Zestaw zadań 7: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zestaw zadań 7: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i)"

Transkrypt

1 Zstaw zaań 7: Wyznaznk 1 (1) Olzyć wyznaznk następująyh arzy: () () () (g) () a a a 1 ε ε2 ε 2 1 ε ε ε 2 1 () sn α os α 1 sn β os β 1 sn γ os γ 1 gz ε = (h) os α os β r sn α os β r os α sn β sn α os β r os α os β r sn α sn β sn β 0 r os β () gz α β γ są ara kątów trójkąta ε ε 2 1 ε 2 ε 3 gz ε = os 4π 3 + sn 4π 3 (2) Olzyć następuj wyznaznk (na R): () () () () () (g) (h) () (j) (k) Wyznaznk okrył po raz prwszy G W Lnz w 1693 r W 1750 okrył j powtórn Szwajar Garl Crar (n ylć z wspózsny atatyk szwzk Carl Haral Crar) Nazwę wyznaznk ( trnant ) wprowazł w 1815 r A Cauhy Dw ponow krsk jako syol wyznaznka wprowazł w 1841 r A Cayly 1

2 2 (3) Olzyć: na Z 7 () na Z 11 () (4) Olzyć wyznaznk następująyh arzy stopna n : () () a a a a a a a 1 () () a 1 n n n n n 2 n n n n n 3 n n a a a a a na Z () (g) n n n n 1 n a n n n n n a (5) Nh A = [a j ] a j Z ęz arzą kwaratową stopna n Pokazać ż t A jst lzą akowtą Załóży oatkowo ż a j = ±k gz k jst ustaloną lzą akowtą Pokazać ż 2 n 1 k n zl t A (6) Pokazać ż jśl A jst arzą antysytryzn (tzn A T = A) stopna nparzystgo na R to jst ona osolwa zyl t A = 0 (7) Lzy zlą sę przz 17 Pokazać (z olzana) ż wyznaznk równż zl sę przz 17 (8) Nh A = [a j ] ęz arzą kwaratową stopna n Jak zn sę wyznaznk arzy A jżl: każy lnt a j ponożyy przz j ( ustalon) () oróy arz A o 90 wokół jj śroka (zgon z ruh wskazówk zgara) () zapszy wrsz (koluny) arzy A w owrotnj koljnoś () o każj koluny (wrsza) pozynają o rugj (ruggo) oay poprzną kolunę (poprzn wrsz)

3 3 () o każj koluny (wrsza) pozynają o rugj (ruggo) oay poprzną kolunę (poprzn wrsz) a prwszj koluny (o prwszgo wrsza) oay starą ostatną kolunę (stary ostatn wrsz) () o każj koluny (wrsza) pozynają o rugj (ruggo) oay wszystk porzn koluny (poprzn wrsz) (9) Znalźć najwększą wartość wyznaznka arzy kwaratowj stopna 3 którj lnty są lza ałkowty równy 0 lu 1 () 1 lu 1 (10) Przanalzować Przykła 67 z stron z ksążk ABałynkgo-Brul (owó wzoru na wyznaznk arzy klatkowo-trójkątnj t [ A 0 D B ] = t A t B przz nukję wzglę stopna klatk B) (11) Sprawzć tożsaoś: a g j k = 1 a a a g a j a k () a g h j k l n o p = 1 a 2 a a g a h a j a k a l a n a o a p () Sorułować uowonć ogóln twrzn (12) Sprawzć ż nastpująa równość jst tożsaośą: a g h j k l n o p = 1 a 2 a a g a h a a k a l a n a o a p + ( j) a g h o p (13) Zaać rozwązalność ukłau równań x + y + z = 9 3x y + 2z = 10 2x + 7y 3z = 8 ax y + z = 20 ax + y + z = 44 10ax + 3y z = 26 w zalżnoś o paratrów a (14) Olzyć wyznaznk arzy A = [ ] T [ ]

4 4 () B = a a a a Wskazówka Olzyć wyznaznk arzy A 2 oraz BB T (15) Nh x 1 x 2 x n ęą wszystk prwastka wloanu (X) = a 0 X n + a 1 X n a n 1 X + a n Suy k-tyh potęg prwastków s k = x k 1 + x k x k n są unkja sytryzny wę wyrażają sę przz współzynnk wloanu (np s 0 = n; z wzorów Vèt 2 wynkają równoś s 1 = a 1 s 2 = s x x j = a2 1 2 a 2 t) a 0 a 2 <j 0 a 0 Olzyć wyznaznk D arzy s 0 s 1 s 2 s n 1 s 1 s 2 s 3 s n s 2 s 3 s 4 s n+1 s n 1 s n s n+1 s 2n 2 (Wskazówka: olzyć najprw V T V gz V = V (x 1 x 2 x n ) jst arzą Vanron a prwastków) Wyrazć wynk przz współzynnk wloanu (X) gy n = 2 (X) = ax 2 + X + gy n = 3 a (X) = X 3 + px + q Wartość = a 2n 2 0 D nazyway wyróżnk wloanu (X) 3 (16) Sprawzć zy następują arz są owraaln oraz w przypaku pozytywnj opowz olzyć arz owrotną: [ ] 1 2 () () () () (17) Jśl A Kn n B[ K C K] n [ D K n ] t A 0 to I olzyć n 0 A D CA 1 ; [ I ] C B A D () wykazać ż t = t A t(b CA C B 1 D); () pozlć na klatk 2 2 arz z przykłau () z poprzngo zaana; porównać jj wyznaznk z wartośą wyrażna t A t B t C t D 2 Franços Vèt ( ) - atatyk ranusk zwany oj algry Usystatyzował osągnęa algrazn Orozna Wprowazł oznazna ltrow n tylko la nwaoyh al la anyh np współzynnków równań zęk zu pojawły s wzory atatyzn 3 Nazwa wyróżnk ( srnant o łańskgo srnans o srnants - rozzlająy oróżnająy) pohoz o J Sylvstra

5 (18) Rozwązać [ następują ] [ równana ] arzow: X = [ ] [ ] () X = () X = [ ] [ ] [ ] () X = (19) Rozwązać ukłay [ równań ] arzowyh: [ ] [ ] X + Y = [ ] [ ] [ ] X + Y = [ ] [ ] [ ] X + Y = () [ ] [ ] [ ] X + Y = (20) Olzyć (I + ae r ) 1 r (21) Waoo ż arz owraalną ożna sprowazć o arzy jnostkowj za pooą przkształń lntarnyh na wrszah Pokazać ż wykonują t sa przkształna (w tj saj koljnoś!) na arzy jnostkowj otrzyay arz owrotn ą o wyjśowj arzy Stosują tę toę olzyć jszz raz arz owrotn o arzy z poprznh zaań oraz następująyh arzy: () () (22) Pokazać ż jżl A 2 = 0 to arz I n + A jst owraalna (I n + A) 1 = I n A () Pokazać ż jżl A = 0 to arz I n + A jst owraalna znalźć (I n + A) 1 5

6 (23) Znalźć koljn potęg arzy 0 wykorzystać j o olzna arzy owrotnj o arzy (24) Pokazać ż la A B Kn n jżl arz I n + AB jst owraalna to równż arz I n + BA jst owraalna (lat Vassrstna 4 ) Wskazówka: Olzyć [ (I n ] + [ BA)(I n ] B(I n + AB) 1 A) A D A 0 (25) Olzyć arz owrotn o arzy klatkowyh: Olzyć arz 0 B C B owrotn o następująyh arzy: (26) Koutator [A B] arzy nosolwyh A B GLn(K) nazyway arz [A B] = ABA 1 B 1 Wykazać ż I la j k l [I + ae j I + E kl ] = I + ae l la j = k l I ae kj la j k = l 4 L N Vassrstn współzsny atatyk razk (o lat szsątyh) arykańsk (o lat oszsątyh)

Zestaw zadań 6: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i)

Zestaw zadań 6: Wyznaczniki. 1., (c), (h) (d), (f) (g), (i) Zstaw zaań 6: Wyznaznk 1 (1) Olzyć wyznaznk następująyh arzy: 1 2 3 5 1 4 () 1 5 4 3 2 0 () 0 2 2 2 0 2 3 2 5 1 3 6 2 2 0 () (g) () a a a 1 ε ε2 ε 2 1 ε ε ε 2 1 (f) sn α os α 1 sn β os β 1 sn γ os γ 1

Bardziej szczegółowo

, (b) , (g) a 1 ma = 2 + D 1 C 2 A 1 D 2 + D 1 B 2 C 1 B 1 C 2 B 2 C 1 A 2 + B 1 C 2 C 1 D 2 + B 1 B 2

, (b) , (g) a 1 ma = 2 + D 1 C 2 A 1 D 2 + D 1 B 2 C 1 B 1 C 2 B 2 C 1 A 2 + B 1 C 2 C 1 D 2 + B 1 B 2 Zstaw zaań 3: Marz wyznaznk 1 (1) Olzyć lozyny arzy: 1 2 4 0 () 6 4 [ 2 1 0 1 2 2 3 1 5 3 4 5 7 9 [ ] 3 2 1 () () [ 1 2 3 4 5 ] T [ ] 1 2 3 4 5 1 3 (f) [ 1 2 3 4 5 ] [ 1 2 3 4 5 ] T (g) 2 0 T 3 1 3 2 ]

Bardziej szczegółowo

Ą Ś Ś ż Ż ć Ś Ż Ś Ń Ó Ż ć Ź ć ć Ż Ź Ś Ą Ą Ż Ś Ą ĘĄ Ś Ę ŚĘ Ę Ó Ś Ą ć Ś ź Ś ż Ż Ź ć ć ć Ą ć ć Ź ć ć ć ć Ś ć Ż ć ć Ą ć Ż ć Ż ć Ż Ż Ż ć Ż ć Ż ć Ż ż ź Ą ż ć Ż Ź Ż Ś Ż Ś Ą ż Ą Ż ź Ż ż ć Ż Ż Ą Ś Ź ć Ś ż Ź ż Ł

Bardziej szczegółowo

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę

ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń Ó ć ę Ł ą ą ę ó ę ó ą ć Ę ą ę Ź ą ą ę ó ż ć Ę ę ą Ś ą ą ą ż ź Ź ó ż ą ń Ś ź ć ą ą ć ź ć ó ó ą ó ż ą ń ą Ę ą ę ż ń ą ó ą ą ą ą ą ą ą ó ź ń ęż ć ą ę ą ą Ń ó ż Ęć ę ą ż ż ń ż Ó ą ż ń ń ą ą ó ą Ę ęż ęż ęź Ś ą ą ę ó ó ń ó ż ę ó ń ą ć Ę ą ę ż ó ą ą ę ó Ń

Bardziej szczegółowo

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę

ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą ó ę ą ó ą ą ć ś ą ó ś ó ń ó ą Ń Ą ś ę ńś Ą ń ó ń ó ńś ó ś Ą ś ś ó ó ś ś ó ą ń ó ń Ę ń ć ńś ę ó ś ś Ę ń Ł ó ń ź ń ś ę ń ę ś Ą Ń ó ę ą ń ą ś Ł ń ń ź ń ś ó ń ę ę ę Ń ą ą ń ą ź ą ź ń ć ę ó ó ę ś ą ść ńś ś ę ź ó ń ó ń ę ń ą ń ś ę ó ó Ę ó ń ę ń ó ń ń ń ą Ę ą ź ą ą ń ó ą ę ó ć ą ś ę ó ą ń ś ę ą ę ó ń ń ń ó ń ó ó ń ź ą ę Ń ą

Bardziej szczegółowo

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.

MACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij

Bardziej szczegółowo

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E

I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony

Bardziej szczegółowo

Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż

Bardziej szczegółowo

ń ń ń

ń ń ń Ą ź ć ń ń Ą ń ń ń Ą Ó ń Ą ć Ą Ń Ą ć ć ć ń ń Ą ć Ą ć ć ń ń ń ń ź ć ź Ą ć ć ć Ę ń Ó ń ń Ę Ą ć ń ń Ń ń ń Ń ć ć ń ź Ę ń ź ń ź ć ć ź ć ń ń ć ć ć ń ć ć ć ć ć Ę ć ć ź ć ź ń ć ć ń Ą ń ć ź ć Ą ź ć ń ć ź Ó Ś ć ń

Bardziej szczegółowo

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn

Bardziej szczegółowo

Ą Ę Ą Ś Ń Ó Ę Ę Ę ź Ę Ę ź Ę Ń Ę Ę ź Ę Ę Ę ź Ę Ą Ę Ź Ą Ą Ę Ź Ź Ź Ń ź Ź Ń Ą Ę Ź Ą ź Ę Ź Ą Ę Ź Ą Ę Ą Ę Ę Ł Ń Ś Ę Ę Ń Ę ĘĄ Ę ĘĄ Ł Ę Ę Ę Ę Ź Ę Ę Ę Ę Ń ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ń Ę Ę Ń Ę Ę Ń Ą Ę Ę Ę Ą ź

Bardziej szczegółowo

ll I 1 &*l;,, Ą Ń Ś Ą ć Ę Ś Ł Ę Ą ć Ą ć ć ź ć Ęć Ń Ę ć ć Ę ć ć Ę ć Ę Ę ć ź Ę ź ć ź Ę ć ć ź ź Ę ź Ą ź ź ź ć ć ź Ę ź ć Ę ć Ę Ąć ć ć Ę ć ć Ę ć Ę ć ć Ę ź ć Ą ć ź Ś ć Ą ć Ą ć ź ź ź ź ć ź ź Ę Ę ć ź Ę ć ź ź

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

ź Ą Ę ź Ć

ź Ą Ę ź Ć Ę Ą Ą ź ó ź Ą Ę ź Ć ź ź ĄĘ ź ź Ą ó Ę Ą ź ź ź Ą ź Ę ó Ł Ś ó ó Ą ź ź ź Ą ź Ę ź ź Ą ź ź ź Ą Ł ź Ę Ę Ę ź Ą Ę ź Ą Ę Ą Ę Ę Ą ź ź Ą ó ź ó ź ź ź ź ź ź Ś ź ź Ą ź ź ź Ą ź ź ź Ź ź ó ź Ę ź Ą ó ź Ą Ż ź ź Ę ź Ź ź ź

Bardziej szczegółowo

ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń

Bardziej szczegółowo

Ż Ę ć Ć ć ć Ą

Ż Ę ć Ć ć ć Ą Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

Ł ź Ż Ń Ł ż ż ź Ą

Ł ź Ż Ń Ł ż ż ź Ą Ł Ł Ń Ń Ł ź Ż Ń Ł ż ż ź Ą Ł Ł Ś Ń ż ż ż żń ż ż ż ć Ż ć ć ć Ż ż ż ż ż ż ż ż ż ż ż ż ć ź ż ż ż ż ć Ś ż ż ż ż ż ć ż ż ć ż ć ż ź ż ż ż ż ż ż ć ć ż ż Ś ć ż ć ż ć Ś ż ż ż ż ż ż ż ć ż ż ż ż ż ć ć ż ż ż Ś ż ż

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

ć ć ź Ń Ś ŚĆ ź

ć ć ź Ń Ś ŚĆ ź Ą ć ć ć ź Ń Ś ŚĆ ź ć Ś ŚĆ Ń Ó Ó ć ć Ś Ń ć ć Ś Ś Ś ź ć Ś Ń ź ć Ś ź ź ŚĆ Ń Ń Ś Ę ć Ó Ś ć Ę Ś Ś Ą ć ź Ń Ń ć ć ź Ę ź ź Ś ŚĆ ź Ę ĘĄ Ę Ż Ó ć ć Ą ź Ą Ą Ę Ń ć ć Ą Ę Ą ć Ń Ń Ś ź ź Ą Ż Ó ć Ę Ę ź ź ź ź Ą Ń Ę Ą

Bardziej szczegółowo

Ź

Ź Ź Ł Ł ź ź Ł Ł Ź Ą Ó ź ń ź Ń ź ź ź ź Ź Ą ź Ć Ź Ń ź Ą ź Ł Ł Ł ź Ą Ą Ą ź ź ź ź ź Ś Ą Ź Ą ź ź Ł Ł ź Ł Ś ź ź Ł ź Ś ź Ń Ź ź Ł Ł ź ź Ś Ł ź Ł Ł Ł Ł ź ź Ł Ł Ł Ł ź Ł ź Ł Ł Ł Ł ź Ą ź Ś Ł Ą ź Ś ź ź ń ź ź Ą ź ź Ą

Bardziej szczegółowo

Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź

Bardziej szczegółowo

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym

Bardziej szczegółowo

Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż

Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż Ę ą Ę Ń ś ź ś ś Ę Ę ą ź ś Ż ą ś Ń ź ę Ń Ń ą Ńź ś ś ś ą Ą Ń ą ą Ę ą ą Ę ąą ą Ś ą ę ą Ś ą Ł Ś ś Ń Ą ź ź Ę ź Ć ą ą ś Ść Ą Ż Ł ś ęę ę ś ś ś ć ą ą Ń ę ęś ęść ą ęść ą ą ść ź ć ć ą ś ą ę ć ź ęść ę ć ą ęść ś ść

Bardziej szczegółowo

ź -- ć ł ź ł -ł ł --

ź -- ć ł ź ł -ł ł -- ------ --------- --ł ----ć -------- --------------- ---ę- --- ----------- ------- ------ó- ------------ ----- --- -- ----- - ------------ --ó- --ś -- -- ------- --------- ------ ---- --------- -------ą

Bardziej szczegółowo

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś

Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ł ń ść ś Ż ś ś ć ś ś Ż ż ś ś ść ś śń ż Ż ć ś ń Ś ż ć ż ść Ł ź ś ń ść ść ś ć ć ś ć ź ź ć ć ń ć ść ć ć ś Ą Ż Ą ś ż ż ż ż ż ż ż ż ć ż ż ś ć ż ż ź ź ń ś ć ż ć ć ż ż ć ż ż ż ś ć ż ż źć ż ż ż ż Ż ż ń ż ż

Bardziej szczegółowo

Ą Ł Ą Ę Ą Ę Ą Ą Ń Ń Ą Ł Ł ŁĄ Ą

Ą Ł Ą Ę Ą Ę Ą Ą Ń Ń Ą Ł Ł ŁĄ Ą Ą Ą Ł Ł Ń Ą Ą Ł Ą Ę Ą Ę Ą Ą Ń Ń Ą Ł Ł ŁĄ Ą Ó Ą Ą Ą Ą Ę Ł Ą Ą Ę Ę Ą Ł Ą Ą Ę Ą Ę Ę Ę Ł Ę Ę Ą Ą Ł Ą Ą Ą Ę ĄĘ Ł Ą Ą Ą Ą Ą Ą Ę Ł Ą Ę Ó Ł Ą Ę Ą Ł Ę Ę Ą Ą Ź Ł Ń Ń Ą Ó Ż Ą ĄĘ Ę Ą Ą Ą Ę Ą Ł Ą Ą Ę Ł Ę Ó Ł Ł Ł Ę

Bardziej szczegółowo

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó

ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę Ó ć ń ó ą ś ą ą ż ó ó ą ż ó ś ą ś ą ś ć ż ść ó ó ą ó ą ń ą ę ą ę ż ń ą ó ś ą ą ą ń ó ą ą ą ś ą ó ż ś ęż ęś ś ń ą ęś ś ą ą ś ż ś Ę ę ń Ż ą ż ń ą ą ą ę ą ę ń Ó Ń ś ń ś ń Ó ę ą Ż ę ą ę Ż ó Ę ą ą ę ś Ę ó Ż ę

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż

Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ż ć żń Ę ń żń Ę żń ż Ń Ą Ę ć ń ż Ł ń ć ź Ę ć ć ć ż ć ć ć Ę ń Ź ń Ę Ę Ę ń ń ż ż źń Ź ć Ł Ę Ę ż ń ć ż ń ż ć Ą ć ń ż Ę ń ć ż ń ż ć ć ż ńć ż ć ć ć ń Ę Ł ż ż ń ż ż ć ż Ł ń ć żń żń ń ń ń ż Ł ć Ą ć ń ż ń ć

Bardziej szczegółowo

Ę Ł ź ź ć ź ć Ń ć ź ź Ł

Ę Ł ź ź ć ź ć Ń ć ź ź Ł Ł Ą Ą Ą ź Ł Ę Ń ź ć ć ź ź Ę Ę Ł ź ź ć ź ć Ń ć ź ź Ł ź ć Ń ź Ą Ó Ę Ę ź ć ź ć Ę ć Ż ć Ę Ę ć Ą ć Ą Ł ć Ą ć ć Ń Ń Ń ź ć Ń Ł Ń Ń ź ć ć ć Ę ć Ń ć Ł ć Ń ć ź ź Ę ć Ś ź ć Ą Ę ć Ą ć Ź Ń ź ć ź Ż ć Ł ć Ń ć ź Ą ź Ł

Bardziej szczegółowo

Ę Ę Ę Ś Ł Ł Ł Ś

Ę Ę Ę Ś Ł Ł Ł Ś Ł Ł Ś Ś Ś Ę ĘĄ Ę Ę Ę Ś Ł Ł Ł Ś Ł Ł Ł Ś Ś Ł Ś Ę ź Ź Ż Ę Ś ć Ł Ę Ł Ś Ł Ł ź Ś Ś Ń Ł Ś Ą Ś Ł Ł Ż ć ć Ż Ś Ś Ł Ś Ś Ż Ż Ż Ż Ł Ż Ś ć ć Ż Ż Ż Ż ć Ś Ż ć Ż Ż Ł Ą Ł Ń ź Ń Ń Ę Ń Ą Ń Ż Ż Ó Ż Ż ź ź Ź Ż Ż Ż Ś Ś Ż Ż ź

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć

Bardziej szczegółowo

Wrocław, dnia 31 marca 2017 r. Poz UCHWAŁA NR XXXVII/843/17 RADY MIEJSKIEJ WROCŁAWIA. z dnia 23 marca 2017 r.

Wrocław, dnia 31 marca 2017 r. Poz UCHWAŁA NR XXXVII/843/17 RADY MIEJSKIEJ WROCŁAWIA. z dnia 23 marca 2017 r. ZENN URZĘY EÓZTA LNŚLĄE, 31 2017.. 1547 UHAŁA NR XXXV/843/17 RAY EE RŁAA 23 2017. p ó p gó N p. 18. 2 p 15 8 1990. ą g (. U. 2016. p. 814, 1579 1948). 210. 1. 4 14 g 2016. p pą ę - ś (. U. 2017. p. 60),

Bardziej szczegółowo

Ż ń Ż

Ż ń Ż Ó Ł Ż ń Ż Ę ć Ź Ę ź ć ć ć ć Ł ć ć ć Ż ć ć ć ć ć Ę ź Ż Ż ć ć ć Ą Ł ć Ż ć ć Ę ć ć ć ć ź Ę ć Ę Ę ć ć ć ć Ę ć ć Ż Ę Ę ć Ż ć Ę ć Ę Ż ć ń ć ć Ż Ż ć Ż ć ń ć ć Ż ń ń ź ć ń ń ć Ę ć ć ć ń ć ć ć Ę ń Ę ć ć ć ź Ę ń

Bardziej szczegółowo

ś ź Ą ś Ą ś ś Ę Ą ń ń ń ś ń ńś ś ń ć ń ś ś ź ć ś ś ź ź Ę Ę ś ć ś ś ć ś ść ń Ę ć ć ć ś ń ć ć ć ś ś Ą ź ść ĘĄ ś ś ć ść ć Ś ś ś ś Ą ś ź ś ś ź ń Ą ś ź Ń ś ś ś Ń ń ź ć ś ś ś ć Ń ś ń ś ź ś ń ń ć ć ś ń ć ń ć

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł

Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł Ł Ń Ł Ą Ź Ą Ń Ą Ą ź Ń Ł Ł Ł ź ź ź Ó Ż ź ź Ń Ł Ł Ł ź Ż Ł ź Ą ź ź Ł ź Ą Ć Ł Ń Ż ź Ł Ż Ć ź Ł Ą Ź Ł Ą Ł Ń Ż Ą Ą ź ź Ą Ó ĄÓ ź ź Ą ź Ł ź Ł ź Ł źń Ć ź Ś Ó Ć Ż Ą Ś Ą Ń ź ź ź Ł Ś ź Ą Ó ź Ą Ó ź Ż Ł ź ź Ł Ń Ł

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Wyk lad 3 Grupy cykliczne

Wyk lad 3 Grupy cykliczne Wyk la 3 Grupy cykliczne Definicja 3.1. Niech a bezie elementem grupy (G,, e). Jeżeli istnieje liczba naturalna k taka, że a k = e, to najmniejsza taka liczbe naturalna k nazywamy rzeem elementu a. W przeciwnym

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż Ś ó ż ż ó ó Ż ó ó ż ę Ż ż ę ó ę Ż Ż ć ó ó ę ó Ż ę Ź ó Ż ę ę ę ó ó ż ę ż ó ęż ę ó ó Ź Ż ę Ż ę ż ó ę Ź ó ż ć ż ę ó ó Ż ć ę ę ę Ż Ż ó ć ę Ą ż ę ó ę ę ć ć ż ó Ż Ź Ż ó Ż Ż ć ż ę ó Ż ż óż ęż ć ó ż Ż ę ę ę ż

Bardziej szczegółowo

WŁADCY BENELUKSU PRZEMYSŁAW JAWORSKI

WŁADCY BENELUKSU PRZEMYSŁAW JAWORSKI 1 2 L u b o ń.. 9- WŁADCY BENELUKSU G e n e a l o g i a d o m ó w p a n u j ą c y c h w N i d e r l a n d a c h/ B e l g i i i L u k s e m b u r g u o p r a c o w a ł RZEMYSŁAW JAWORSKI 3 4 K s i ą ż k

Bardziej szczegółowo

ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż

ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż Ł ę ź ę ż ę ć ęż ę ę Ł ć ę ę ż ć Ś Ń ż ż ż ć ę ę Ą ę ę Ł Ść ż ż ę ź ę ż ż ż ę ę ż ć ę ę Ń ę ę ż ę ę żę ż ć ę ć ę ę ć ę ć Ź ż ć ę ę ę Ą ę ę ę ź ę ż ę Ó ż ę ę ż ć ć ź ż ę ę ę ż ę ż ć ę ę ż ę ę ż ż ć ę ę

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

; -1 x 1 spełnia powyższe warunki. Ale

; -1 x 1 spełnia powyższe warunki. Ale AIB-Inormatka-Wkła - r Aam Ćmel cmel@.ah.eu.pl Funkcje uwkłane Przkła.ozważm równane np. nech. Ptane Cz la owolneo [] stneje tak że? Nech. Wówczas unkcja - spełna powższe warunk. Ale [ ] Q spełna je także

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo