Uczenie ze wzmocnieniem

Wielkość: px
Rozpocząć pokaz od strony:

Download "Uczenie ze wzmocnieniem"

Transkrypt

1 Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych

2 O projekcie nr 2 roboty (samochody, odkurzacze, drony,...) gry planszowe, sterowanie (optymalizacja; windy,..) optymalizacja kombinatoryczna i szeregowanie (zagadnienie harmonogramowania,..) problemy marszrutyzacji finanse... Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

3 Aproksymacja funkcji Funkcja wartości stanu lub stanu-akcji nie zawsze to się da przedstawić jako tabela (macierz) (np. szachy lub tryktrak ) Metody uogólniania (generalizacji) aproksymacja funkcja wartości jest parametryzowana wektorem wag w R d : ˆv(x, w) V π (x), gdzie w wektor wag supervised learning (przykład) x u, gdzie u jest wyrażenie liczbowe (aproksymacja funkcji) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

4 Aproksymacja funkcji Funkcja wartości stanu lub stanu-akcji nie zawsze to się da przedstawić jako tabela (macierz) (np. szachy lub tryktrak ) Metody uogólniania (generalizacji) aproksymacja funkcja wartości jest parametryzowana wektorem wag w R d : ˆv(x, w) V π (x), gdzie w wektor wag supervised learning (przykład) x u, gdzie u jest wyrażenie liczbowe (aproksymacja funkcji) MC : X t G t TD(0) : X y R t+1 + γˆv(x t, w) n-krokowy TD(0) : X t G t:t+n DP : x E [R t+1 + γˆv(x t+1, w t) X t = x] dowolna metoda uczenia z nadzorem na podstawie przykładów (training set) Uczenie z nadzorem na powiększającym się zbiorze danych RL Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

5 Cel przewidywania VE Stany ważone: x : µ(x) 0 i x µ(x) = 1 często µ ułamek czasu, spędzonego w stanie x aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

6 Cel przewidywania VE Stany ważone: x : µ(x) 0 i x µ(x) = 1 często µ ułamek czasu, spędzonego w stanie x Błąd średniej wartości kwadratowej (mean squared value error): VE = x X µ(x) [V π (x) ˆv(x, w)] 2 (1) aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

7 Cel przewidywania VE Stany ważone: x : µ(x) 0 i x µ(x) = 1 często µ ułamek czasu, spędzonego w stanie x Błąd średniej wartości kwadratowej (mean squared value error): VE = x X µ(x) [V π (x) ˆv(x, w)] 2 (1) Pytanie: czy VE jest odpowiednim celem RL? globalny vs lokalny optimum aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

8 Cel przewidywania VE Stany ważone: x : µ(x) 0 i x µ(x) = 1 często µ ułamek czasu, spędzonego w stanie x Błąd średniej wartości kwadratowej (mean squared value error): VE = x X µ(x) [V π (x) ˆv(x, w)] 2 (1) Pytanie: czy VE jest odpowiednim celem RL? globalny vs lokalny optimum Zasady zachłanności metody gradientowe Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

9 Stochastyczna metoda gradientowa/semi-gradientowa w = (w 1, w 2,..., w d ) T ˆv(s, w) różniczkowalna funkcja przez w t będziemy oznaczać wektor wag na kroku t zakładamy, że stany pojawiają się w przykładach z takim samym rozkładem µ po którym minimizujemy VE: w t+1 =w t 1 2 α [V π (X t ) ˆv(X t, w t )] 2 = =w t + α [V π (X t ) ˆv(X t, w t )] ˆv(X t, w t ) (2) balans błędów w różnych stanach α: jeżeli n=1 α n =, ale n=1 α 2 n < zbieżność metody SGD do optimum lokalnego Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

10 SGD dla predykcji funkcji wartości stanu X t U t i U t jest aproksymacją V π (X t ) zaszumiona V π (X t ) aproksymowana za pomocą metody wsadowej zamiast V π (X t ) użyjemy U t : w t+1 = w t + α [U t ˆv(X t, w t )] ˆv(X t, w t ) (3) jeżeli U t : E [U t X t = x] = V π (X t ) (unbiased estimate) t, wtedy w t zbiega się do lokalnego optimum (dla α jak wyżej) Przykład: MC, cel U t = G t przyszły dochód spełnia wymagania bycia niezaszumioną funkcją t, wersja MC metody gradientowego spadku gwarantuje lokalnie optymalne rozwiązanie (patrz następny slajd) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

11 Algorithm Input: the policy π to be evaluated Input: differentialbe function ˆv : X R d R; initialize: w = 0; repeat Generate an episode X 0, A 0, R 1,...,R T, X T using π; for t = 0, 1,..., T 1 do w w + α [G t ˆv(X t, w)] ˆv(X t, w) end until forever; Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

12 Algorithm Input: π for evaluation, differential function ˆv : X + R R: ˆv(terminal, ) = 0; Initialize: w = 0; repeat initialize: X; repeat Choose A π( X); Take action A, observe R, X ; w w + α [R + γˆv(x, w) ˆv(X, w)] ˆv(X, w); X X until for each step of episode until X is terminal; until for each episode; Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

13 Losowy spacer z agregacją stanów stanowy losowy spacer (numeracja od 1 z lewej). Wszystkie epizody zaczynają się w stanie 500. Krok do 100 stanów w lewo lub prawo (p = 0, 5). Jeżeli jesteśmy za blisko stanu terminalnego zmienia się prawdopodobieństwo trafienia do stanu terminalnego ( sumowanie brakujących prawdopodobieństw). Np. p(t 1 1, a) = 0.5 a p(t , a) = Rysunek: α = Agregacja stanów po 100; epizodów Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

14 Metody liniowe ˆv(, w) liniowa funkcja wektora w, czyli dla każdego stanu istnieje wektor z(x) = (z 1 (x), z 2 (x),..., z d (x)) T d ˆv(x, w) = w T z(x) = w i z i (x) (4) i=1 z(x) wektor cech (np. robot prędkość, poziom naładowania,...) zastosowanie SGD do liniowej aproksymacji ˆv(x, w) = z(x): w t+1 = w t + α [U t ˆv(X t, w t )] z(x t ) zbieżność metody do (blisko) globalnego optimum (tylko jeden) pseudo-gradientowy TD(0) również jest zbieżna (w przypadku liniowej aproksymacji) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

15 Metody liniowe c.d. ] w t+1 =w t + α [R t+1 + γw T t z t+1 w T t z t z t = ] =w t + α [R t+1 z t z t (z t γz t+1 ) T w t aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

16 Metody liniowe c.d. ] w t+1 =w t + α [R t+1 + γw T t z t+1 w T t z t z t = ] =w t + α [R t+1 z t z t (z t γz t+1 ) T w t Po osiągnięciu stanu stabilnego E [w t+1 w t ] = w t + α(b A w t ) (5) [ ] gdzie b = E [R t+1 z t ] R d i A = E z t (z t γz t+1 ) T R d R d aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

17 Metody liniowe c.d. ] w t+1 =w t + α [R t+1 + γw T t z t+1 w T t z t z t = ] =w t + α [R t+1 z t z t (z t γz t+1 ) T w t Po osiągnięciu stanu stabilnego E [w t+1 w t ] = w t + α(b A w t ) (5) [ ] gdzie b = E [R t+1 z t ] R d i A = E z t (z t γz t+1 ) T R d R d Jeżeli system jest zbieżny, to zbiega się do w TD TD nieruchomy punkt (TD fixed point) w TD = A 1 b (6) aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

18 Metody liniowe c.d. ] w t+1 =w t + α [R t+1 + γw T t z t+1 w T t z t z t = ] =w t + α [R t+1 z t z t (z t γz t+1 ) T w t Po osiągnięciu stanu stabilnego E [w t+1 w t ] = w t + α(b A w t ) (5) [ ] gdzie b = E [R t+1 z t ] R d i A = E z t (z t γz t+1 ) T R d R d Jeżeli system jest zbieżny, to zbiega się do w TD = A 1 b (6) w TD TD nieruchomy punkt (TD fixed point) Można udowodnić, że: VE(w TD ) 1 1 γ min VE(w) (7) w aria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

19 Metoda wsadowa dla 1000-stanowego losowego spaceru Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

20 Przybliżenia Fourier, coarse, tile Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

21 Sterowanie on-policy problem sterowanie funkcja wartości stan-akcja (parametryczna aproksymacja): ˆq(x, a, w) Q (x, a) (8) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

22 Sterowanie on-policy problem sterowanie funkcja wartości stan-akcja (parametryczna aproksymacja): ˆq(x, a, w) Q (x, a) (8) epizodyczne sterowanie semi-gradientową metodą TD(0): X t, A t U t (U t dla MC jest całkowity dochód, dla G t dla 1-krokowej SARSA) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

23 Sterowanie on-policy problem sterowanie funkcja wartości stan-akcja (parametryczna aproksymacja): ˆq(x, a, w) Q (x, a) (8) epizodyczne sterowanie semi-gradientową metodą TD(0): X t, A t U t (U t dla MC jest całkowity dochód, dla G t dla 1-krokowej SARSA) ogólna aktualizacja wektora w dla akcja-stan predykcji jest: w t+1 = w t + α [U t ˆq(X t, A t, w t )] ˆq(X t, A t, w t ) (9) 1-krokowa SARSA U t = T t+1 + γˆq(x t+1, A t+1, w t ) Maria Ganzha (Wydział Matematyki i Nauk Informatycznych) Uczenie ze wzmocnieniem / 14

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Przypomnienia (1) Do tych czas: stan X t u, gdzie u cel aktualizacji: MC : X t G t TD(0) : X y R t+1 + γˆv(x t,

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Maria Ganzha Wydział Matematyki i Nauk Informatycznych 2018-2019 Temporal Difference learning Uczenie oparte na różnicach czasowych Problemy predykcyjne (wieloetapowe) droga do

Bardziej szczegółowo

SPOTKANIE 11: Reinforcement learning

SPOTKANIE 11: Reinforcement learning Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Uczenie ze wzmocnieniem aplikacje

Uczenie ze wzmocnieniem aplikacje Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 22 maja 2013 Problem decyzyjny Markova

Bardziej szczegółowo

Uczenie ze wzmocnieniem aplikacje

Uczenie ze wzmocnieniem aplikacje Uczenie ze wzmocnieniem aplikacje Na podstawie: AIMA ch21 oraz Reinforcement Learning (Sutton i Barto) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 23 maja 2014 Problem decyzyjny Markova

Bardziej szczegółowo

SID Wykład 8 Sieci neuronowe

SID Wykład 8 Sieci neuronowe SID Wykład 8 Sieci neuronowe Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Sztuczna inteligencja - uczenie Uczenie się jest procesem nastawionym na osiaganie rezultatów opartych o

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Problemy Decyzyjne Markowa

Problemy Decyzyjne Markowa Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2013 Sekwencyjne problemy decyzyjne Cechy sekwencyjnego

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 6 maja 06 3 START 3

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Uczenie ze wzmocnieniem Na podstawie: AIMA ch2 Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 20 listopada 203 Problem decyzyjny Markova 3 + 2 0.8 START 0. 0. 2 3 4 MDP bez modelu przejść

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ

IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym

Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Zastosowanie optymalizacji rojem cząstek (PSO) w procesie uczenia wielowarstwowej sieci neuronowej w problemie lokalizacyjnym Jan Karwowski Wydział Matematyki i Nauk Informacyjnych PW 17 XII 2013 Jan Karwowski

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec Systemy agentowe Uwagi organizacyjne i wprowadzenie Jędrzej Potoniec Kontakt mgr inż. Jędrzej Potoniec Jedrzej.Potoniec@cs.put.poznan.pl http://www.cs.put.poznan.pl/jpotoniec https://github.com/jpotoniec/sa

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.

Bardziej szczegółowo

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017

Metody eksploracji danych 2. Metody regresji. Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Metody eksploracji danych 2. Metody regresji Piotr Szwed Katedra Informatyki Stosowanej AGH 2017 Zagadnienie regresji Dane: Zbiór uczący: D = {(x i, y i )} i=1,m Obserwacje: (x i, y i ), wektor cech x

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3

Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Wstęp do sieci neuronowych, wykład 6 Wsteczna propagacja błędu - cz. 3 Andrzej Rutkowski, Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-11-05 Projekt

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Lokalna odwracalność odwzorowań, odwzorowania uwikłane Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

SPOTKANIE 3: Regresja: Regresja liniowa

SPOTKANIE 3: Regresja: Regresja liniowa Wrocław University of Technology SPOTKANIE 3: Regresja: Regresja liniowa Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 22.11.2013 Rozkład normalny Rozkład normalny (ang. normal

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Uczenie ze wzmocnieniem

Uczenie ze wzmocnieniem Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 Na podstawie: AIMA ch Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 5 maja 04 3 START 3

Bardziej szczegółowo

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska Wrocław University of Technology WYKŁAD 4 Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie autor: Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification):

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

wiedzy Sieci neuronowe

wiedzy Sieci neuronowe Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci

Bardziej szczegółowo

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa

Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Systemy uczace się 2009 1 / 32 Teoria systemów uczacych się i wymiar Vapnika-Chervonenkisa Hung Son Nguyen Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski email: son@mimuw.edu.pl Grudzień

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

RBF sieci neuronowe o radialnych funkcjach bazowych

RBF sieci neuronowe o radialnych funkcjach bazowych RBF sieci neuronowe o radialnych funkcjach bazowych Jerzy Stefanowski Zakład Inteligentnych Systemów Wspomagania Decyzji Instytut Informatyki Politechnika Poznańska Wykład Uczenie maszynowe edycja 2010

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

Uczenie sieci neuronowych i bayesowskich

Uczenie sieci neuronowych i bayesowskich Wstęp do metod sztucznej inteligencji www.mat.uni.torun.pl/~piersaj 2009-01-22 Co to jest neuron? Komputer, a mózg komputer mózg Jednostki obliczeniowe 1-4 CPU 10 11 neuronów Pojemność 10 9 b RAM, 10 10

Bardziej szczegółowo

Sieć przesyłająca żetony CP (counter propagation)

Sieć przesyłająca żetony CP (counter propagation) Sieci neuropodobne IX, specyficzne architektury 1 Sieć przesyłająca żetony CP (counter propagation) warstwa Kohonena: wektory wejściowe są unormowane jednostki mają unormowane wektory wag jednostki są

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu

Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Marcin Anholcer Uniwersytet Ekonomiczny w Poznaniu 19 marca 2013, Ustroń Marcin Anholcer Stochastyczne zagadnienie rozdziału 1/ 15 1 Zagadnienie

Bardziej szczegółowo

wiedzy Sieci neuronowe (c.d.)

wiedzy Sieci neuronowe (c.d.) Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie

Bardziej szczegółowo

Sztuczne sieci neuronowe. Uczenie, zastosowania

Sztuczne sieci neuronowe. Uczenie, zastosowania Wydział Zarządzania AGH Katedra Informatyki Stosowanej Sztuczne sieci neuronowe. Uczenie, zastosowania Inteligencja Sztuczne sieci neuronowe Metody uczenia Budowa modelu Algorytm wstecznej propagacji błędu

Bardziej szczegółowo

Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie:

Aby mówić o procesie decyzyjnym Markowa musimy zdefiniować następujący zestaw (krotkę): gdzie: Spis treści 1 Uczenie ze wzmocnieniem 2 Proces decyzyjny Markowa 3 Jak wyznaczyć optymalną strategię? 3.1 Algorytm iteracji funkcji wartościującej 3.2 Algorytm iteracji strategii 4 Estymowanie modelu dla

Bardziej szczegółowo

Testy adaptacyjne dla problemu k prób

Testy adaptacyjne dla problemu k prób Instytut Matematyczny Polskiej Akademii Nauk Oddział Wrocław Problem testowania Problem Testowania Weryfikacja hipotezy Notacja Pomocnicza statystyka rangowa Załóżmy, że X l1,..., X lnl, l = 1,..., k,

Bardziej szczegółowo

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I.

Sieci M. I. Jordana. Sieci rekurencyjne z parametrycznym biasem. Leszek Rybicki. 30 listopada Leszek Rybicki Sieci M. I. Sieci M. I. Jordana Sieci rekurencyjne z parametrycznym biasem Leszek Rybicki 30 listopada 2007 Leszek Rybicki Sieci M. I. Jordana 1/21 Plan O czym będzie 1 Wstęp do sieci neuronowych Neurony i perceptrony

Bardziej szczegółowo

(LMP-Liniowy model prawdopodobieństwa)

(LMP-Liniowy model prawdopodobieństwa) OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Optymalizacja. Symulowane wyżarzanie

Optymalizacja. Symulowane wyżarzanie dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Wyżarzanie wzrost temperatury gorącej kąpieli do takiej wartości, w której ciało stałe topnieje powolne

Bardziej szczegółowo

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna

SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Wrocław University of Technology SPOTKANIE 4: Klasyfikacja: Regresja logistyczna Szymon Zaręba Studenckie Koło Naukowe Estymator 179226@student.pwr.wroc.pl 23.11.2012 Rozkład dwupunktowy i dwumianowy Rozkład

Bardziej szczegółowo

10. Techniki minimalizacji a sieci neuronowe

10. Techniki minimalizacji a sieci neuronowe 10. Techniki minimalizacji a sieci neuronowe 10-1 Błąd aproksymacji 10-2 Minimalizacja kosztu 10-3 Tryby minimalizacji 10-4 Metoda największego spadku 10-5 Gradient sprzężony 10-6 Metoda Newtona 10-7 Metody

Bardziej szczegółowo

Technologie informacyjne Wykład VII-IX

Technologie informacyjne Wykład VII-IX Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania 1 Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania (mimo usunięcia zadań w odpowiedziach zachowano numerację z pierwszego wydania) s. 32 10 wiersz od góry x 2 = d x 2 = d + v 2t 1 16 wiersz

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3 Konrad Miziński, nr albumu 233703 26 maja 2015 Zadanie 1 Wartość krytyczna c, niezbędna wyliczenia mocy testu (1 β) wyznaczono za

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 3 Regresja logistyczna autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest zaimplementowanie modelu

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne Wrocław University of Technology WYKŁAD 3 Klasyfikacja: modele probabilistyczne Maciej Zięba Politechnika Wrocławska Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy

Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Dyskretne zmienne losowe

Dyskretne zmienne losowe Dyskretne zmienne losowe dr Mariusz Grządziel 16 marca 2009 Definicja 1. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 13-1- Projekt pn. Wzmocnienie potencjału dydaktycznego

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Bładzenie przypadkowe i lokalizacja

Bładzenie przypadkowe i lokalizacja Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW)

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 2 κ-nn i Naive Bayes autorzy: M. Zięba, J.M. Tomczak, A. Gonczarek, S. Zaręba, J. Kaczmar Cel zadania Celem zadania jest implementacja klasyfikatorów

Bardziej szczegółowo

Uczenie sieci radialnych (RBF)

Uczenie sieci radialnych (RBF) Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

Optymalizacja. Przeszukiwanie lokalne

Optymalizacja. Przeszukiwanie lokalne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Idea sąsiedztwa Definicja sąsiedztwa x S zbiór N(x) S rozwiązań, które leżą blisko rozwiązania x

Bardziej szczegółowo

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych

XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O górnym ograniczeniu zysku ze strategii handlowej opartej na kointegracji XI Konferencja Metody Ilościowe w Badaniach Ekonomicznych Zależność kointegracyjna

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Optymalizacja systemów

Optymalizacja systemów Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji

Bardziej szczegółowo

Problemy Decyzyjne Markowa

Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2015 na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki,

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 3 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba Cel zadania Celem zadania jest zaimplementowanie algorytmów

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Podstawowe modele probabilistyczne

Podstawowe modele probabilistyczne Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo