OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA SiC-JFET

Wielkość: px
Rozpocząć pokaz od strony:

Download "OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA SiC-JFET"

Transkrypt

1 POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 95 Electrical Engineering 2018 DOI /j Kamil BARGIEŁ *, Damian BISEWSKI * OCENA DOKŁADNOŚCI FIRMOWEGO MAKROMODELU TRANZYSTORA SiC-JFET W pracy zaprezentowano wyniki weryfikacji eksperymentalnej makromodelu tranzystora JFET wykonanego z węglika krzemu o symbolu firmy United Silicon Carbide. Postać makromodelu jest dedykowana dla programu PSPICE i została udostępniona na stronie internetowej producenta. Oceniono dokładność makromodelu poprzez porównanie wybranych obliczonych i katalogowych charakterystyk statycznych oraz charakterystyk C(u) rozważanego tranzystora. Przeanalizowano wpływ temperatury otoczenia na wymienione charakterystyki tranzystora. SŁOWA KLUCZOWE: JFET, makromodel, węglik krzemu. 1. WPROWADZENIE Na przestrzeni ostatnich lat postęp technologiczny w zakresie konstrukcji przyrządów półprzewodnikowych skutkuje pojawieniem się na rynku nowoczesnych półprzewodnikowych przyrządów mocy wykonanych z węglika krzemu. W ten nurt rozwojowy wpisują się również złączowe tranzystory SiC-JFET (ang. Silicon Carbide-Junction Field-Effect Transistors) często stosowane na przykład w energoelektronicznych układach wytwarzania oraz przetwarzania energii elektrycznej [1, 2]. Obecnie, w procesie projektowania i analizy układów elektronicznych niezbędnym narzędziem inżyniera-konstruktora takich układów są odpowiednie programy komputerowe zawierające wiarygodne modele elementów elektronicznych. Jednym z najpopularniejszych programów przeznaczonych do analizy układów elektronicznych jest program PSPICE [3], zawierający między innymi jeden wbudowany model tranzystora JFET. Z drugiej strony, ważną grupę stanowią tzw. makromodele JFET, opracowane przez producentów tych tranzystorów i udostępnione na stronach internetowych w postaci obwodowej lub tekstowej. Makromodele są formułowane w postaci podobwodu i najczęściej zawierają w swojej strukturze modele wbudowane wybranych elementów elektronicznych lub źródła sterowane opisane odpowiednim zbiorem zależności analitycznych, a także dodatkowe elementy bierne [4]. * Akademia Morska w Gdyni

2 68 Kamil Bargieł, Damian Bisewski W pracy omówiono postać oraz zasadę działania firmowego makromodelu tranzystora JFET wykonanego z węglika krzemu o oznaczeniu wyprodukowanego przez United Silicon Carbide [5, 6]. Przeprowadzono ocenę dokładności tego makromodelu poprzez porównanie obliczonych charakterystyk statycznych oraz charakterystyk pojemności C(u) z odpowiednimi charakterystykami zamieszczonymi w karcie katalogowej wymienionego tranzystora. Ponadto, zbadano wpływ temperatury otoczenia na właściwości oraz charakterystyki rozważanego przyrządu półprzewodnikowego. 2. POSTAĆ MODELU Na rys. 1 przedstawiono reprezentację obwodową makromodelu tranzystora, która została udostępniona w postaci tekstowej na stronie internetowej producenta [5]. DRAIN CGD CGDa CGDb D LD DGD DGD2 DGS DDGI DBDD R_RD Dint GATE LG G Gjs R_RGAC2 R_RG R_RGAC1 Gint Gjd DBDS I DRAIN Sint CDSint CGSa DDGSI DGS2 CGSb R_RS CDS I GATE S CGSint CGS LS SOURCE Rys. 1. Reprezentacja obwodowa makromodelu tranzystora JFET

3 Ocena dokładności firmowego makromodelu tranzystora 69 Podstawowym elementem makromodelu (rys. 1) odpowiedzialnym za modelowanie prądu płynącego między drenem i źródłem tranzystora jest sterowane źródło prądowe I DRAIN. Rezystory R_RG, R_RD oraz R_RS modelują rezystancje szeregowe obszarów bramki, drenu oraz źródła tranzystora. Dioda DDGSI wraz ze źródłem sterowanym I GATE modeluje prąd złącza bramka-źródło spolaryzowanego w kierunku przewodzenia, natomiast dioda DBDS prąd złącza spolaryzowanego w kierunku zaporowym z uwzględnieniem zakresu przebicia złącza. Za modelowanie charakterystyk pojemności złącza bramka-źródło odpowiedzialne są elementy DGS2, CGSa oraz CGSb. W topologii modelu (rys. 1) umieszczono również analogiczne elementy związane z modelowaniem charakterystyk pojemności złącza bramka-dren. Elementy CGD, CGS, CDS oraz LG, LD, LD reprezentują pasożytnicze pojemności oraz indukcyjności wyprowadzeń tranzystora. Wydajność sterowanego źródła prądowego I DRAIN jest opisana w trzech zakresach pracy tranzystora, zgodnie ze wzorami [3]: - w zakresie odcięcia (dla u GS VTO(T) < 0): I 0 (1) drain w zakresie liniowym (dla u DS u GS VTO(T)): I BETA( T) (1 LAMBDA V ) u (2 ( u VTO( T)) u ) (2) drain DS DS GS DS w zakresie nasycenia (dla 0 < u GS VTO(T) < u DS ): I BETA( T ) (1 LAMBDA u ) ( u VTO( T )) (3) drain ds gs gdzie: u GS napięcie bramka-źródło, u DS napięcie dren-źródło, BETA parametr transkonduktancji, LAMBDA współczynnik modulacji długości kanału, VTO napięcie progowe. 3. WYNIKI BADAŃ SYMULACYJNYCH Przeprowadzono ocenę dokładności makromodelu tranzystora SiC-JFET o postaci zaprezentowanej w poprzednim punkcie. Wyniki symulacji rozważanym makromodelem porównano z wynikami pomiarów umieszczonymi w karcie katalogowej tranzystora [6]. W podrozdziale 3.1. przedstawiono prądowonapięciowe charakterystyki wyjściowe, przejściowe oraz wejściowe tranzystora w różnych temperaturach otoczenia, natomiast w podrozdziale 3.2. charakterystyki pojemności w funkcji odpowiednich napięć zaciskowych. Na pokazanych w tym rozdziale rysunkach punktami zaznaczono wyniki pomiarów, natomiast liniami ciągłymi oznaczono wyniki symulacji. 2

4 70 Kamil Bargieł, Damian Bisewski 3.1. Charakterystyki statyczne Na rys. 2-4 przedstawiono charakterystyki wyjściowe tranzystora JFET w trzech arbitralnie wybranych temperaturach otoczenia dla różnych wartości napięcia sterującego bramka-źródło. i D [A] u GS = 2V u GS = 0V u GS = - 2V u DS [V] Rys. 2. Charakterystyki wyjściowe tranzystora w temperaturze 25 C T a = 125 C u GS = 2V u GS = 0V i D [A] u GS = - 2V u DS [V] Rys. 3. Charakterystyki wyjściowe tranzystora w temperaturze T a =125 C

5 Ocena dokładności firmowego makromodelu tranzystora T a = 175 C u GS = 2V u GS = 0V i D [A] u GS = - 2V u DS [V] Rys. 4. Charakterystyki wyjściowe tranzystora w temperaturze T a =175 C Jak widać z rys. 2-4, zgodność wyników symulacji i pomiarów uzyskano wyłącznie w zakresie napięć dren-źródło nie przekraczających około 2,5 V we wszystkich rozważanych temperaturach otoczenia, natomiast w pozostałych zakresach tego napięcia rozbieżności pomiędzy wynikami symulacji i pomiarów sięgają od około 15% w temperaturze 25 C do nawet 20% w temperaturze 175 C, co świadczy o dużej niedokładności rozważanego makromodelu tranzystora. Z kolei, na rys. 5 zaprezentowano charakterystyki wyjściowe tranzystora w trzech temperaturach otoczenia przy wartości napięcia u GS = -20 V, co zgodnie z danymi podanymi w karcie katalogowej oznacza pracę tranzystora w zakresie odcięcia. Okazuje się, że różnice pomiędzy wynikami symulacji i pomiarów, widoczne na rys. 5, sięgają nawet czterech rzędów wielkości. Ponadto, charakterystyki obliczone w różnych temperaturach otoczenia pokrywają się co oznacza, że w rozważanym makromodelu nie uwzględniono wpływu temperatury na charakterystyki tranzystora pracującego w zakresie odcięcia.

6 72 Kamil Bargieł, Damian Bisewski 1,E-03 1,E-04 T a = 175 C T a = 125 C 1,E-05 i D [A] 1,E-06 T a = 125 C 1,E-07 T a = 175 C 1,E-08 u GS = -20 V 1,E u DS [V] Rys. 5. Charakterystyki wyjściowe w zakresie odcięcia tranzystora Przedstawione na rys. 5 wyniki pomiarów świadczą o tym, że prąd płynący między drenem a źródłem tranzystora w analizowanym zakresie pracy rośnie wraz ze wzrostem temperatury otoczenia. Przykładowo dla wartości napięcia u DS = 400 V wartość prądu rośnie ponad 10-krotnie przy wzroście temperatury o 150 C. Z kolei, przykładowe charakterystyki wejściowe bramka-źródło tranzystora JFET dla trzech wartości temperatury otoczenia pokazano na rys. 6. 1,E+00 1,E-01 T a = 125 C i G [A] 1,E-02 1,E-03 T a = 175 C 1,E-04 1,E u GS [V] Rys. 6. Charakterystyki wejściowe tranzystora

7 Ocena dokładności firmowego makromodelu tranzystora 73 W przypadku rozważanych charakterystyk (rys. 6), akceptowalną zgodność wyników symulacji i pomiarów uzyskano w zakresie napięć bramka-źródło nie przekraczających 2,5 V. Zmiana nachylenia charakterystyki wejściowej tranzystora w zakresie dużych prądów bramki oraz obserwowana dla napięć bramkaźródło większych niż 3 V wynika z rosnącego wpływu rezystancji szeregowej obszaru bramki i źródła tranzystora. Ponadto, jak widać z rys. 6, wzrost temperatury otoczenia powoduje przesunięcie się charakterystyk w kierunku niższych wartości napięcia bramka-źródło. Na rys. 7 zaprezentowano obliczone oraz katalogowe charakterystyki przejściowe badanego tranzystora JFET przy wartości napięcia dren-źródło równej 5 V u DS = 5 V T a = 125 C i D [A] A T a = 175 C u GS [V] Rys. 7. Charakterystyki przejściowe tranzystora UJN12308K Jak widać (rys. 7), rozbieżności między wynikami symulacji i pomiarów sięgają 10%. Ponadto, na przedstawionych charakterystykach katalogowych widać, że gwałtowny wzrost prądu drenu tranzystora wraz ze wzrostem napięcia bramka-źródło jest zauważalny przy napięciu UGS równym około -7 V. Z drugiej strony, w przypadku charakterystyk obliczonych, analogiczny wzrost prądu ma miejsce przy wartości tego napięcia niższej o około 1 V, co najprawdopodobniej spowodowane jest niewłaściwym doborem w tym makromodelu wartości parametrów związanych z opisem napięcia progowego. Dodatkowo na rys. 7 zaznaczono współrzędne tzw. punktu autokompensacji termicznej (punkt A), w którym temperatura otoczenia nie wpływa na wartości prądu drenu tranzystora. Jak widać, wymieniony punkt, ze względu na wartości prądu i D, znajduje się znacznie poniżej katalogowej [6] dopuszczalnej wartości prądu drenu tego tranzystora.

8 74 Kamil Bargieł, Damian Bisewski 3.2. Charakterystyki pojemności Producent badanego tranzystora umieścił w karcie katalogowej charakterystyki pojemności: wejściowej Ciss, wyjściowej Coss oraz przejściowej Crss w funkcji określonych napięć zaciskowych. Wyżej wymienione pojemności stanowią odpowiednie kombinacje pojemności złączowych tranzystora występujących w strukturze tego przyrządu półprzewodnikowego. Wartości pojemności Ciss, Coss oraz Crss wyrażono wzorami [7]: Ciss Cgs Cgd (4) Coss Cds Cgd (5) Crss Cgd (6) gdzie Cgs pojemność bramka-źródło, Cgd pojemność bramka-dren, natomiast Cds pojemność dren-źródło. Symulacje charakterystyk pojemności C(u) tranzystora zrealizowano z wykorzystaniem specjalizowanych układów obliczeniowych dedykowanych dla programu SPICE o postaci podanej w literaturze [7]. Na rys. 8 przedstawiono obliczone omawianym makromodelem oraz katalogowe charakterystyki pojemności C iss =f(u DS ) oraz C rss =f(u DS ) tranzystora JFET w temperaturze pokojowej Ciss C [pf] Crss u DS [V] Rys. 8. Przebiegi Ciss=f(u DS ) oraz Crss=f(u DS ) tranzystora Jak widać, uzyskano bardzo dobrą zgodność wyników symulacji i pomiarów, co świadczy o dużej dokładności makromodelu w przypadku omawianych charakterystyk pojemności.

9 Ocena dokładności firmowego makromodelu tranzystora UWAGI KOŃCOWE W pracy oceniono dokładność makromodelu tranzystora JFET o symbolu poprzez porównanie charakterystyk obliczonych tym makromodelem z charakterystykami umieszczonymi w karcie katalogowej rozważanego przyrządu półprzewodnikowego. Okazuje się, że w przypadku modelowania charakterystyk statycznych badany makromodel charakteryzuje się stosunkowo niewielką dokładnością. W opisie analitycznym makromodelu nie uwzględniono wpływu temperatury na charakterystyki tranzystora pracującego w zakresie odcięcia, a dodatkowo niepoprawnie oszacowano wartości parametrów związanych z wyznaczaniem wartości napięcia progowego tranzystora, co prowadzi do dość dużych rozbieżności pomiędzy wynikami obliczeń i pomiarów. Z drugiej strony, zadowalającą zgodność wyników symulacji i pomiarów uzyskano w przypadku charakterystyk pojemności C(u) tranzystora, a zatem wykorzystany w makromodelu opis analityczny pojemności z powodzeniem nadaje się do stosowania w przypadku obliczeń wymienionych charakterystyk tranzystorów JFET wykonanych z węglika krzemu. LITERATURA [1] Gong X., Ferreira A., Modeling and Reduction of Conducted EMI in SiC JFET Motor Drivers with Insulated Metal Substrate, IEEE Energy Conversion Cong. and Exposition, 2008, pp [2] Pan S., Li L., Chen Z., Research of Solar Based on Silicon Carbide JFET Power Devices, Energy Procedica, vol.16, 2012, pp [3] PSPICE A/D Reference Guide Version 10.0, Cadence Design Systems Inc., June [4] Zarębski J., Bisewski D., Modele i makromodele tranzystorów MOS mocy dla programu SPICE, Elektronika konstrukcje, technologie, zastosowania, Sigma- Not, Nr 6, 2009, s [5] [6] [7] Zarębski J., Bisewski D., Modelowanie pojemności tranzystora GaAs oraz SiC MESFET w programie PSPICE, Zeszyty Naukowe Akademii Morskiej w Gdyni, Gdynia, Nr 59, 2008, s EVALUATION OF ACCURACY OF SiC-JFET MACROMODEL In the paper, the results of experimental verification of the macromodel of JFET transistor made of silicon carbide fabricated by United Silicon Carbide, are presented. The macromodel form dedicated for PSPICE program is available on

10 76 Kamil Bargieł, Damian Bisewski the manufacturer's website. The accuracy of the macromodel have been evaluated by comparison of selected calculated and measured static characteristics and C-V characteristics of the considered transistor. The influence of ambient temperature on the characteristics of the transistor has been evaluated, as well. (Received: , revised: )

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono

Bardziej szczegółowo

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE

MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Damian Bisewski, Janusz Zarębski Akademia Morska w Gdyni MODELOWANIE ELEKTROTERMICZNYCH CHARAKTERYSTYK TRANZYSTORA MESFET W PROGRAMIE PSPICE Praca dotyczy problematyki modelowania tranzystorów MESFET z

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Politechnika Warszawska Wydział Elektryczny ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH Piotr Grzejszczak Mieczysław Nowak P W Instytut Sterowania i Elektroniki Przemysłowej 2015 Wiadomości ogólne Tranzystor

Bardziej szczegółowo

POMIARY I OBLICZENIA POJEMNOŚCI TRANZYSTORÓW MOCY BJT I SJT WYKONANYCH Z WĘGLIKA KRZEMU

POMIARY I OBLICZENIA POJEMNOŚCI TRANZYSTORÓW MOCY BJT I SJT WYKONANYCH Z WĘGLIKA KRZEMU POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 95 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.95.0001 Joanna SZELĄGOWSKA *, Janusz ZARĘBSKI * POMIARY I OBLICZENIA POJEMNOŚCI TRANZYSTORÓW

Bardziej szczegółowo

Uniwersytet Pedagogiczny

Uniwersytet Pedagogiczny Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 4 Temat: PRZYRZĄDY PÓŁPRZEWODNIKOWE TRANZYSTOR UNIPOLARNY Rok studiów Grupa Imię i nazwisko Data

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 5 FET

Przyrządy półprzewodnikowe część 5 FET Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical

Bardziej szczegółowo

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET

WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET Kamil Bargieł, Damian Bisewski, Janusz Zarębski, Ewelina Szarmach Akademia Morska w Gdyni WYNIKI POMIARÓW PARAMETRÓW TERMICZNYCH TRANZYSTORA SiC JFET W pracy zaprezentowano wyniki pomiarów rezystancji

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Elementy elektroniczne Wykłady 7: Tranzystory polowe

Elementy elektroniczne Wykłady 7: Tranzystory polowe Elementy elektroniczne Wykłady 7: Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (GFET) ze złączem m-s (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy

Bardziej szczegółowo

IV. TRANZYSTOR POLOWY

IV. TRANZYSTOR POLOWY 1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 3 Elektroniczny stetoskop - mikrofon elektretowy. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii

Bardziej szczegółowo

10. Tranzystory polowe (unipolarne FET)

10. Tranzystory polowe (unipolarne FET) PRZYPOMNIJ SOBIE! Elektronika: Co to jest półprzewodnik unipolarny (pod rozdz. 4.4). Co dzieje się z nośnikiem prądu w półprzewodniku (podrozdz. 4.4). 10. Tranzystory polowe (unipolarne FET) Tranzystory

Bardziej szczegółowo

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW

PRZEŁĄCZANIE DIOD I TRANZYSTORÓW L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów

Bardziej szczegółowo

Tranzystory polowe FET(JFET), MOSFET

Tranzystory polowe FET(JFET), MOSFET Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana

Bardziej szczegółowo

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.

Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia. WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk

Bardziej szczegółowo

ZŁĄCZOWY TRANZYSTOR POLOWY

ZŁĄCZOWY TRANZYSTOR POLOWY L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektroniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektroniki na zawody I stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektroniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut. 2. Test

Bardziej szczegółowo

Modelowanie diod półprzewodnikowych

Modelowanie diod półprzewodnikowych Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania

Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania Ćwiczenie A7 : Tranzystor unipolarny JFET i jego zastosowania Jacek Grela, Radosław Strzałka 3 maja 9 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach.

Bardziej szczegółowo

Tranzystory polowe FET(JFET), MOSFET

Tranzystory polowe FET(JFET), MOSFET Tranzystory polowe FET(JFET), MOSFET Ryszard J. Barczyński, 2009 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy

Bardziej szczegółowo

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET) Tranzystory polowe Podział Tranzystor polowy (FET) Złączowy (JFET) Z izolowaną bramką (IFET) ze złączem ms (MFET) ze złączem PN (PNFET) Typu MO (MOFET, HEXFET) cienkowarstwowy (TFT) z kanałem zuobożanym

Bardziej szczegółowo

Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką

Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką doi:.599/.7.7.9 Paweł GÓRECKI, Krzysztof GÓRECKI, Janusz ZARĘBSKI Akademia Morska w Gdyni, Katedra Elektroniki Morskiej Badanie właściwości wybranych modeli tranzystorów bipolarnych z izolowaną bramką

Bardziej szczegółowo

A-7. Tranzystor unipolarny JFET i jego zastosowania

A-7. Tranzystor unipolarny JFET i jego zastosowania A-7. Tranzystor unipolarny JFET i jego zastosowania 1 Zakres ćwiczenia 1.1 Pomiar charakterystyk statycznych tranzystora JFET. 1.2 Projekt, montaż i badanie układu: 1.2.1 sterowanego dzielnika napięcia,

Bardziej szczegółowo

6. TRANZYSTORY UNIPOLARNE

6. TRANZYSTORY UNIPOLARNE 6. TRANZYSTORY UNIPOLARNE 6.1. WSTĘP Tranzystory unipolarne, inaczej polowe, są przyrządami półprzewodnikowymi, których działanie polega na sterowaniu za pomocą pola elektrycznego wielkością prądu przez

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych

Bardziej szczegółowo

ZŁĄCZOWE TRANZYSTORY POLOWE

ZŁĄCZOWE TRANZYSTORY POLOWE L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWE TRANZYSTORY POLOWE RE. 0.4 1. CEL ĆWICZENIA Wyznaczenie podstawowych parametrów tranzystora unipolarnego takich jak: o napięcie progowe, o transkonduktancja,

Bardziej szczegółowo

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 12 Ć wiczenie 2 TRANZYSTORY MOCY Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami. 1. Wiadomości wstępne Tranzystory są to trójelektrodowe przyrządy

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Tranzystory polowe. Klasyfikacja tranzystorów polowych

Tranzystory polowe. Klasyfikacja tranzystorów polowych Tranzystory polowe Wiadomości podstawowe Tranzystory polowe w skrócie FET (Field Effect Transistor), są równieŝ nazywane unipolarnymi. Działanie tych tranzystorów polega na sterowanym transporcie jednego

Bardziej szczegółowo

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory Tranzystory -rodzaje Tranzystor to element, który posiada zdolność wzmacniania mocy sygnału elektrycznego. Z uwagi na tą właściwość,

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo

Tranzystory polowe JFET, MOSFET

Tranzystory polowe JFET, MOSFET Tranzystory polowe JFET, MOSFET Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Tranzystor polowy złączowy JFET Zasada

Bardziej szczegółowo

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*.

1 Dana jest funkcja logiczna f(x 3, x 2, x 1, x 0 )= (1, 3, 5, 7, 12, 13, 15 (4, 6, 9))*. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Odpowiedzi do zadań dla grupy elektronicznej na zawody II stopnia (okręgowe) Dana jest funkcja logiczna f(x 3, x,

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS KTEDR ELEKTRONIKI GH L B O R T O R I U M ELEMENTY ELEKTRONICZNE TRNZYSTOR UNIPOLRNY MOS RE. 2.1 Laboratorium Elementów Elektronicznych: TRNZYSTOR UNIPOLRNY MOS 1. CEL ĆWICZENI - zapoznanie się z działaniem

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUIA ZIENNE W-10 LABORATORIUM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 4 Badanie tranzystorów unipolarnych typu JFET i MOSFET I.

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 2 Charakterystyki tranzystora polowego POJĘCIA

Bardziej szczegółowo

Ćwiczenie nr 7 Tranzystor polowy MOSFET

Ćwiczenie nr 7 Tranzystor polowy MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Badanie tranzystora bipolarnego

Badanie tranzystora bipolarnego Spis ćwiczeń: Badanie tranzystora bipolarnego Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Charakterystyka wejściowa tranzystora bipolarnego 2. Wyznaczanie rezystancji wejściowej 3. Rysowanie charakterystyk

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKAEMIA ÓRNICZO-HTNICZA IM. TANIŁAWA TAZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. iotr ziurdzia paw. C-3, pokój 413; tel. 617-7-,

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektroniki na zawody II stopnia z rozwiązaniami Instrukcja dla zdającego 1. Czas trwania zawodów:

Bardziej szczegółowo

WYZNACZANIE CHARAKTERYSTYK DIODY SCHOTTKY EGO Z WĘGLIKA KRZEMU Z WYKORZYSTANIEM MODELU ELEKTROTERMICZNEGO

WYZNACZANIE CHARAKTERYSTYK DIODY SCHOTTKY EGO Z WĘGLIKA KRZEMU Z WYKORZYSTANIEM MODELU ELEKTROTERMICZNEGO Janusz Zarębski, Jacek Dąbrowski Akademia Morska w Gdyni WYZNACZANIE CHARAKTERYSTYK DIODY SCHOTTKY EGO Z WĘGLIKA KRZEMU Z WYKORZYSTANIEM MODELU ELEKTROTERMICZNEGO W artykule przedstawiono sformułowany

Bardziej szczegółowo

Materiały używane w elektronice

Materiały używane w elektronice Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych

Bardziej szczegółowo

BADANIA SYMULACYJNE STABILIZATORA PRĄDU

BADANIA SYMULACYJNE STABILIZATORA PRĄDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE STABILIZATORA PRĄDU Praca przedstawia wyniki badań symulacyjnych stabilizatora

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 171947 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21)Numer zgłoszenia: 301401 (2)Data zgłoszenia: 08.12.1993 (5 1) IntCl6 H03F 3/72 H03K 5/04

Bardziej szczegółowo

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora

Bardziej szczegółowo

BADANIE TRANZYSTORA BIPOLARNEGO

BADANIE TRANZYSTORA BIPOLARNEGO BADANIE TRANZYSTORA BIPOLARNEGO CEL poznanie charakterystyk tranzystora bipolarnego w układzie WE poznanie wybranych parametrów statycznych tranzystora bipolarnego w układzie WE PRZEBIEG ĆWICZENIA: 1.

Bardziej szczegółowo

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 2 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, wona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław ynowiec, Bogusław

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Badanie diody półprzewodnikowej Symulacja komputerowa PSPICE 9.1 www.pspice.com 1. Wyznaczanie charakterystyki statycznej diody spolaryzowanej w kierunku przewodzenia Rysunek nr 1. Układ do wyznaczania

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

Badanie tranzystorów MOSFET

Badanie tranzystorów MOSFET Instytut Fizyki ul Wielkopolska 5 7045 Szczecin Pracownia Elektroniki Badanie tranzystorów MOSFET Zakres materiału obowiązujący do ćwiczenia: budowa i zasada działania tranzystora MOSFET; charakterystyki

Bardziej szczegółowo

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny POLTEHNKA AŁOSTOKA Tranzystory WYDZAŁ ELEKTYZNY 1. Tranzystory bipolarne 2. Tranzystory unipolarne bipolarny unipolarne Trójkońcówkowy (czterokońcówkowy) półprzewodnikowy element elektroniczny, posiadający

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Vgs. Vds Vds Vds. Vgs

Vgs. Vds Vds Vds. Vgs Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Cel: Zapoznanie ze składnią języka SPICE, wykorzystanie elementów RCLEFD oraz instrukcji analiz:.dc,.ac,.tran,.tf, korzystanie z bibliotek

Bardziej szczegółowo

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n.

Ćwiczenie nr 4 Charakterystyki I= f(u) złącza p-n. Wydział Elektroniki Mikrosystemów i otoniki Politechniki Wrocławskiej TUDA DZENNE LABORATORUM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH Ćwiczenie nr 4 Charakterystyki = f(u) złącza p-n.. Zagadnienia do samodzielnego

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 10

Instrukcja do ćwiczenia laboratoryjnego nr 10 Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz

Bardziej szczegółowo

PODSTAWY ELEKTOTECHNIKI LABORATORIUM

PODSTAWY ELEKTOTECHNIKI LABORATORIUM PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS

Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE AKAEMA ÓRNCZO-HTNCZA M. TANŁAWA TAZCA W KRAKOWE Wydział nformatyki, Elektroniki i Telekomunikacji Katedra Elektroniki ELEMENTY ELEKTRONCZNE dr inż. iotr ziurdzia paw. C-3, pokój 413; tel. 617-7-, piotr.dziurdzia@agh.edu.pl

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: Podstawy Elektroniki Prowadzący: Prof. dr hab. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl Program: wykład - 15h laboratorium

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NWERSYTET TECHNOLOGCZNO-PRZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSPLOATACJ MASZYN TRANSPORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E7 BADANE DODY PROSTOWNCZEJ DODY ZENERA

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

Wstęp do analizy układów mikroelektronicznych

Wstęp do analizy układów mikroelektronicznych Wstęp do analizy układów mikroelektronicznych Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Komputerowe projektowanie układów 1 Koszty układów mikroelektronicznych Niemal

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 4

Przyrządy półprzewodnikowe część 4 Przyrządy półprzewodnikowe część 4 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA

Bardziej szczegółowo

DIODY PÓŁPRZEWODNIKOWE

DIODY PÓŁPRZEWODNIKOWE Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 6

Przyrządy półprzewodnikowe część 6 Przyrządy półprzewodnikowe część 6 Dr inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical

Bardziej szczegółowo

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem

Bardziej szczegółowo

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA

BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 170013 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 297079 (22) Data zgłoszenia: 17.12.1992 (51) IntCl6: H01L 29/792 (

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

III. TRANZYSTOR BIPOLARNY

III. TRANZYSTOR BIPOLARNY 1. TRANZYSTOR BPOLARNY el ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora bipolarnego Zagadnienia: zasada działania tranzystora bipolarnego. 1. Wprowadzenie Nazwa tranzystor pochodzi z języka

Bardziej szczegółowo

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektrotechniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut.

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

ANALIZA WPŁYWU WYBRANYCH ASPEKTÓW TECHNOLOGII WYKONANIA TRANZYSTORA MOSFET NA KRYTYCZNE PARAMETRY UŻYTKOWE

ANALIZA WPŁYWU WYBRANYCH ASPEKTÓW TECHNOLOGII WYKONANIA TRANZYSTORA MOSFET NA KRYTYCZNE PARAMETRY UŻYTKOWE Mgr inż. Krystian KRÓL 1,2 Mgr inż. Andrzej TAUBE 2 Dr inż. Mariusz SOCHACKI 2 Prof. dr hab. inż. Jan SZMIDT 2 1 Instytut Tele- i Radiotechniczny 2 Instytut Mikro- i Optoelektroniki Politechnika Warszawska

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 1.2 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Ośrodek Kształcenia na Odległość OKNO Politechniki Warszawskiej 2015r.

Ośrodek Kształcenia na Odległość OKNO Politechniki Warszawskiej 2015r. Opis przedmiotu Kod przedmiotu MIKZ Nazwa przedmiotu Mikroelektronika Wersja przedmiotu 2 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów

Bardziej szczegółowo

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH

LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Damian BISEWSKI* Janusz ZARĘBSKI* LABORATORIUM POMIARÓW ELEMENTÓW I UKŁADÓW ELEKTRONICZNYCH W pracy zaprezentowano

Bardziej szczegółowo

Elementy przełącznikowe

Elementy przełącznikowe Elementy przełącznikowe Dwie główne grupy: - niesterowane (diody p-n lub Schottky ego), - sterowane (tranzystory lub tyrystory) Idealnie: stan ON zwarcie, stan OFF rozwarcie, przełączanie bez opóźnienia

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI DIODY

LABORATORIUM PODSTAW ELEKTRONIKI DIODY ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 2 DIODY DO UŻYTKU

Bardziej szczegółowo

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Przyrządów Półprzewodnikowych. Ćwiczenie 2 Ćwiczenie 2 Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji parametrów odpowiadających im modeli małosygnałowych, poznanie metod

Bardziej szczegółowo

A6: Wzmacniacze operacyjne w układach nieliniowych (diody)

A6: Wzmacniacze operacyjne w układach nieliniowych (diody) A6: Wzmacniacze operacyjne w układach nieliniowych (diody) Jacek Grela, Radosław Strzałka 17 maja 9 1 Wstęp Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1. Charakterystyka

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Poznanie budowy i zasady pracy tranzystora JFET. Pomiar charakterystyk tranzystora JFET. Czytanie schematów elektronicznych. Przestrzeganie

Bardziej szczegółowo

Ćwiczenie 9 TRANZYSTORY POLOWE MOS

Ćwiczenie 9 TRANZYSTORY POLOWE MOS Ćwiczenie 9 TRNZYSTORY POLOWE MOS Wstęp Celem ćwiczenia jest wyznaczenie charakterystyk napięciowo-prądowych tranzystorów n-mosfet i p-mosfet, tworzących pary komplementarne w układzie scalonym CD4007

Bardziej szczegółowo

SERIA IV. 1. Tranzystor unipolarny: budowa, symbole, zastosowanie, parametry.

SERIA IV. 1. Tranzystor unipolarny: budowa, symbole, zastosowanie, parametry. SERIA IV ĆWICZENIE _ Temat ćwiczenia: Badanie tranzystorów unipolarnych. Wiadomości do powtórzenia:. Tranzystor unipolarny: budowa, symbole, zastosowanie, parametry.. Charakterystyki statyczne tranzystora

Bardziej szczegółowo