Kształtowanie pola z sondami

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kształtowanie pola z sondami"

Transkrypt

1 Kształtowanie pola z sondami Określenie natęŝenia przepływu objętościowego: PosłuŜono się następującym równaniem: Q = m x c x t Ilości obiegowe w ziemi wyliczone są jak następuje: Q = Ilość ciepła kwh m = Masa (ilość w obiegu) kg c = Wydolność cieplna wh kg x K t = RóŜnica temperatury K (Kelvin) W naszym przypadku jest to róŝnica temperatury przy wejściu i wyjściu z ziemi (naleŝy przestrzegać instrukcji producenta pomy cieplnej WP; zazwyczaj 3-5 K). wynosi: wh kg x K c: Wydajność cieplna charakterystyczna dla wody PoniewaŜ sondy działają zazwyczaj na mieszance woda-glikol, zaś glikol zmniejsza wydajność cieplną, naleŝy tę charakterystykę mieć na uwadze: wh 1.00 kg x K Ilość ciepła (moc potrzebna do ujęcia) oraz róŝnica temperatury są nam znane. To co jest nam potrzebne to ilość wody jaka znajduje się w ziemi. Dlatego zmienimy równanie jak następuje:: m = Q c x t Przykład wyliczenia: Moc ujęcia 8 KW = 8000 W, przewidywana róŝnica temperatury = 3,4 K m = 8000 wh x kg x K 1,0 wh x 3,4 K = 2353 kg m = 2353 kg jest to ilość obiegu w ziemi/godzina = natęŝenie przepływu objętościowego = 2353 L/h Z zastrzeŝeniem moŝliwości wprwadzenia zmian technicznych lub korekty błędów redakcyjnych. (pl) GERES GmbH, Meine, Germany 1

2 Obliczanie minimalnej ilości sond Przykład ukształtowania sondy o wymiarze 35,0 m: Przyjęte natęŝenie przepływu objętościowego: 2353 L/h Maksymalne natęŝenie przepływu objętościowego/sonda: 2353 L/h : 600 L/h = 3,92 sondy Co oznacza w naszym przypadku co najmniej 4 sondy Wyliczanie mocy ujęcia dla jednej sondy: 8000 W / 4 sondy = 2000 W/sonda Ustalenie głębokości wiercenia : Pierwsze 7,0 m zostaną ukształtowane jako przewód pionowy. Dla tego odcinka wychodzimy od mocy równej 25 W/m, Co oznacza 7,0 m x 25 W/m = 175 W. Cała, jedna sonda powinna ujmować 2000 W 2000 W 175 W = 1825 W potrzebne dla mocy ujęcia serpentyny sondy W : 27,5 m serpentyna = 66,3 W/m JeŜeli napotykacie na trudności natury geologicznej o mniejszej mocy ujęcia, naleŝy zamontować odpowiednio mocniejsze sondy. Serpentyna sondy o długości 35 m, maksymalnie rozciągnięta w danym miejscu, moŝe ujmować energię do 100 W/m (do 85 W/m w przypadku miesznki woda-glikol). JeŜeli występują warstwy geologiczne o większej mocy ujęcia, nie ma konieczności do wiercenia maksymalnej głębokości wynoszącej 35,0 m. Nie moŝna zmniejszyć ilości sond dlatego, Ŝe doprowadziło by to do zmniejszenia ilości wody obiegowej. [ Prosimy o obowiązkowe przestrzeganie informacji dotyczących mocy ujęcia, przedstawione w postanowieniach VDI 4640 ] Z zastrzeŝeniem moŝliwości wprwadzenia zmian technicznych lub korekty błędów redakcyjnych. (pl) GERES GmbH, Meine, Germany 2

3 Przykłady róŝnych warstw geologicznych Określenie strat ciśnienia oraz nominalne średnice rury (przewodu) Straty stałego ciśnienia są zawsze uzaleŝnione od pompy woda-ziemia jaka istniej przy pompie ciepła. W przypadku budowy instalacji z sondami, trzeba mieć na uwadze. JeŜeli zachodzi taka potrzeba, powiadomić budowniczego tej instalacji, o stratach stałego ciśnienia, celem nadania odpowiednich rozmiarów rurze łączącej dystrybutor z pompą cieplną. W przypadku sondy GERES jest to prostsze, straty ciśnienia w tej sondzie są zawsze takie same, więc nie ma potrzeby wylicznia tych strat. Ubytki ciśnienia zostaną wskazane w następujących jednostkach miar. Pa (Pascal); mbar m 100 Pa = 1,0 mbar; Pa = 100 mbar Głębokość obiegu (pompa obiegowa) 100 mbar = 1 m Z zastrzeŝeniem moŝliwości wprwadzenia zmian technicznych lub korekty błędów redakcyjnych. (pl) GERES GmbH, Meine, Germany 3

4 Ubytki ciśnienia w instalacji z sondami składają się z następujących odcinków: (1) Sonda GERES (2) Przewód łączący załoŝony pomiędzy sondą GERES i dystrybutorem; (naleŝy brać pod uwagę zawsze długość rury znajdującej się najdalej od sondy). (3) Dystrybutor; (4) Przewód łączący dystrybutor i pompę ciepła; (5) Idywidualne bezpieczniki w pompie ciepła; jak np pompa woda-ziemia, zbrojenia blokujące, przewody, kolanka, odparowywacz itd. Przykład: Jako przykład posłuŝy ponownie system pomy ciepła o mocy termalnej wynoszącej 10 kw, lub odpowiednio 8,0 kw moc ujęcia. NatęŜenie przepływu objętościowego wynosi 2353 L/h, w przypadku róŝnicy temperatury do 3,4 K L/h : 4 sondy = 588 L/h/sonda. Przykład w terenie Najbardziej oddaloną sondą od dystrybutora jest sonda D. Z zastrzeŝeniem moŝliwości wprwadzenia zmian technicznych lub korekty błędów redakcyjnych. (pl) GERES GmbH, Meine, Germany 4

5 Wyliczenie długości przewodów łączących (4) Odcinek D C 5,00 m Odcinek C A 5,00 m Odcinek = A dystrybutor ca.12,00 m Przewód zwykły = 22,00 m Przewód podwójny (tam i spowrotem) 2x 22,00 m = 44,00 m Wyjaśnienia dotyczące przekroju cząstkowego dla (1): ubytku ciśnienia w sondzie = 300 mbar la 588 L/h dla (2): ubytku ciśnienia na 1 metr długości rury 25 x 2,0 mm la 588 L/h = 1,88 mbar /m dla całej długości przewodu = 44,0m x 1,88 mbar/m 83 mbar dla (3): ubytki ciśnienia na dystrybutorze = 40 mbar wynik pośredni: 300 mbar + 83 mbar + 40 mbar = 423 mbar 423 mbar = Pa = 4,23 m wysokość obiegu pompy woda-ziemia. dla (4): na przewodzie łączącym znajdującym się pomiędzy dystrybutorem a pomą ciepła: Ciśnienie dyspozycyjne pompy woda-ziemia = 550 mbar Ciśnienie utracone 1-3./. 423 mbar Ciśnienie stałe = 127 mbar Potrzebne natęŝenie przepływu objętościowego = 2353 L/h Na 1.0 m długości rury o wewnętrznej średnicy wynoszącej 20 mm, przy natęŝeniu przepływu objętościowego wynoszącego 2352 L/h notowane są ubytki ciśnienia wynoszące około 5,7 mbar/m. ÎW przypadku ciśnienia stałego wynoszącego 127 bar, wyliczenie wygląda następująco: 127 mbar: 5,7 mbar/m = 22,10 m maksymalna długość rury. W przypadku całkowitej długości rura przewodu łączącego od 0,0 do 22,0 m, średnica nominalna DN 25 jest wystarczjąca. JeŜeli taka długość zostanie przekroczona, naleŝy zastosować odpowiednio większą średnicę. JeŜeli nie musicie sami ksztełtować przewodu pomiędzy dystrybutorem i pompą ciepła poniewaŝ zrobi to konstruktor instalacji cieplnej, naleŝy podać mu jedynie ubytki ciśnienia aŝ do dystrybutora i łączenie z nim. dla (5): danych technicznych producenta pompy cieplnej, w tej rubryce wskazane jest "ciśnienie rozporządzalne" - lub "ciśnienie wolne" lub "wysokość obiegu odpadowego. - wartość ta zawiera juŝ wszystkie przypadkowe straty w pompie cieplnej. - w podanym przypadku wychodzimy od ciśnienia rozporządzalnego 550 mbar. - jeŝeli wartości te nie zostały podane, naleŝy zwrócić się do producenta pompy cieplnej o ich udostępnienie. Centralizacja: 1. Określenie natęŝenia przepływu objętościowego: 8000W : 3,4 K = 2352 L/h 2. Minimalna ilość sond: 2350 L/h : 600 L = 3,92 = 4 sondy. 3. Oblicznie strat ciśnienia w segmentach / dystrybutor sondy (1-3) i dystrybutor sondy cieplnej (4). Z zastrzeŝeniem moŝliwości wprwadzenia zmian technicznych lub korekty błędów redakcyjnych. (pl) GERES GmbH, Meine, Germany 5

INSTRUKCJA MONTAśU I UśYTKOWANIA POJEMNOŚCIOWE PODGRZEWACZE WODY BSV

INSTRUKCJA MONTAśU I UśYTKOWANIA POJEMNOŚCIOWE PODGRZEWACZE WODY BSV INSTRUKCJA MONTAśU I UśYTKOWANIA POJEMNOŚCIOWE PODGRZEWACZE WODY BSV IZOLACJA Materiał: pianka poliuretanowa - Grubość: 50mm dla modeli 150-500l, 70mm dla modeli 800-1000l - Gęstość 40kg/m³ Płaszcz: skay

Bardziej szczegółowo

Dobrano drugi kocioł gazowy firmy: Hoval. Model: 300 Moc nominalna: 272,0 kw Pojemność wodna: 420,0 dm 3 Średnica króćców:

Dobrano drugi kocioł gazowy firmy: Hoval. Model: 300 Moc nominalna: 272,0 kw Pojemność wodna: 420,0 dm 3 Średnica króćców: 1 III. OBLICZENIA Obiekt: Budynek 4- główna kotłownia ( bud 1,2,3,4,5,6,7) ver. 1.28 1.0 Dobór urządzeń kotłowni 1.1 Zapotrzebowanie na moc cieplną wg PN-EN 12828:2006 ObciąŜenia cieplne instalacji ogrzewania

Bardziej szczegółowo

Dane techniczne LA 18S-TUR

Dane techniczne LA 18S-TUR Dane techniczne LA 18S-TUR Informacja o urządzeniu LA 18S-TUR Konstrukcja - źródło ciepła Powietrze zewnętrzne - Wykonanie Uniwersalna konstrukcja odwracalna - Regulacja - Obliczanie ilości ciepła Zintegrow.

Bardziej szczegółowo

Dane techniczne LA 8AS

Dane techniczne LA 8AS Dane techniczne LA 8AS Informacja o urządzeniu LA 8AS Konstrukcja - źródło ciepła Powietrze zewnętrzne - Wykonanie Budowa uniwersalna - Regulacja WPM 6 montaż naścienny - Miejsce ustawienia Na zewnątrz

Bardziej szczegółowo

VIESMANN. Wyposażenie dodatkowe do kotłów o dużej mocy Podwyższanie temperatury wody na powrocie z pompą mieszającą.

VIESMANN. Wyposażenie dodatkowe do kotłów o dużej mocy Podwyższanie temperatury wody na powrocie z pompą mieszającą. VIESMANN Wyposażenie dodatkowe do kotłów o dużej mocy Podwyższanie temperatury wody na powrocie z pompą mieszającą Dane techniczne Numer katalog. i ceny: na żądanie Wyposażenie dodatkowe do kotłów o dużej

Bardziej szczegółowo

22 Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia

22 Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia Rysunek wymiarowy jednostka wewnętrzna 151 125 101 54 47 0 0 99 170 201 243 274 371 380 2 x Ø7 429 695 669 628 2 x Ø7 452 20 1 2 241 3 4 1 Złącze śrubowe (Ø 10) do przyłączenia jednostki zewnętrznej 2

Bardziej szczegółowo

30 Materiały techniczne 2019 powietrzne pompy ciepła typu split do grzania i chłodzenia

30 Materiały techniczne 2019 powietrzne pompy ciepła typu split do grzania i chłodzenia Rysunek wymiarowy jednostka wewnętrzna 11 12 101 4 47 0 0 99 170 201 243 274 371 380 2 x Ø7 429 69 669 628 2 x Ø7 42 20 1 2 241 3 4 1 2 3 4 6 7 Złącze śrubowe (Ø 10) do przyłączenia jednostki zewnętrznej

Bardziej szczegółowo

Dane techniczne LA 17TU

Dane techniczne LA 17TU Dane techniczne LA 17TU Informacja o urządzeniu LA 17TU Konstrukcja - źródło ciepła Powietrze zewnętrzne - Wykonanie Budowa uniwersalna - Regulacja - Obliczanie ilości ciepła Zintegrow. - Miejsce ustawienia

Bardziej szczegółowo

Dane techniczne LAK 9IMR

Dane techniczne LAK 9IMR Dane techniczne LAK 9IMR Informacja o urządzeniu LAK 9IMR Konstrukcja - źródło ciepła Powietrze zewnętrzne - Wykonanie - Regulacja - Obliczanie ilości ciepła Nie - Miejsce ustawienia Limity pracy - Min.

Bardziej szczegółowo

14 Materiały techniczne 2019 powietrzne pompy ciepła typu split do grzania i chłodzenia

14 Materiały techniczne 2019 powietrzne pompy ciepła typu split do grzania i chłodzenia Rysunek wymiarowy jednostka wewnętrzna 11 12 101 4 47 0 0 99 170 201 243 274 371 380 2 x Ø7 429 69 669 628 2 x Ø7 42 20 1 2 241 3 4 1 2 3 4 6 7 Złącze śrubowe (Ø 10) do przyłączenia jednostki zewnętrznej

Bardziej szczegółowo

SGE. Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody SGE - 40/60. Innovation has a name.

SGE. Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody SGE - 40/60. Innovation has a name. Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody SGE - 40/60 Solar control Kondensacyjny gazowo-słoneczny podgrzewacz wody, ze zintegrowanym solarnym wymiennikiem ciepła do pomieszczeń, sprawność 107%

Bardziej szczegółowo

14 Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia

14 Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia Powietrzne pompy ciepła typu split [system hydrobox] Rysunek wymiarowy jednostka wewnętrzna 151 125 101 54 47 0 0 99 170 201 243 274 371 380 2 x Ø7 429 695 669 628 2 x Ø7 452 20 1 2 241 3 4 1 Złącze śrubowe

Bardziej szczegółowo

32 Materiały techniczne 2015/1 powietrzne pompy ciepła do montażu wewnętrznego

32 Materiały techniczne 2015/1 powietrzne pompy ciepła do montażu wewnętrznego Rysunek wymiarowy 68 65 5 5 5 85 687 5 5 5 około 59 69 Kierunek przepływu powietrza 9 75 5 5 8 Strona obsługowa 5 9 9 9 59 Uchwyty transportowe Wypływ kondensatu, średnica wewnętrzna Ø mm Zasilanie ogrzewania,

Bardziej szczegółowo

Źródła ciepła darmowego

Źródła ciepła darmowego Źródła ciepła darmowego Woda gruntowa Pionowy wymiennik gruntowy Poziomy wymiennik gruntowy Powietrze Efektywność Dostępność VDI 4640 1 Temperatury y dolnych źródeł ciepła 30 o 15 o Powietrze zewnętrzne

Bardziej szczegółowo

13/29 LA 60TUR+ Rewersyjne powietrzne pompy ciepła. Rysunek wymiarowy / plan fundamentu

13/29 LA 60TUR+ Rewersyjne powietrzne pompy ciepła. Rysunek wymiarowy / plan fundamentu LA 6TUR+ Rysunek wymiarowy / plan fundamentu 19 1598 6 1 95 91 1322 8 4.1 231 916 32 73 32 85 6 562 478 X 944 682 44 4 2 4 58 58 2.21 1.2 1.1 2.11 1.3 1.4 4.1 1.4 94 4 8 4.1 8 4.2 2.2 1.3 379 31 21 95

Bardziej szczegółowo

Pytania dotyczące instalacji pompy ciepła Gmina Wierzbica:

Pytania dotyczące instalacji pompy ciepła Gmina Wierzbica: Pytania dotyczące instalacji pompy ciepła Gmina Wierzbica: Cz.III. 1. Czynnik chłodniczy - R 134a jako wymóg czy może być inny? Odp.1. Zamawiający informuje, że zastosowanie innego czynnika chłodniczego

Bardziej szczegółowo

1,90 0,50 0,10 0,17 1,15 2,90. Dobrano grupę pompową GPS 120 prod. SUNEX. Grupa została wyposaŝona w elektroniczną pompę Wilo Stratos Para.

1,90 0,50 0,10 0,17 1,15 2,90. Dobrano grupę pompową GPS 120 prod. SUNEX. Grupa została wyposaŝona w elektroniczną pompę Wilo Stratos Para. Dobór pompy obiegu bufor-solar (4) 173,0 Wydajność pompy: 173,0 3,73 8049 1,4962 5,371 / ciepło właściwe płynu, / róŝnica temperatur płynu, Wysokość podnoszenia pompy : wymagane ciśnienie dyspozycyjne

Bardziej szczegółowo

ZABEZPIECZENIE INSTALACJI C.O.

ZABEZPIECZENIE INSTALACJI C.O. POLITECHNIKA WARSZAWSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA ZAKŁAD KLIMATYZACJI I OGRZEWNICTWA mgr inż. Zenon Spik ZABEZPIECZENIE INSTALACJI C.O. Warszawa, kwiecień 2009 r. Kontakt: zenon_spik@is.pw.edu.pl www.is.pw.edu.pl/~zenon_spik

Bardziej szczegółowo

GASOKOL vacutube kolektor próżniowy

GASOKOL vacutube kolektor próżniowy Zasada działania: Ciecz w rurze grzewczej absorbera na skutek ogrzewania przechodzi w stan gazowy, proces ten wspomagany jest przez lekką ewakuację obiegu. Para przemieszcza się w górę. W kondensatorze

Bardziej szczegółowo

12 Materiały techniczne 2015/1 powietrzne pompy ciepła do montażu wewnętrznego

12 Materiały techniczne 2015/1 powietrzne pompy ciepła do montażu wewnętrznego 59 65 5 8 7 9 5 5 -sprężarkowe kompaktowe powietrzne pompy ciepła Rysunek wymiarowy 68 65 5 5 8 85 około Wszystkie przyłącza wodne, włączając 5 mm wąż oraz podwójne złączki (objęte są zakresem dostawy)

Bardziej szczegółowo

2, m,3 m,39 m,13 m,5 m,13 m 45 6 136 72 22 17 67 52 129 52 max. 4 48 425 94 119 765 Rysunek wymiarowy / plan fundamentu 135 646 11 845 1.2 1.1 3.4 Z Y 3.3 394 3.3 1294 Z Y 2.5 14 4.4 2.21 1.21 1.11 2.6

Bardziej szczegółowo

6 Materiały techniczne 2018/1 powietrzne pompy ciepła do montażu zewnętrznego

6 Materiały techniczne 2018/1 powietrzne pompy ciepła do montażu zewnętrznego 159 7 494 943 73 Rysunek wymiarowy / plan fundamentu 1 71 161 6 D 1.21 1.11 2.21 D 1.1 1.2 1294 154 65 65 544 84 84 maks. 4 765 E 5.3 Ø 5-1 124 54 E 2.5 2.6 Ø 33 1.2 14 C 2.2 54 3 C 139 71 148 3 14 5 4.1

Bardziej szczegółowo

24 Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia

24 Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia Rysunek wymiarowy / plan fundamentu 9 5 8 65 85 69 Powierzchnia podstawy i minmalne odstępy A 5 8 6 6 6 Kierunek przepływu powietrza 85 Główny kierunek wiatru przy instalacji wolnostojącej 5 69 Pompa ciepła

Bardziej szczegółowo

Instrukcja eksploatacji VITOCELL-V 100. Vitocell-V 100 Typ CVA, 750 i 1000 litrów. Pojemnościowy podgrzewacz wody

Instrukcja eksploatacji VITOCELL-V 100. Vitocell-V 100 Typ CVA, 750 i 1000 litrów. Pojemnościowy podgrzewacz wody Vitocell-V 100 Typ CVA, 750 i 1000 litrów Pojemnościowy podgrzewacz wody iuwaga! Dokładne informacje dotyczące parametrów technicznych urządzeń znajdują się w Danych technicznych. VITOCELL-V 100 VN01 250906

Bardziej szczegółowo

PRZYCHODNIA W GRĘBOCICACH GRĘBOCICE ul. Zielona 3działki nr 175/7, 175/4, 705 PROJEKT BUDOWLANY BUDOWY BUDYNKU PRZYCHODNI CZĘŚĆ SANITARNA

PRZYCHODNIA W GRĘBOCICACH GRĘBOCICE ul. Zielona 3działki nr 175/7, 175/4, 705 PROJEKT BUDOWLANY BUDOWY BUDYNKU PRZYCHODNI CZĘŚĆ SANITARNA 5. OBLICZENIA 5.1. BILANS CIEPŁA 5.1.1. Sumaryczne zapotrzebowanie ciepła kotłowni Moc zainstalowanych urządzeń odbiorczych kotłowni określono na podstawie danych wynikających z projektów branżowych wchodzących

Bardziej szczegółowo

ZB 3/5-16 A ZB 7/11-22 A ZWB 7/11-26 A ZSBR 3/5-16A ZWBR 3/5-16 A ZSBR 7/11-28 A ZWBR 7/11-28 A ZBR 7/11-28 A ZBR 11/14-42 A

ZB 3/5-16 A ZB 7/11-22 A ZWB 7/11-26 A ZSBR 3/5-16A ZWBR 3/5-16 A ZSBR 7/11-28 A ZWBR 7/11-28 A ZBR 7/11-28 A ZBR 11/14-42 A Przewód spalinowy ZB 3/5-16 A ZWB 7/11-26 A ZSBR 3/5-16A ZWBR 3/5-16 A ZSBR 7/11-28 A ZWBR 7/11-28 A ZBR 7/11-28 A ZBR 11/14-42 A 6 720 610 335 (02.05) OSW Spis treści Spis treści Wskazówki dotyczące bezpieczeństwa

Bardziej szczegółowo

28 Materiały techniczne 2015/2 powietrzne pompy ciepła do montażu zewnętrznego

28 Materiały techniczne 2015/2 powietrzne pompy ciepła do montażu zewnętrznego 1- i -sprężarkowe powietrzne pompy ciepła Rysunek wymiarowy / plan fundamentu 15 85 13.1 38 5 9 79 3. 1 1.1 79 1. 79.1 5.1 1 3. 1 3 9 15 5 3 7 9 3 7 9 1. 1.1 5.1 5. 5.3 5. 5.5.8.7. Legenda do rysunku patrz

Bardziej szczegółowo

Dlaczego podgrzewacze wody geostor?

Dlaczego podgrzewacze wody geostor? Dlaczego podgrzewacze wody? Aby efektywnie wykorzystać energię natury. Ponieważ wybiega w przyszłość. VIH RW 300 Podgrzewacz pojemnościowy, wyposażony w wężownicę o dużej powierzchni, do współpracy z pompą

Bardziej szczegółowo

SGE Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody

SGE Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody SGE - 40/60 Solar control Kondensacyjny gazowo-słoneczny podgrzewacz wody, ze zintegrowanym solarnym wymiennikiem ciepła do pomieszczeń, sprawność 107%

Bardziej szczegółowo

z gazowej kondensacyjnej centrali cieplnej CERASMARTMODUL

z gazowej kondensacyjnej centrali cieplnej CERASMARTMODUL Wskazówki do odprowadzenie spalin z gazowej kondensacyjnej centrali cieplnej CERASMARTMODUL 6 720 612 261-00.1O ZBS 16/83S-2 MA.. ZBS 22/120S-2 MA.. ZBS 30/150S-2 MA.. ZBS 16/170S-2 solar MA.. 6 720 612

Bardziej szczegółowo

Twister. Kondensacyjny Podgrzewacz Wody ze Stali Nierdzewnej TWI 35-130/45-190. Innovation has a name.

Twister. Kondensacyjny Podgrzewacz Wody ze Stali Nierdzewnej TWI 35-130/45-190. Innovation has a name. Kondensacyjny Podgrzewacz Wody ze Stali Nierdzewnej TWI 35-130/45-190 Kondensacyjny kocioł wodny do pomieszczeń, sprawność 106% Zbiornik ze stali nierdzewnej Brak anod, prosta obsługa Palnik Premix Low-NOx

Bardziej szczegółowo

5.2 LA 35TUR+ Rewersyjne powietrzne pompy ciepła. Rysunek wymiarowy / plan fundamentu. Legenda do rysunku patrz następna strona

5.2 LA 35TUR+ Rewersyjne powietrzne pompy ciepła. Rysunek wymiarowy / plan fundamentu. Legenda do rysunku patrz następna strona LA TUR+ Rysunek wymiarowy / plan fundamentu, 1, 1.1 1 1 13 1 1 1 1 A A 3.1 3.1 1 1 3 31 11. 1.1 1. 1. 1.3.1, 1 33 1 113 313.1.1 1. 1. 1.3 1.1 1. 1.1, m..1..3... 1 1 3 1 3.1.. Legenda do rysunku patrz następna

Bardziej szczegółowo

Spis treści. 1. Zakres opracowania 2. Instalacja centralnego ogrzewania 3. Wentylacja sanitariatów i świetlicy 4. Zamiana materiałów.

Spis treści. 1. Zakres opracowania 2. Instalacja centralnego ogrzewania 3. Wentylacja sanitariatów i świetlicy 4. Zamiana materiałów. Spis treści 1. Zakres opracowania 2. Instalacja centralnego ogrzewania 3. Wentylacja sanitariatów i świetlicy 4. Zamiana materiałów Rysunki: 1. Plan sytuacyjny w skali 1:500 2.1. Rzut parteru - instalacja

Bardziej szczegółowo

Kotły Nike / Eolo Star 24 3 E są przystosowane do pracy z następującymi rodzajami gazów: E (GZ-50), Lw(GZ- 41,5), Ls(GZ-35) i propan techniczny P.

Kotły Nike / Eolo Star 24 3 E są przystosowane do pracy z następującymi rodzajami gazów: E (GZ-50), Lw(GZ- 41,5), Ls(GZ-35) i propan techniczny P. EOLO STAR 24 3 E Nike Star 24 3 E i Eolo Star 24 3 E to nowe wersje wzornicze popularnych kotłów gazowych serii STAR 23 kw. Wyposażone są w mikroprocesorowy system sterowania i regulacji pozwalający na

Bardziej szczegółowo

VIESMANN VITOCAL 200-S Pompa ciepła powietrze/woda, wersja Split 3,0 do 10,6 kw

VIESMANN VITOCAL 200-S Pompa ciepła powietrze/woda, wersja Split 3,0 do 10,6 kw VIESMANN VITOCAL 200-S Pompa ciepła powietrze/woda, wersja Split 3,0 do 10,6 kw Dane techniczne Numery katalog. i ceny: patrz cennik VITOCAL 200-S Typ AWS Pompa ciepła z napędem elektrycznym w wersji Split

Bardziej szczegółowo

Kotły Nike / Eolo Star 24 3 E są przystosowane do pracy z następującymi rodzajami gazów: E (GZ-50), Lw(GZ- 41,5), Ls(GZ-35) i propan techniczny P.

Kotły Nike / Eolo Star 24 3 E są przystosowane do pracy z następującymi rodzajami gazów: E (GZ-50), Lw(GZ- 41,5), Ls(GZ-35) i propan techniczny P. NIKE STAR 24 3 E Nike Star 24 3 E i Eolo Star 24 3 E to nowe wersje wzornicze popularnych kotłów gazowych serii STAR 23 kw. Wyposażone są w mikroprocesorowy system sterowania i regulacji pozwalający na

Bardziej szczegółowo

INSTRUKCJA MONTAŻU I OBSŁUGI ZESTAWÓW SOLARNYCH RUROWYCH

INSTRUKCJA MONTAŻU I OBSŁUGI ZESTAWÓW SOLARNYCH RUROWYCH Ciechanów 05 stycznia 2011 INSTRUKCJA MONTAŻU I OBSŁUGI ZESTAWÓW SOLARNYCH RUROWYCH SA-BUD Krzysztof Kubiak 06-400 Ciechanów, ul. Skrzetuskiego 23, NIP 565-103-64-05, REG. 130065400, tel/fax. 023 672 12

Bardziej szczegółowo

Regulator przepływu (PN 16) AVQ montaż w rurociągu powrotnym i zasilającym

Regulator przepływu (PN 16) AVQ montaż w rurociągu powrotnym i zasilającym Arkusz informacyjny Regulator przepływu (PN 16) montaż w rurociągu powrotnym i zasilającym Opis jest regulatorem przepływu bezpośredniego działania przeznaczonym głównie do sieci cieplnych. Regulator zamyka

Bardziej szczegółowo

Mieszkaniowy węzeł cieplny Regudis W-HTU Dane techniczne

Mieszkaniowy węzeł cieplny Regudis W-HTU Dane techniczne Mieszkaniowy węzeł cieplny Regudis W-HTU Dane techniczne Zastosowanie: Mieszkaniowy węzeł cieplny Regudis W-HTU pośredniczy w zaopatrywaniu pojedynczych mieszkań w ciepło oraz ciepłą i zimną wodę użytkową.

Bardziej szczegółowo

VIESMANN. VITOTRANS 300 Wymiennik ciepła spalin/wody wykorzystujący ciepło kondensacji ze stali nierdzewnej. Dane techniczne VITOTRANS 300

VIESMANN. VITOTRANS 300 Wymiennik ciepła spalin/wody wykorzystujący ciepło kondensacji ze stali nierdzewnej. Dane techniczne VITOTRANS 300 VIESMANN VITOTRANS 300 Wymiennik ciepła spalin/wody wykorzystujący ciepło kondensacji ze stali nierdzewnej Dane techniczne Ceny: patrz cennik VITOTRANS 300 Wymiennik ciepła spalin/wody ze stali nierdzewnej

Bardziej szczegółowo

Wykaz podstawowych sposobów wykonania instalacji (wg PN-IEC :2001)

Wykaz podstawowych sposobów wykonania instalacji (wg PN-IEC :2001) Wykaz podstawowych sposobów wykonania instalacji (wg PN-IEC 60364-5-53:001) Podstawowy sposób wykonania instalacji Tabele obciąŝalności prądowej długotrwałej dla obwodów pojedynczych Izolacja PVC Liczba

Bardziej szczegółowo

KOCIOŁ VICTRIX 50 KOCIOŁ KONDENSACYJNY, JEDNOFUNKCYJNY O DUŻEJ MOCY

KOCIOŁ VICTRIX 50 KOCIOŁ KONDENSACYJNY, JEDNOFUNKCYJNY O DUŻEJ MOCY KOCIOŁ VICTRIX 50 KOCIOŁ KONDENSACYJNY, JEDNOFUNKCYJNY O DUŻEJ MOCY wymiennik ciepła ze stali nierdzewnej INOX, palnik PRE-MIX sterowanie cyfrowe, zapłon elektroniczny płynna elektroniczna modulacja mocy

Bardziej szczegółowo

Dobór urządzeń węzła Q = 75,3 + 16,0 [kw]

Dobór urządzeń węzła Q = 75,3 + 16,0 [kw] Dobór urządzeń węzła Q 75,3 + 16,0 [kw] OBIEKT: Budynek Lubelskiego Urzędu Wojewódzkiego Lublin, ul. Czechowska 15 Parametry wody sieciowej w okresie zimowym Parametry wody sieciowej w okresie letnim Parametry

Bardziej szczegółowo

Pogotowie cieplne (041)

Pogotowie cieplne (041) WSTĘP Węzeł cieplny MEC jest urządzeniem słuŝącym dla potrzeb centralnego ogrzewania i (opcjonalnie) do ogrzewania ciepłej wody uŝytkowej. Zastosowanie nowoczesnej technologii i wysokiej jakości urządzeń

Bardziej szczegółowo

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w taki sposób, że dłuższy bok przekroju znajduje się

Bardziej szczegółowo

VIESMANN VITOCROSSAL 300 Gazowy kocioł kondensacyjny 26 do 60 kw

VIESMANN VITOCROSSAL 300 Gazowy kocioł kondensacyjny 26 do 60 kw VIESMANN VITOCROSSAL 300 Gazowy kocioł kondensacyjny 26 do 60 kw Dane techniczne Numery katalog. i ceny: patrz cennik VITOCROSSAL 300 Typ CU3A Gazowy kocioł kondensacyjny na gaz ziemny i płynny (26 i 35

Bardziej szczegółowo

40** 750* SI 50TUR. Rewersyjne gruntowe pompy ciepła. Rysunek wymiarowy. Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia

40** 750* SI 50TUR. Rewersyjne gruntowe pompy ciepła. Rysunek wymiarowy. Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia Rysunek wymiarowy 1 16 166 1 1 1 1 166 1 1 6 1 1 6 16 * ** 68 1 6 Zasilanie ogrzewania /chłodzenia, wyjście z pompy ciepła, gwint Rp ½ Powrót ogrzewania /chłodzenia, wejście do pompy ciepła, gwint Rp ½

Bardziej szczegółowo

Dane techniczne SIW 8TU

Dane techniczne SIW 8TU Informacja o urządzeniu SIW 8TU Konstrukcja - źródło ciepła Solanka - Wykonanie Budowa uniwersalna - Regulacja - Obliczanie ilości ciepła Zintegrow. - Miejsce ustawienia Kryty - Stopnie mocy 1 Limity pracy

Bardziej szczegółowo

Dane techniczne SIW 11TU

Dane techniczne SIW 11TU Informacja o urządzeniu SIW 11TU Konstrukcja - źródło ciepła Solanka - Wykonanie Budowa kompaktowa - Regulacja - Obliczanie ilości ciepła Zintegrow. - Miejsce ustawienia Kryty - Stopnie mocy 1 Limity pracy

Bardziej szczegółowo

SGE Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody

SGE Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody Kondensacyjny Gazowo- Słoneczny Podgrzewacz Wody - 40/60 Solar control Kondensacyjny gazowo-słoneczny podgrzewacz wody, ze zintegrowanym solarnym wymiennikiem ciepła do pomieszczeń, sprawność 107% Maksymalne

Bardziej szczegółowo

36 ** 815 * SI 70TUR. Rewersyjne gruntowe pompy ciepła. Rysunek wymiarowy

36 ** 815 * SI 70TUR. Rewersyjne gruntowe pompy ciepła. Rysunek wymiarowy SI TUR Rysunek wymiarowy 126 123 166 1 1263 1146 428 6 682 12 24 36 ** 1 4 166 1 6 114 344 214 138 3 4 2 6 1 1 Zasilanie ogrzewania /chłodzenia, wyjście z pompy ciepła, gwint Rp 2½ 2 Powrót ogrzewania

Bardziej szczegółowo

Grzejnikowe zawory powrotne

Grzejnikowe zawory powrotne 7 EN - Zawory proste ADN Zawory kątowe AEN Grzejnikowe zawory powrotne do -rurowych instalacji grzewczych ADN AEN Korpus zaworu z mosiądzu, matowy niklowany Średnica DN, DN i DN Z nastawą wstępną wartości

Bardziej szczegółowo

Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500

Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500 , Filtry oleju MS 500, V 500, R 500, V½ - 500, ½ - 500 Instrukcja obsługi i montażu AFRISO sp. z o.o. Szałsza, ul. Kościelna 7, 42-677 Czekanów Tel. 032 330 33 55; Fax. 032 330 33 51; www.afriso.pl Olej

Bardziej szczegółowo

OPIS ZAMÓWIENIA. Sprzedaż i dostawa ciepłomierzy ultradźwiękowych i mechanicznych z aktywnym modułem radiowym

OPIS ZAMÓWIENIA. Sprzedaż i dostawa ciepłomierzy ultradźwiękowych i mechanicznych z aktywnym modułem radiowym OPIS ZAMÓWIENIA Nazwa zamówienia: Sprzedaż i dostawa ciepłomierzy ultradźwiękowych i mechanicznych z aktywnym modułem radiowym Adres: ul. Grażyńskiego 17 43-190 Mikołów Inwestor: Zakład Inżynierii Miejskiej

Bardziej szczegółowo

Ultradźwiękowy licznik ilości ciepła (ciepłomierz) Engelmann. Ultradźwiękowy czujnik przepływu do montażu na prostym odcinku rury.

Ultradźwiękowy licznik ilości ciepła (ciepłomierz) Engelmann. Ultradźwiękowy czujnik przepływu do montażu na prostym odcinku rury. Ultradźwiękowy licznik ilości ciepła (ciepłomierz) Engelmann Ultradźwiękowy czujnik przepływu do montażu na prostym odcinku rury. Rozpoznanie przepływu wstecznego i przepływu powietrza Odporność na wysokie

Bardziej szczegółowo

Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego

Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego 15 132 21 17 716 569 75 817 122 1 69 2 8 2 89 159 249 479 69,5 952 81 146 236 492 Ø824 LA 4TU-2 Rysunek wymiarowy / plan fundamentu 87 1467 181 897 4.1 69 29 682 1676 2.2 1.1 1.2 2.1 3.1 3.1 A A 113 29

Bardziej szczegółowo

Zestawienie produktów

Zestawienie produktów 6 Agregaty pompowe do oleju opałowego i napędowego Zestawienie produktów 11a1 11a2 instalacje jednorurowe Zastosowanie instalacje jednorurowe Zastosowanie przy zbiorniku Miejsce montażu przy odbiorniku

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy

Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania

Bardziej szczegółowo

VICTRIX SUPERIOR TOP 32 X

VICTRIX SUPERIOR TOP 32 X VICTRIX SUPERIOR TOP 32 X W ramach nowej linii kotłów Victrix Superior TOP Iergas proponuje również kocioł jednofunkcyjny do współpracy z zasobnikiem wolnostojącym. Zestawy Victrix Superior TOP PLUS stworzone

Bardziej szczegółowo

Kolektory słoneczne płaskie - montaż na połaci dachu SOL 27 premium S/W

Kolektory słoneczne płaskie - montaż na połaci dachu SOL 27 premium S/W Najnowszy kolektor płaski SOL 27 premium jest urządzeniem o najwyższej sprawności dzięki zastosowaniu nowoczesnej technologii wykonania. Dostępny jest w wersji do montażu pionowego (S) lub poziomego (W).

Bardziej szczegółowo

Montaż i eksploatacja sprężarkowych pomp ciepła. dr hab. inż. Paweł Obstawski

Montaż i eksploatacja sprężarkowych pomp ciepła. dr hab. inż. Paweł Obstawski Montaż i eksploatacja sprężarkowych pomp ciepła dr hab. inż. Paweł Obstawski Zakres tematyczny Podział pomp ciepła w zależności od konstrukcji i zasady pracy Budowa i zasada działania sprężarkowej pompy

Bardziej szczegółowo

Wszystkie rozwiązanie techniczne jakie znalazły zastosowanie w Avio kw zostały wykorzystane również w tej grupie urządzeń.

Wszystkie rozwiązanie techniczne jakie znalazły zastosowanie w Avio kw zostały wykorzystane również w tej grupie urządzeń. ZEUS 24 kw W ciągu ponad czterdziestoletniej produkcji gazowych kotłów grzewczych Immergas za cel nadrzędny stawiał sobie zapewnienie komfortu ciepłej wody użytkowej. Nie zapomnieliśmy o tym i w tym przypadku.

Bardziej szczegółowo

16 Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego

16 Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego Rysunek wymiarowy / plan fundamentu 9 75 8 65 85 69 Powierzchnia podstawy i minmalne odstępy A 5 8 6 6 6 Kierunek przepływu powietrza 85 Główny kierunek wiatru przy instalacji wolnostojącej 5 69 Pompa

Bardziej szczegółowo

KOMFORT GRZANIA I CHŁODZENIA

KOMFORT GRZANIA I CHŁODZENIA POMPY CIEPŁA glikol-woda (dane techniczne) INWERTEROWE (modulowana moc) KOMFORT GRZANIA I CHŁODZENIA DANFOSS INVERTER TECHNOLOGY SERIA ecogeo HP HP1 / HP3 produkowane w Hiszpanii do 30% oszczędności w

Bardziej szczegółowo

Dane techniczne SIW 6TU

Dane techniczne SIW 6TU Informacja o urządzeniu SIW 6TU Konstrukcja - źródło ciepła Solanka - Wykonanie Budowa uniwersalna - Regulacja - Obliczanie ilości ciepła Zintegrow. - Miejsce ustawienia Kryty - Stopnie mocy 1 Limity pracy

Bardziej szczegółowo

2

2 1 2 4 5 6 7 8 9 SmartPlus J.M. G5+ G6+ G8+ G+ G12+ G14+ G16+ Moc grzewcza* Moc chłodnicza Moc elektryczna sprężarki Moc elektryczna dodatkowej grzałki elektrycznej Liczba faz Napięcie Częstotliwość Prąd

Bardziej szczegółowo

1 Manometr instalacji górnego źródła ciepła 2 Manometr instalacji dolnego źródła ciepła

1 Manometr instalacji górnego źródła ciepła 2 Manometr instalacji dolnego źródła ciepła Rysunek wymiarowy 1 1 199 73 173 73 59 79 1 3 11 1917 95 5 7 7 93 7 79 5 3 533 9 9 1 1 Manometr instalacji górnego źródła ciepła Manometr instalacji dolnego źródła ciepła 17 3 Odpowietrzanie Zasilanie

Bardziej szczegółowo

Zawór gniazdowy (PN 16) VFM 2 zawór 2-drogowy, z kołnierzem

Zawór gniazdowy (PN 16) VFM 2 zawór 2-drogowy, z kołnierzem Arkusz informacyjny Zawór gniazdowy (PN 16) VFM 2 zawór 2-drogowy, z kołnierzem Opis Cechy zaworu: Charakterystyka logarytmiczna Zakres regulacji >100:1 Konstrukcja hydraulicznie odciążona Zawór dla układów

Bardziej szczegółowo

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa

[ ] 1. Zabezpieczenia instalacji ogrzewań wodnych systemu zamkniętego. 1. 2. Przeponowe naczynie wzbiorcze. ν dm [1.4] 1. 1. Zawory bezpieczeństwa . Zabezieczenia instalacji ogrzewań wodnych systemu zamkniętego Zabezieczenia te wykonuje się zgodnie z PN - B - 0244 Zabezieczenie instalacji ogrzewań wodnych systemu zamkniętego z naczyniami wzbiorczymi

Bardziej szczegółowo

Straty ciśnienia w systemie wentylacyjnym

Straty ciśnienia w systemie wentylacyjnym Straty ciśnienia w systemie wentylacyjnym Opór przepływu powietrza w systemie wentylacyjnym, zależy głównie od prędkości powietrza w tym systemie. Wraz ze wzrostem prędkości wzrasta i opór. To zjawisko

Bardziej szczegółowo

Materiały techniczne 2019 powietrzne pompy ciepła do montażu wewnętrznego

Materiały techniczne 2019 powietrzne pompy ciepła do montażu wewnętrznego Rysunek wymiarowy 0 6 5* 55 5* 66 55 5 55 (00) 6,5 (00) () 690 (5) (5*) (00) 5,5 6 5* 6 (55) (5*) (66) 690* 6 6 (55) () (55) (5*) (5) (5*) (66) () (55) () 00 5 0 00 00 900 Zasilanie ogrzewania, wyjście

Bardziej szczegółowo

Instrukcja eksploatacji VITOCELL-L 100. Vitocell-L 100 Typ CVL, 500 do 1000 litrów. Pojemnościowy podgrzewacz wody

Instrukcja eksploatacji VITOCELL-L 100. Vitocell-L 100 Typ CVL, 500 do 1000 litrów. Pojemnościowy podgrzewacz wody Vitocell-L 100 Typ CVL, 500 do 1000 litrów Pojemnościowy podgrzewacz wody iuwaga! Dokładne informacje dotyczące parametrów technicznych urządzeń znajdują się w Danych technicznych. VITOCELL-L 100 VN01

Bardziej szczegółowo

Centrala basenowa DanX 1 HP

Centrala basenowa DanX 1 HP Centrala basenowa DanX 1 HP DANE TECHNICZNE Zakres przepływu powietrza m 3 /h 500 1300 Nominalny przepływ powietrza m 3 /h 1000 Spręż dyspozycyjny 1) Pa 200 Ilość powietrza świeżego % 0 100 Filtr nawiewny

Bardziej szczegółowo

Materiały techniczne 2018/1 powietrzne pompy ciepła typu split do grzania i chłodzenia

Materiały techniczne 2018/1 powietrzne pompy ciepła typu split do grzania i chłodzenia Rysunek wymiarowy jednostka wewnętrzna 1890 1 390 2 680 7 ok 300 12 1870 1773 13 1500 14 5 1110 15 820 600 6 325 250 55 0 30 380 130 3 705 8 16 17 0 375 10 950 4 18 19 9 11 1 Powrót ogrzewania, gwint zewnętrzny

Bardziej szczegółowo

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala Zalecenia projektowe i montaŝowe dotyczące ekranowania Wykład Podstawy projektowania A.Korcala Mechanizmy powstawania zakłóceń w układach elektronicznych. Głównymi źródłami zakłóceń są: - obce pola elektryczne

Bardziej szczegółowo

Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia

Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia Rysunek wymiarowy jednostka wewnętrzna 1890 1 390 2 680 7 ok 300 12 1870 1773 13 1500 14 5 1110 15 820 600 6 325 250 55 0 30 380 130 3 705 8 16 17 0 375 10 950 4 18 19 9 11 1 Powrót ogrzewania, gwint zewnętrzny

Bardziej szczegółowo

Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego

Materiały techniczne 2019 powietrzne pompy ciepła do montażu zewnętrznego 1 94 4 8 2 91 115 39 12 187 299 389 184 538 818 91 916 2 1322 234 839 234 LA 6TU-2 Rysunek wymiarowy / plan fundamentu 1595 186 1 95 19 4.1 X 944 682 1844 2.11 1.2 1.1 2.12 8 X 2.1 1.2 1.1 78 185 213 94

Bardziej szczegółowo

Z Z S. 56 Materiały techniczne 2019 gruntowe pompy ciepła

Z Z S. 56 Materiały techniczne 2019 gruntowe pompy ciepła Rysunek wymiarowy Wysokowydajna pompa ciepła typu solanka/woda 1 84 428 56 748 682 69 129 1 528 37 214 138 1591 19 1.1 1.5 1891 1798 1756 1.2 1.6 121 1159 1146 S Z 1.1 Zasilanie ogrzewania, wyjście z pompy

Bardziej szczegółowo

UNITU KAVO PRIMUS 1058

UNITU KAVO PRIMUS 1058 ZAŁĄCZNIK NUMER 1 UNITU KAVO PRIMUS 1058 Unit nie może pracować w pomieszczeniu zagrożonym wybuchem. PODŁOGA: Podłoga w gabinecie powinna być na tyle wytrzymała aby możliwe było pewne zamontowanie unitu

Bardziej szczegółowo

Zawory grzejnikowe. Siemens Building Technologies HVAC Products. norma DIN, do 2-rurowych instalacji grzewczych

Zawory grzejnikowe. Siemens Building Technologies HVAC Products. norma DIN, do 2-rurowych instalacji grzewczych 0 EN - Zawory proste VDN Zawory kątowe VEN Zawory grzejnikowe norma DIN, do -rurowych instalacji grzewczych VDN VEN Korpus zaworu z mosiądzu, matowy niklowany Średnica DN0, DN i DN0 Z nastawą wstępną wartości

Bardziej szczegółowo

Zawórtrójdrogowy: a) mieszający, b) rozdzielający

Zawórtrójdrogowy: a) mieszający, b) rozdzielający Trójdrogowe zawory regulacyjne Ćwiczenia 5 Rodzaje wykonań armatury trójdrogowej Zawórtrójdrogowy: a) mieszający, b) rozdzielający Sposoby montażu zaworów trójdrogowych Wukładzie hydraulicznym zzaworem

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

VIESMANN. Instrukcja obsługi. Zestaw części podstawy z mieszaczem termostatycznym. Wskazówki bezpieczeństwa. dla personelu wykwalifikowanego

VIESMANN. Instrukcja obsługi. Zestaw części podstawy z mieszaczem termostatycznym. Wskazówki bezpieczeństwa. dla personelu wykwalifikowanego Instrukcja obsługi dla personelu wykwalifikowanego VIESMANN Zestaw części podstawy z mieszaczem termostatycznym Rozdzielacz obiegu grzewczego dla kotła Vitopend 100, typ WH1B Wskazówki bezpieczeństwa Prosimy

Bardziej szczegółowo

Zawory regulacyjne (PN 6) VL 2 Zawór 2-drogowy, kołnierzowy VL 3 Zawór 3-drogowy, kołnierzowy

Zawory regulacyjne (PN 6) VL 2 Zawór 2-drogowy, kołnierzowy VL 3 Zawór 3-drogowy, kołnierzowy Arkusz informacyjny Zawory regulacyjne (PN 6) VL 2 Zawór 2-drogowy, kołnierzowy VL 3 Zawór 3-drogowy, kołnierzowy Opis VL 2 VL 3 Zawory VL 2 i VL 3 zapewniają wysokiej jakości regulację i oszczędne rozwiązanie

Bardziej szczegółowo

OGRZEWNICTWO. 5.Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego. Spadek ciśnienia w prostoosiowych odcinkach rur (5.1)

OGRZEWNICTWO. 5.Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego. Spadek ciśnienia w prostoosiowych odcinkach rur (5.1) 70 5.Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego Spadek ciśnienia w prostoosiowych odcinkach rur gdzie: λ - współczynnik tarcia U średnia prędkość przepływu L długość rury d średnica rury

Bardziej szczegółowo

Frese STBV VODRV DN15 - DN500 Statyczne zawory równoważące z króćcami pomiarowymi

Frese STBV VODRV DN15 - DN500 Statyczne zawory równoważące z króćcami pomiarowymi Strona z 37 Frese STBV VODRV DN5 - DN500 Opis, służące do regulacji i pomiaru przepływu. Zastosowanie Zawory Frese VODRV stosowane są w instalacjach grzewczych i w instalacjach wody lodowej. Mogą być używane

Bardziej szczegółowo

Karta katalogowa MEISTERlinie ecogas gazowy kocioł kondensacyjny

Karta katalogowa MEISTERlinie ecogas gazowy kocioł kondensacyjny wersja V3.0 01.2016 Karta katalogowa MEISTERlinie ecogas gazowy kocioł kondensacyjny Heiztechnik GmbH wcześniej MAN Nazwa handlowa : ecogas 18; 24 30 jednofunkcyjny ecogas 18/24; 24/28 30/36 - dwufunkcyjny

Bardziej szczegółowo

Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia

Materiały techniczne 2015/1 powietrzne pompy ciepła typu split do grzania i chłodzenia Powietrzne pompy ciepła typu split [system splydro] Rysunek wymiarowy jednostka wewnętrzna 1890 1 390 2 680 7 ok 300 12 1870 1773 13 1500 14 5 1110 15 820 600 6 325 250 55 0 30 380 130 3 705 8 16 17 0

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia

Materiały techniczne 2019 rewersyjne pompy ciepła do grzania i chłodzenia Rysunek wymiarowy 28 1 ok. 8 19 9 19 12 1 29 9 1 2 1 2 1 112 9 2 2 1 82 111 1 2 Powrót ogrzewania, wejście do pompy ciepła, gwint zewnętrzny * Zasilanie c.w.u., wyjście z pompy ciepła, gwint wew. / zew.

Bardziej szczegółowo

Rysunek SIH 20TEwymiarowy SIH 20TE

Rysunek SIH 20TEwymiarowy SIH 20TE Rysunek SIH TEwymiarowy SIH TE Rysunek wymiarowy Wysokotemperaturowa pompa ciepła solanka/woda ok. 77 9 6 8 8 6 9 69 6 77 9 66 9 Zasilanie ogrzewania, wyjście z pompy ciepła gwint zewnętrzny ¼ Powrót ogrzewania,

Bardziej szczegółowo

Pompa inżektorowa typ P 20

Pompa inżektorowa typ P 20 AGRU-FRANK Polska Sp. z o.o. * ul. Bukowskiego * 2-48 Wrocław Tel./Fax: +48 64 4 * www.agru-frank.pl WORLDWIDE COMPETENCE IN PLASTICS Materiał obudowy PVC-U PP PVDF Materiał uszczelnienia EPDM FKM Dopuszczalna

Bardziej szczegółowo

SI 35TU. 2-sprężarkowe gruntowe pompy ciepła. Rysunek wymiarowy

SI 35TU. 2-sprężarkowe gruntowe pompy ciepła. Rysunek wymiarowy SI TU 2-sprężarkowe gruntowe pompy ciepła Rysunek wymiarowy 1 5 785 6 885 S Z 1.1 682 595 75 1.5 222 1 1.6 1.2 2 4 565 61 1.1 Zasilanie ogrzewania, wyjście z pompy ciepła, gwint zewnętrzny 1½ 1.2 Powrót

Bardziej szczegółowo

Zawory regulacyjne (PN 16) VF 2 Zawór 2-drogowy, kołnierzowy VF 3 Zawór 3-drogowy, kołnierzowy

Zawory regulacyjne (PN 16) VF 2 Zawór 2-drogowy, kołnierzowy VF 3 Zawór 3-drogowy, kołnierzowy Arkusz Informacyjny Zawory regulacyjne (PN 16) VF 2 Zawór 2-drogowy, kołnierzowy VF 3 Zawór 3-drogowy, kołnierzowy Opis VF 2 VF 3 Zawory VF 2 i VF 3 zapewniają wysokiej jakości regulację i oszczędne rozwiązanie

Bardziej szczegółowo

Szkolenie doskonalące dla dowódców JRG Dostarczanie wody na duże odległości

Szkolenie doskonalące dla dowódców JRG Dostarczanie wody na duże odległości Szkolenie doskonalące dla dowódców JRG Dostarczanie wody na duże odległości st. kpt. Mariusz Bukowski z-ca Naczelnik Ośrodka Szkolenia KW PSP Toruń Łubianka, 23 kwietnia 2018 r. Dostarczanie wody na duże

Bardziej szczegółowo

VICTRIX ZEUS SUPERIOR 26 kw

VICTRIX ZEUS SUPERIOR 26 kw VICTRIX ZEUS SUPERIOR 26 kw Prezentując najnowszy model gazowego wiszącego kotła kondensacyjnego Zeus Victrix Superior kw Immergas po raz kolejny wyznacza nowe standardy dla kotłów wiszących. To początek

Bardziej szczegółowo

Arkusz informacyjny MJ MJ

Arkusz informacyjny MJ MJ Arkusz informacyjny MJ MJ261102149 1 Spis treści Zastosowanie... Cechy... Zasada działania... Przykład zastosowania... Dane techniczne... Wyście impulsowe... Sposób montażu... Połączenie SONO 2500CT z

Bardziej szczegółowo

Kolektor słoneczny Heliostar 200

Kolektor słoneczny Heliostar 200 str.1/1 Kolektor słoneczny Heliostar Numer katalogowy S-15 Płaski cieczowy kolektor z wężownicą bez rur zbiorczych przeznaczony do montażu w pozycji pionowej do mniejszych systemów solarnych z pompą obiegową.

Bardziej szczegółowo

Zawory grzejnikowe. Siemens Building Technologies HVAC Products. norma NF, do 2-rurowych instalacji grzewczych

Zawory grzejnikowe. Siemens Building Technologies HVAC Products. norma NF, do 2-rurowych instalacji grzewczych 06 EN - Zawory proste VDN Zawory kątowe VEN Zawory kątowe specjalne VUN Zawory grzejnikowe norma NF, do -rurowych instalacji grzewczych VDN VEN VUN Korpus zaworu z mosiądzu, matowy niklowany Średnica DN0,

Bardziej szczegółowo