magnetyczny:

Pamięci zewnętrzne Dysk magnetyczny: Pamięci zewnętrzne Dysk magnetyczny: okrągła płyta metalowa lub plastikowa pokryta materiałem magnetycznym zapis i odczyt za pomocą cewki (głowicy) przewodzącej prąd elektryczny pole magnetyczne generowane

Bardziej szczegółowo

2013-12-02. Autor: Jakub Duba. Interjesy

2013-12-02. Autor: Jakub Duba. Interjesy Autor: Jakub Duba Interjesy 2 1 Interjesy 3 Interjesy 4 2 5 Universal Serial Bus (USB; uniwersalna magistrala szeregowa) rodzaj sprzętowego portu komunikacyjnego komputerów, zastępującego stare porty szeregowe

Bardziej szczegółowo

Podsumowanie. semestr 1 klasa 2

Podsumowanie. semestr 1 klasa 2 Podsumowanie semestr 1 klasa 2 Interfejsy sprzętowe komputera: interfejsy wewnętrzne (IDE, EIDE, SCSI, Serial ATA) interfejsy zewnętrzne (RS-232, PS/2, FireWire, esata, USB, Ethernet) IDE (wewnętrzny,

Bardziej szczegółowo

RAID 1. str. 1. - w przypadku różnych szybkości cała macierz będzie pracowała z maksymalną prędkością najwolniejszego dysku

RAID 1. str. 1. - w przypadku różnych szybkości cała macierz będzie pracowała z maksymalną prędkością najwolniejszego dysku RAID 1 RAID (ang. Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków) - polega na współpracy dwóch lub więcej dysków twardych w taki sposób, aby zapewnić dodatkowe możliwości,

Bardziej szczegółowo

Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas.

Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas. Pamięć masowa, (ang.) mass storage memory jest to pamięć trwała, umożliwiająca przechowywanie dużych ilości danych przez długi czas. W odróżnieniu od pamięci operacyjnej, nie pozwala na adresowanie pojedynczych

Bardziej szczegółowo

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek Ćwiczenia 1 Budowa komputera PC Komputer osobisty (Personal Komputer PC) komputer (stacjonarny lub przenośny) przeznaczony dla pojedynczego użytkownika do użytku domowego lub biurowego. W skład podstawowego

Bardziej szczegółowo

HDD. (hard disk drive) Źródło: http://www.mskupin.pl http://h10025.www1.hp.com Urządzenia techniki komputerowej - WSiP

HDD. (hard disk drive) Źródło: http://www.mskupin.pl http://h10025.www1.hp.com Urządzenia techniki komputerowej - WSiP HDD (hard disk drive) Źródło: http://www.mskupin.pl http://h10025.www1.hp.com Urządzenia techniki komputerowej - WSiP Dysk twardy Interfejsy: ATA (IDE, PATA) SATA (Serial-ATA) PATA W kablu IDE jest 80

Bardziej szczegółowo

Składowanie danych. Tomasz Lewicki. maj 2007. WWSIS, Wrocław. Tomasz Lewicki (WWSIS, Wrocław) Archiwizacja dokumentów i danych maj 2007 1 / 17

Składowanie danych. Tomasz Lewicki. maj 2007. WWSIS, Wrocław. Tomasz Lewicki (WWSIS, Wrocław) Archiwizacja dokumentów i danych maj 2007 1 / 17 Składowanie danych Tomasz Lewicki WWSIS, Wrocław maj 2007 Tomasz Lewicki (WWSIS, Wrocław) Archiwizacja dokumentów i danych maj 2007 1 / 17 Nośniki danych Kryteria techniczne trwałość zapisanej informacji

Bardziej szczegółowo

Pamięci zewnętrzne Dysk magnetyczny:

Pamięci zewnętrzne Dysk magnetyczny: Pamięci zewnętrzne Dysk magnetyczny: okrągła płyta metalowa lub plastikowa pokryta materiałem magnetycznym zapis i odczyt za pomocą cewki (głowicy) przewodzącej prąd elektryczny pole magnetyczne generowane

Bardziej szczegółowo

LEKCJA. TEMAT: Napędy optyczne.

LEKCJA. TEMAT: Napędy optyczne. TEMAT: Napędy optyczne. LEKCJA 1. Wymagania dla ucznia: Uczeń po ukończeniu lekcji powinien: umieć omówić budowę i działanie napędu CD/DVD; umieć omówić budowę płyty CD/DVD; umieć omówić specyfikację napędu

Bardziej szczegółowo

PAMIĘCI. PAMIĘCI układy zdolne do przyjmowania, przechowywania i wysyłania informacji w postaci ciągów binarnych.

PAMIĘCI. PAMIĘCI układy zdolne do przyjmowania, przechowywania i wysyłania informacji w postaci ciągów binarnych. PAMIĘCI PAMIĘCI układy zdolne do przyjmowania, przechowywania i wysyłania informacji w postaci ciągów binarnych. Szybkość dostępu Rejestry Pamięć podręczna (cache) Pamięć operacyjna Hierarchia pamięci

Bardziej szczegółowo

CD-ROM x1 przesyła dane z prędkością150kb/s. Większy mnożnik jest wielokrotnościąprędkości podstawowej. Stosuje się stałą prędkość kątowa CAV.

CD-ROM x1 przesyła dane z prędkością150kb/s. Większy mnożnik jest wielokrotnościąprędkości podstawowej. Stosuje się stałą prędkość kątowa CAV. Odtwarzacze CD CD CD-ROM x1 przesyła dane z prędkością150kb/s. Większy mnożnik jest wielokrotnościąprędkości podstawowej. Stosuje się stałą prędkość kątowa CAV. Wymiary płyty Płyta CD posiada 12cm średnicy.

Bardziej szczegółowo

1. Budowa komputera schemat ogólny.

1. Budowa komputera schemat ogólny. komputer budowa 1. Budowa komputera schemat ogólny. Ogólny schemat budowy komputera - Klawiatura - Mysz - Skaner - Aparat i kamera cyfrowa - Modem - Karta sieciowa Urządzenia wejściowe Pamięć operacyjna

Bardziej szczegółowo

Technologie informacyjne - wykład 2 -

Technologie informacyjne - wykład 2 - Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 2 - Prowadzący: dr inż. Łukasz

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów Architektura Architektura Komputerów komputerowych Wykład nr. 9 dr Artur Bartoszewski PAMIĘCI MASOWE Zasada rejestracji magnetycznej Wszystkie typy pamięci na nośnikach magnetycznych działają na tej samej

Bardziej szczegółowo

Dyski twarde napędy optyczne i pamięci flash

Dyski twarde napędy optyczne i pamięci flash Dyski twarde napędy optyczne i pamięci flash 1. Dyski twarde Dysk jest urządzeniem delikatnym mechanicznym wrażliwym na pole magnetyczne wstrząsy wibracje i wahania napięcia zasilania Głowica przesuwając

Bardziej szczegółowo

Wykład 2. Temat: (Nie)zawodność sprzętu komputerowego. Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot:

Wykład 2. Temat: (Nie)zawodność sprzętu komputerowego. Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: Wykład 2 Przedmiot: Zabezpieczenie systemów i usług sieciowych Temat: (Nie)zawodność sprzętu komputerowego 1 Niezawodność w świecie komputerów Przedmiot: Zabezpieczenie systemów i usług sieciowych W przypadku

Bardziej szczegółowo

6. Pamięci masowe. 6.1. Dyski twarde

6. Pamięci masowe. 6.1. Dyski twarde 6. Pamięci masowe Pamięć masowa (ang. mass memory, mass storage) jest pamięcią trwałą, przeznaczoną do długotrwałego przechowywania dużej liczby danych w przeciwieństwie do pamięci RAM i ROM. Pamięć masowa

Bardziej szczegółowo

Zagadnienia związane z systemem IO

Zagadnienia związane z systemem IO Zagadnienia związane z systemem IO Wprowadzenie Urządzenia I/O zróżnicowane ze względu na Zachowanie: wejście, wyjście, magazynowanie Partnera: człowiek lub maszyna Szybkość transferu: bajty na sekundę

Bardziej szczegółowo

Rys. 1. Rozmiary dysków twardych. Z lewej 3.5, z prawej 2.5.

Rys. 1. Rozmiary dysków twardych. Z lewej 3.5, z prawej 2.5. 5. PAMIĘCI MASOWE. Mianem pamięci masowych (ang. mass memory lub mass storage) określa się różne techniki i urządzenia pozwalające na trwałe przechowywanie dużej ilości danych. Urządzenia służące do odczytu

Bardziej szczegółowo

Technologia informacyjna. Urządzenia techniki komputerowej

Technologia informacyjna. Urządzenia techniki komputerowej Technologia informacyjna Urządzenia techniki komputerowej System komputerowy = hardware (sprzęt) + software (oprogramowanie) Sprzęt komputerowy (ang. hardware) zasoby o specyficznej strukturze i organizacji

Bardziej szczegółowo

Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego, na której zamontowano najważniejsze elementy urządzenia, umo

Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego, na której zamontowano najważniejsze elementy urządzenia, umo Zestaw komputera: 1)Płyta główna: 2)Monitor 3)Klawiatura i mysz 4)Głośniki 5) Urządzenia peryferyjne: *skaner *drukarka Płyta główna (ang. motherboard) najważniejsza płyta drukowana urządzenia elektronicznego,

Bardziej szczegółowo

BUDOWA KOMPUTERA. Monika Słomian

BUDOWA KOMPUTERA. Monika Słomian BUDOWA KOMPUTERA Monika Słomian Kryteria oceniania O znam podstawowe elementy zestawu komputerowego O wiem, jakie elementy znajdują się wewnątrz komputera i jaka jest ich funkcja O potrafię wymienić przykładowe

Bardziej szczegółowo

Interfejsy dysków twardych. Natalia Mogielska kl.ic

Interfejsy dysków twardych. Natalia Mogielska kl.ic Interfejsy dysków twardych Natalia Mogielska kl.ic Interfejsy Interfejsy dzielimy na dwie kategorie: wewnętrzne i zewnętrzne. Jak same nazwy wskazują, służą one do podłączania dysków wewnętrznych i zewnętrznych.

Bardziej szczegółowo

Wykład 14. Zagadnienia związane z systemem IO

Wykład 14. Zagadnienia związane z systemem IO Wykład 14 Zagadnienia związane z systemem IO Wprowadzenie Urządzenia I/O zróżnicowane ze względu na Zachowanie: wejście, wyjście, magazynowanie Partnera: człowiek lub maszyna Szybkość transferu: bajty

Bardziej szczegółowo

Protokoły obsługi dysków. AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express)

Protokoły obsługi dysków. AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express) Interfejsy dyskowe Protokoły obsługi dysków AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express) Protokoły AHCI AHCI to sprzętowy mechanizm pozwalający oprogramowaniu

Bardziej szczegółowo

PAMIĘCI MASOWE. Dyski twarde

PAMIĘCI MASOWE. Dyski twarde PAMIĘCI MASOWE Pamięć masowa (mass memorv, mass storage) to pamięć przeznaczona do długotrwałego przechowywania dużej ilości danych. Pamięć masowa jest zapisywana na zewnętrznych nośnikach informacji i

Bardziej szczegółowo

Pamięci zewnętrzne. Rodzaje dysków twardych. Rodzaje pamięci zewnętrznych

Pamięci zewnętrzne. Rodzaje dysków twardych. Rodzaje pamięci zewnętrznych Pamięci masowe Pamięć masowa (ang. mass memory, mass strage) różne techniki i urządzenia pozwalajace na trwałe przechowywanie dużych ilości danych cyfrowych. Urządzenia służące do odczytu i zapisu nazywamy

Bardziej szczegółowo

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Ogólny schemat komputera Jak widać wszystkie bloki (CPU, RAM oraz I/O) dołączone są do wspólnych

Bardziej szczegółowo

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia

Podstawy obsługi komputerów. Budowa komputera. Podstawowe pojęcia Budowa komputera Schemat funkcjonalny i podstawowe parametry Podstawowe pojęcia Pojęcia podstawowe PC personal computer (komputer osobisty) Kompatybilność to cecha systemów komputerowych, która umoŝliwia

Bardziej szczegółowo

T:3 Przechowywanie danych. dr inż. Stanisław Wszelak

T:3 Przechowywanie danych. dr inż. Stanisław Wszelak T:3 Przechowywanie danych dr inż. Stanisław Wszelak Nośniki informacji Nośniki informacji - inaczej urządzenia przechowywania danych, są to narzędzia służące do zbiorowego składowania oraz odczytu zebranych

Bardziej szczegółowo

Dydaktyka Informatyki budowa i zasady działania komputera

Dydaktyka Informatyki budowa i zasady działania komputera Dydaktyka Informatyki budowa i zasady działania komputera Instytut Matematyki Uniwersytet Gdański System komputerowy System komputerowy układ współdziałania dwóch składowych: szprzętu komputerowego oraz

Bardziej szczegółowo

PODSTAWY INFORMATYKI. Storage Pamięci masowe. Dysk twardy Macierze dyskowe

PODSTAWY INFORMATYKI. Storage Pamięci masowe. Dysk twardy Macierze dyskowe PODSTAWY INFORMATYKI Storage Pamięci masowe Dysk twardy Macierze dyskowe 1 Dysk twardy Dysk twardy (hard disk drive) jeden z typów urządzeń pamięci masowej, wykorzystujących nośnik magnetyczny do przechowywania

Bardziej szczegółowo

Potrzeba instalacji w napędach SSD akumulatorów ograniczała jednak możliwości miniaturyzacji takich napędów.

Potrzeba instalacji w napędach SSD akumulatorów ograniczała jednak możliwości miniaturyzacji takich napędów. Pamięci masowe Dyski twarde SSD Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej część 2, K. Wojtuszkiewicz NEXT, 5/2009 http://pl.wikipedia.org/wiki/solid_state_drive SSD (ang.

Bardziej szczegółowo

Schemat dysku twardego

Schemat dysku twardego Dyski twarde, dyski elastyczne i pamięci masowe Schemat dysku twardego 3. Budowa dysku Podstawowymi elementami składowymi dysku twardego są: Bufor danych (jest to jego pamięć cache, gdzie chwilowo przechowywane

Bardziej szczegółowo

Pamięć - parametry. 1. Pojemność 2. Szybkość 3. Koszt 4. Pobór mocy

Pamięć - parametry. 1. Pojemność 2. Szybkość 3. Koszt 4. Pobór mocy PAMIĘĆ KOMPUTEROWA Pamięć Do właściwej pracy podzespołów komputera i ich współpracy z procesorem potrzebna jest pamięć. Możemy dokonać podziału pamięci pod kątem różnych kryteriów: ulotność: możliwości

Bardziej szczegółowo

Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów

Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów Budowa komputera KROK PO KROKU! Opis wszystkich części komputera w sposób zrozumiały dla nowatorów Poszczególne podzespoły komputera 1. Monitor 2. Płyta główna 3. Procesor 4. Gniazda kontrolerów dysków

Bardziej szczegółowo

Systemy operacyjne. dr inż. Marcin Czajkowski. Studia podyplomowe 2015-2016. Wydział Informatyki PB

Systemy operacyjne. dr inż. Marcin Czajkowski. Studia podyplomowe 2015-2016. Wydział Informatyki PB Systemy operacyjne Studia podyplomowe 2015-2016 Wydział Informatyki PB dr inż. Marcin Czajkowski Struktury pamięci masowej Plan wykładu Pamięć RAM i ROM, pamięć podręczna (cache) i masowa Dostęp do dysku

Bardziej szczegółowo

Spis treści. UTK Urządzenia Techniki Komputerowej. Temat: Napędy optyczne

Spis treści. UTK Urządzenia Techniki Komputerowej. Temat: Napędy optyczne Spis treści Definicja...2 Budowa ogólna...3 Silnik krokowy budowa...4 Silnik liniowy budowa...4 Budowa płyty CD...5 1 Definicja Napęd optyczny jest to urządzenie, które za pomocą wiązki lasera odczytuje

Bardziej szczegółowo

Temat 2. Logiczna budowa komputera.

Temat 2. Logiczna budowa komputera. Temat 2. Logiczna budowa komputera. 01.03.2015 1. Opis i schemat logicznej budowy komputera (rys. 28.4, ilustracje budowy komputera z uwzględnieniem elementów składowych, głównych podzespołów, procesami

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 11 Wejście - wyjście Urządzenia zewnętrzne Wyjściowe monitor drukarka Wejściowe klawiatura, mysz dyski, skanery Komunikacyjne karta sieciowa, modem Urządzenie zewnętrzne

Bardziej szczegółowo

Sektor. Systemy Operacyjne

Sektor. Systemy Operacyjne Sektor Sektor najmniejsza jednostka zapisu danych na dyskach twardych, dyskietkach i itp. Sektor jest zapisywany i czytany zawsze w całości. Ze względów historycznych wielkość sektora wynosi 512 bajtów.

Bardziej szczegółowo

Test z Urządzenia Techniki Komputerowej - klasa II FI

Test z Urządzenia Techniki Komputerowej - klasa II FI Poprawne odpowiedzi wpisz do karty odpowiedzi i wyślij na maila. 1. Który z parametrów dysku twardego ma wpływ na czas dostępu do danych? A. Szybkośd obrotu talerzy. B. Pojemnośd. C. Kontroler. D. Ilośd

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

Nośnik danych - to przedmioty i urządzenia ściśle związane z

Nośnik danych - to przedmioty i urządzenia ściśle związane z Nośnik danych - to przedmioty i urządzenia ściśle związane z komputerami. NiezaleŜnie od technologii uŝytej do produkcji nośników danych oraz współpracujących z nimi urządzeń, które je odczytują, kaŝdy

Bardziej szczegółowo

Na płycie głównej znajduje się szereg różnych typów złączy opracowanych według określonego standardu gwarantującego że wszystkie urządzenia

Na płycie głównej znajduje się szereg różnych typów złączy opracowanych według określonego standardu gwarantującego że wszystkie urządzenia Magistrale PC Na płycie głównej znajduje się szereg różnych typów złączy opracowanych według określonego standardu gwarantującego że wszystkie urządzenia pochodzące od różnych producentów (zgodne ze standardem

Bardziej szczegółowo

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE.

8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. 8. MAGISTRALE I GNIAZDA ROZSZERZEŃ. INTERFEJSY ZEWNĘTRZNE. Magistrala (ang. bus) jest ścieżką łączącą ze sobą różne komponenty w celu wymiany informacji/danych pomiędzy nimi. Inaczej mówiąc jest to zespół

Bardziej szczegółowo

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury 1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego.

urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału ciągłego. Komputer (z ang. computer od łac. computare obliczać, dawne nazwy używane w Polsce: mózg elektronowy, elektroniczna maszyna cyfrowa, maszyna matematyczna) urządzenie elektroniczne służące do przetwarzania

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1 i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:

Bardziej szczegółowo

Pamięci masowe. Historia. HDD (ang. Hard Disk Drive) dysk twardy. NEXT, 5/2009. WIKIPEDIA, http://pl.wikipedia.org/wiki/dysk_twardy

Pamięci masowe. Historia. HDD (ang. Hard Disk Drive) dysk twardy. NEXT, 5/2009. WIKIPEDIA, http://pl.wikipedia.org/wiki/dysk_twardy Pamięci masowe Dyski twarde HDD Bibliografia: Urządzenia techniki komputerowej część 2, K. Wojtuszkiewicz NEXT, 5/2009 WIKIPEDIA, http://pl.wikipedia.org/wiki/dysk_twardy HDD (ang. Hard Disk Drive) dysk

Bardziej szczegółowo

MAGISTRALE ZEWNĘTRZNE, gniazda kart rozszerzeń, w istotnym stopniu wpływają na

MAGISTRALE ZEWNĘTRZNE, gniazda kart rozszerzeń, w istotnym stopniu wpływają na , gniazda kart rozszerzeń, w istotnym stopniu wpływają na wydajność systemu komputerowego, m.in. ze względu na fakt, że układy zewnętrzne montowane na tych kartach (zwłaszcza kontrolery dysków twardych,

Bardziej szczegółowo

Dodatkowa pamięć w kieszeni - o przenośnych nośnikach danych

Dodatkowa pamięć w kieszeni - o przenośnych nośnikach danych Dodatkowa pamięć w kieszeni - o przenośnych nośnikach danych Jeszcze kilka lat temu wyznacznikiem mobilności była płyta CD. Obecnie więcej danych możemy zapisać na karcie o wymiarach paznokcia, której

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 9 Jan Kazimirski 1 Pamięć operacyjna 2 Pamięć półprzewodnikowa RAM Złożona z dwustanowych komórek (wartości 0 i 1) Możliwość odczytu i zapisu Ulotna (zawartość znika po odcięciu

Bardziej szczegółowo

Architektura Komputerów

Architektura Komputerów Architektura systemów Architektura Komputerów komputerowych Wykład nr. 9 dr Artur Bartoszewski PAMIĘCI MASOWE Zasada rejestracji magnetycznej Wszystkie typy pamięci na nośnikach magnetycznych działają

Bardziej szczegółowo

Magistrale i gniazda rozszerzeń

Magistrale i gniazda rozszerzeń Magistrale i gniazda rozszerzeń Adam Banasiak 11.03.2014 POWIATOWY ZESPÓŁ SZKÓŁ NR 2 IM. PIOTRA WŁOSTOWICA W TRZEBNICY Adam Banasiak Magistrale i gniazda rozszerzeń 11.03.2014 1 / 31 Magistrale ISA i PCI

Bardziej szczegółowo

Złącza, symbole i oznaczenia. Andrzej Pokrywka ZS Sieniawa

Złącza, symbole i oznaczenia. Andrzej Pokrywka ZS Sieniawa Złącza, symbole i oznaczenia Andrzej Pokrywka ZS Sieniawa USB Wtyczka typu A Wtyczka typu B USB 1.1 1,5 Mbit/s 12 Mbit/s SYMBOL USB 2.0 1,5 Mbit/s, 12 Mbit/s 480 Mbit/s USB 3.0 5Gbit/s FireWire SYMBOL

Bardziej szczegółowo

Protokoły obsługi dysków. AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express)

Protokoły obsługi dysków. AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express) Interfejsy dyskowe Protokoły obsługi dysków AHCI ( z ang. Advanced Host Controller Interface), NVMe ( z ang. Non-Volatile Memory express) Protokoły AHCI AHCI to sprzętowy mechanizm pozwalający oprogramowaniu

Bardziej szczegółowo

Plan wykładu. 1. Urządzenia peryferyjne 2. Rodzaje transmisji danych 3. Interfejs COM 4. Interfejs LPT 5. Plug and Play

Plan wykładu. 1. Urządzenia peryferyjne 2. Rodzaje transmisji danych 3. Interfejs COM 4. Interfejs LPT 5. Plug and Play Plan wykładu 1. Urządzenia peryferyjne 2. Rodzaje transmisji danych 3. Interfejs COM 4. Interfejs LPT 5. Plug and Play Urządzenia peryferyjne Komputer klasy PC musi zapewniać możliwość podłączenia różnorakich

Bardziej szczegółowo

ATA 2 1994 Obsługa trybu PIO 2,3 oraz DMA 1,2 wielowierszowych. Wprowadzenie transferu blokowego. Rozszerzenie polecenia Identify Drive

ATA 2 1994 Obsługa trybu PIO 2,3 oraz DMA 1,2 wielowierszowych. Wprowadzenie transferu blokowego. Rozszerzenie polecenia Identify Drive Pamięci Masowe Mianem pamięci masowej nazywamy różne techniki i urządzenia pozwalające na trwałe przechowanie informacji cyfrowych. Urządzenia służące do zapisu i odczytu są nazywane napędami natomiast

Bardziej szczegółowo

PAKIET nr 10 Instytut Astronomiczny

PAKIET nr 10 Instytut Astronomiczny PAKIET nr 10 Instytut Astronomiczny L. P. NAZWA ASORTYMENTU Opis urządzeń technicznych minimalne wymagania ILOŚĆ Zaoferowana gwarancja ZAOFEROWANY SPRZĘT (model i/lub parametry) CENA JEDNOSTKOWA NETTO

Bardziej szczegółowo

2,5 cala/3,5 cala USB 3.0 Obudowa SSD/HDD RAID SATA

2,5 cala/3,5 cala USB 3.0 Obudowa SSD/HDD RAID SATA 2,5 cala/3,5 cala USB 3.0 Obudowa SSD/HDD RAID SATA 1 Wprowadzenie Instrukcja użytkowania DA-71116/DA-71117 1.1 Funkcje - Obsługuje duże (JBOD), RAID0, RAID1, tryb normalny - Lepsza ochrona danych i pamięć

Bardziej szczegółowo

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 2. Przedmowa... 11. Wstęp... 13

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 2. Przedmowa... 11. Wstęp... 13 Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 2 Spis treúci Przedmowa... 11 Wstęp... 13 1. Urządzenia peryferyjne i układy wejścia/wyjścia... 15 Wstęp... 15 1.1. Przyczyny

Bardziej szczegółowo

UTK - Mirosław Rucioski

UTK - Mirosław Rucioski UTK - Mirosław Rucioski Temat 26, 27: Interfejsy dysków twardych. Cela kształcenia: Zapoznanie z parametrami interfejsów dysków montowanych na płytach głównych. Charakteryzowanie przeznaczenia i parametrów

Bardziej szczegółowo

Macierze RAID. UTK Marek Pudełko

Macierze RAID. UTK Marek Pudełko Macierze RAID UTK Marek Pudełko RAID RAID (Redundant Array of Independent Disks, Nadmiarowa macierz niezależnych dysków) - polega na współpracy dwóch lub więcej dysków twardych w taki sposób, aby zapewnić

Bardziej szczegółowo

Pamięci optyczne i magneto optyczne. Przygotowali: Głąb Sebastian Gwiżdż Patryk

Pamięci optyczne i magneto optyczne. Przygotowali: Głąb Sebastian Gwiżdż Patryk Pamięci optyczne i magneto optyczne Przygotowali: Głąb Sebastian Gwiżdż Patryk Sposoby zapisu optycznego Zwiększenie gęstości zapisu Mniejsza długość fali (1.5 3.8) MSR Magnetycznie wzbudzana super rozdzielczość

Bardziej szczegółowo

URZĄDZENIA WEJŚCIA-WYJŚCIA

URZĄDZENIA WEJŚCIA-WYJŚCIA Wykład czwarty URZĄDZENIA WEJŚCIA-WYJŚCIA PLAN WYKŁADU Budowa ogólna komputerów PC Urządzenia zewnętrzne w PC Podział urządzeń zewnętrznych Obsługa przerwań Bezpośredni dostęp do pamięci Literatura 1/24

Bardziej szczegółowo

PAKIET nr 14 Instytut Fizyki Teoretycznej

PAKIET nr 14 Instytut Fizyki Teoretycznej Załącznik nr 4 do SIWZ Pieczęć Wykonawcy strona z ogólnej liczby stron 1 L.P. NAZWA ASORTYMENTU Opis urządzeń technicznych minimalne wymagania ILOŚĆ PAKIET nr 14 Instytut Fizyki Teoretycznej Zaoferowana

Bardziej szczegółowo

T2: Budowa komputera PC. dr inż. Stanisław Wszelak

T2: Budowa komputera PC. dr inż. Stanisław Wszelak T2: Budowa komputera PC dr inż. Stanisław Wszelak Ogólny schemat płyty Interfejsy wejścia-wyjścia PS2 COM AGP PCI PCI ex USB PS/2 port komunikacyjny opracowany przez firmę IBM. Jest on odmianą portu szeregowego

Bardziej szczegółowo

Budowa Komputera część teoretyczna

Budowa Komputera część teoretyczna Budowa Komputera część teoretyczna Komputer PC (pesonal computer) jest to komputer przeznaczony do użytku osobistego przeznaczony do pracy w domu lub w biurach. Wyróżniamy parę typów komputerów osobistych:

Bardziej szczegółowo

Dyski półprzewodnikowe

Dyski półprzewodnikowe Dyski półprzewodnikowe msata Złacze U.2 Komórka flash Komórka flash używa dwóch tranzystorów polowych. Jeden jest nazywany bramką sterującą (ang. control gate), drugi zaś bramką pływającą (ang. floating

Bardziej szczegółowo

DYSKI SSD. Skrót SSD pochodzi od Solid State Disk (albo Drive), co po polsku można przetłumaczyć jako dysk (lub napęd) stały.

DYSKI SSD. Skrót SSD pochodzi od Solid State Disk (albo Drive), co po polsku można przetłumaczyć jako dysk (lub napęd) stały. DYSKI SSD Skrót SSD pochodzi od Solid State Disk (albo Drive), co po polsku można przetłumaczyć jako dysk (lub napęd) stały. Chodzi tutaj o napędy, które podobnie jak pendrive'y zbudowane są z pamięci

Bardziej szczegółowo

Dotyczy: Procedury udzielenia zamówienia publicznego w trybie przetargu nieograniczonego na Sprzęt komputerowy i oprogramowanie.

Dotyczy: Procedury udzielenia zamówienia publicznego w trybie przetargu nieograniczonego na Sprzęt komputerowy i oprogramowanie. INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK PL - 02-668 WARSZAWA, AL. LOTNIKÓW 32/46 Tel. (48-22) 843 66 01 Fax. (48-22) 843 09 26 REGON: P-000326061, NIP: 525-000-92-75 DZPIE/001-V/2013 Warszawa, 17 wrzesień

Bardziej szczegółowo

Podstawy Techniki Komputerowej. Temat: BIOS

Podstawy Techniki Komputerowej. Temat: BIOS Podstawy Techniki Komputerowej Temat: BIOS BIOS ( Basic Input/Output System podstawowy system wejścia-wyjścia) zapisany w pamięci stałej zestaw podstawowych procedur pośredniczących pomiędzy systemem operacyjnym

Bardziej szczegółowo

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych

Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych Budowa pamięci RAM Parametry: tcl, trcd, trp, tras, tcr występują w specyfikacjach poszczególnych pamięci DRAM. Czym mniejsze są wartości tych parametrów, tym szybszy dostęp do komórek, co przekłada się

Bardziej szczegółowo

Obudowa zewnętrznego dysku USB 2.0, 2.5" (6.35cm)

Obudowa zewnętrznego dysku USB 2.0, 2.5 (6.35cm) Obudowa zewnętrznego dysku USB 2.0, 2.5" (6.35cm) Podręcznik użytkownika DA-71001 DA-71002 Przedmowa Gratulujemy zakupu naszego produktu! Przedstawimy nową koncepcję zapisu łączącą bezpieczeństwo z wygodą.

Bardziej szczegółowo

PAKIET nr 15 Instytut Fizyki Teoretycznej

PAKIET nr 15 Instytut Fizyki Teoretycznej Załącznik nr 4 do SIWZ Pieczęć Wykonawcy strona z ogólnej liczby stron 1 L.P. NAZWA ASORTYMENTU Opis urządzeń technicznych minimalne wymagania ILOŚĆ PAKIET nr 15 Instytut Fizyki Teoretycznej Zaoferowana

Bardziej szczegółowo

Podstawy Informatyki. Michał Pazdanowski

Podstawy Informatyki. Michał Pazdanowski Podstawy Informatyki Michał Pazdanowski 30 grudnia 2006 Michał Pazdanowski 2006 2 Jednostki Informacji Bit (b)( - Binary digit - jednostka podstawowa Bajt (B)( - 8 bitów Wielokrotności: 1 kb - 1024 B 1

Bardziej szczegółowo

Administracja systemem Linux

Administracja systemem Linux Administracja systemem Linux mgr inż. Łukasz Kuczyński lkucz@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Administracja systemem Linux p. 1 Urzadzenia Blokowe Administracja systemem Linux

Bardziej szczegółowo

4.5. Pamięci masowe. Moduł 1. Podstawy technik informatycznych

4.5. Pamięci masowe. Moduł 1. Podstawy technik informatycznych 4.5. Pamięci masowe Cel: Charakterystyka urządzeń słuŝących do przechowywania danych: dyskietka, dyski ZIP, CD-ROM, taśmy magnetyczne (cartridges), zewnętrzne i wewnętrzne dyski twarde z uwzględnieniem

Bardziej szczegółowo

Technologie taśmowe wprowadzenie i zastosowania. Jacek Herold, WCSS

Technologie taśmowe wprowadzenie i zastosowania. Jacek Herold, WCSS Technologie taśmowe wprowadzenie i zastosowania Jacek Herold, WCSS Zagadnienia Czym są urządzenia taśmowe Czym różnią się od dysków twardych Podstawowe parametry urządzeo Parametry streamerów Parametry

Bardziej szczegółowo

Technologie cyfrowe semestr letni 2018/2019

Technologie cyfrowe semestr letni 2018/2019 Technologie cyfrowe semestr letni 2018/2019 Tomasz Kazimierczuk Dyski optyczne http://en.wikipedia.org/wiki/optical_disc CC BY-SA 3.0 Zapis audio CD Standardowa płyta CD: 333 000 sektorów Sektor: 2352

Bardziej szczegółowo

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4

Pamięć wirtualna. Przygotował: Ryszard Kijaka. Wykład 4 Pamięć wirtualna Przygotował: Ryszard Kijaka Wykład 4 Wstęp główny podział to: PM- do pamięci masowych należą wszelkiego rodzaju pamięci na nośnikach magnetycznych, takie jak dyski twarde i elastyczne,

Bardziej szczegółowo

Urządzenia zewnętrzne

Urządzenia zewnętrzne Urządzenia zewnętrzne SZYNA ADRESOWA SZYNA DANYCH SZYNA STEROWANIA ZEGAR PROCESOR PAMIĘC UKŁADY WE/WY Centralna jednostka przetw arzająca (CPU) DANE PROGRAMY WYNIKI... URZ. ZEWN. MO NITORY, DRUKARKI, CZYTNIKI,...

Bardziej szczegółowo

Software RAID funkcje dostarcza zaimplementowane oprogramowanie, bez wykorzystania z dedykowanych kontrolerów.

Software RAID funkcje dostarcza zaimplementowane oprogramowanie, bez wykorzystania z dedykowanych kontrolerów. Jakub Młynarczyk Software RAID funkcje dostarcza zaimplementowane oprogramowanie, bez wykorzystania z dedykowanych kontrolerów. Hardware RAID polega na zastosowaniu odpowiednich kontrolerów do których

Bardziej szczegółowo

Interfejs SCSI Meditronik Sp. z o.o., ul. Wiertnicza 129, Warszawa Tel.: (22) Fax: (22)

Interfejs SCSI Meditronik Sp. z o.o., ul. Wiertnicza 129, Warszawa Tel.: (22) Fax: (22) Interfejs SCSI Standard interfejsu SCSI (Small Computer System Interface interfejs do małych systemów komputerowych) powstał do równoległego, możliwie szybkiego przesyłania stosunkowo dużych ilości danych

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 7 Jan Kazimirski 1 Pamięć podręczna 2 Pamięć komputera - charakterystyka Położenie Procesor rejestry, pamięć podręczna Pamięć wewnętrzna pamięć podręczna, główna Pamięć zewnętrzna

Bardziej szczegółowo

Test wiedzy z UTK. Dział 1 Budowa i obsługa komputera

Test wiedzy z UTK. Dział 1 Budowa i obsługa komputera Test wiedzy z UTK Dział 1 Budowa i obsługa komputera Pytanie 1 Który z elementów nie jest niezbędny do pracy z komputerem? A. Monitor B. Klawiatura C. Jednostka centralna D. Drukarka Uzasadnienie : Jednostka

Bardziej szczegółowo

Załącznik nr 3 do SIWZ DZP /2009-II

Załącznik nr 3 do SIWZ DZP /2009-II Załącznik nr 3 do SIWZ DZP-0431-1490/2009-II Zadanie nr 1. SERWER BAZODANOWY Parametr Wymagane parametry Parametry oferowane (Wymienić: nazwę, typ, model ilość sztuk oferowanych podzespołów) OBUDOWA Maksymalnie

Bardziej szczegółowo

Wstęp do informatyki. Interfejsy, urządzenia we/wy i komunikacja. Linie magistrali

Wstęp do informatyki. Interfejsy, urządzenia we/wy i komunikacja. Linie magistrali Wstęp doinformatyki Architektura interfejsów Interfejsy, urządzenia we/wy i komunikacja Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 Slajd 1 Slajd 2 Magistrala Linie magistrali Sterowanie

Bardziej szczegółowo

KOMPUTER. Zestawy komputerowe podstawowe wiadomości

KOMPUTER. Zestawy komputerowe podstawowe wiadomości KOMPUTER Zestawy komputerowe podstawowe wiadomości Budowa zestawu komputerowego Monitor Jednostka centralna Klawiatura Mysz Urządzenia peryferyjne Monitor Monitor wchodzi w skład zestawu komputerowego

Bardziej szczegółowo

Partition Wizard Home Edition Aplikacja przeznaczona do partycjonowania dysków twardych, obsługująca również macierze RAID oraz dyski o pojemności

Partition Wizard Home Edition Aplikacja przeznaczona do partycjonowania dysków twardych, obsługująca również macierze RAID oraz dyski o pojemności 10 najlepszych darmowych programów do partycjonowania i zarządzania dyskami Odpowiedni podział dysku pozytywnie wpływa na działanie systemu. Prezentujemy 10 najlepszych darmowych programów do partycjonowania

Bardziej szczegółowo

Część V - Serwery. UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań. Zadanie nr 1. SERWER BAZODANOWY KWESTURA

Część V - Serwery. UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań. Zadanie nr 1. SERWER BAZODANOWY KWESTURA Załącznik nr 3E do SIWZ DZP-0431-1257/2009 Część V - Serwery UWAGA! Część V stanowi nierozerwalną całość. Ocena będzie łączna dla 4 zadań Zadanie nr 1. SERWER BAZODANOWY OBUDOWA Parametr KWESTURA Wymagane

Bardziej szczegółowo