Generator akustyczny na ATtiny25

Wielkość: px
Rozpocząć pokaz od strony:

Download "Generator akustyczny na ATtiny25"

Transkrypt

1 Generator akustyczny na ATtiny25 Generator wytwarza falę sinusoidalną w zakresie 20 Hz...20 khz o wartości międzyszczytowej ok. 3,5 V i zniekształceniach poniżej 0,5%. Jest przestrajany skokowo i płynnie. Przebieg jest wytwarzany cyfrowo z rozdzielczością 8 bitów i częstotliwością próbkowania 625 khz. Dodatkowe materiały na CD i FTP Na CD: karty katalogowe i noty aplikacyjne elementów oznaczonych na wykazie elementów kolorem czerwonym AVT-1569 w ofercie AVT: AVT-1569A płytka drukowana AVT-1569B płytka drukowana + elementy Dodatkowe materiały na CD i FTP: ftp://ep.com.pl, user: 15257, pass: 1ajsf046 wzory płytek PCB karty katalogowe i noty aplikacyjne elementów oznaczonych na Wykazie Elementów kolorem czerwonym Wykaz elementów Rezystory: (0,125 W/1%) R1: 1,1 kv R2: 18 kv R3: 1 kv R4...R kv (trzy jednakowe, 5%) Kondensatory: C1: 2,7 nf (5 mm) C2: 470 pf (5 mm) C3: 10 mf/16 V (5 mm) C4: 0,1 mf (ceramiczny, 5 mm) Półprzewodniki: U1: ATtiny25-20PU (obudowa DIP8) Inne: J1: gniazdo sygnałowe (np. BNC lub cinch) J2: złącze kalibracji (np. szpilkowe 3 1) J3: złącze szpilkowe 2 3 J4: złącze zasilania (np. szpilkowe 2 1) P1, P2: potencjometr 10 kv, liniowy S1: przełącznik 3-pozycyjny Celem projektu było zbudowanie prostego układu opartego na mikrokontrolerze AVR w małej, 8-nóżkowej obudowie, przy czym układ miał wykorzystywać do maksimum możliwości mikrokontrolera i zawierać minimalną liczbę elementów zewnętrznych. Jako serce wybrano układ ATtiny25, zawierający 2 kb pamięci FLASH, 10-bitowy przetwornik A/C i szybki układ czasowy z wyjściami PWM. Do wytwarzania przebiegu sinusoidalnego użyto bezpośredniej syntezy cyfrowej. W pamięci stałej umieszczono 1024 próbki wartości jednego okresu przebiegu sinusoidalnego. Wartości te są odczytywane w odstępach czasu równych okresowi próbkowania T S (1,6 ms). Po każdym odczycie adres pamięci (reprezentujący fazę przebiegu) zmienia się o wartość D=f 1024T S, gdzie f jest częstotliwością generowanego przebiegu. W ogólnym przypadku D jest liczbą ułamkową. Rys. 1. Zasada pracy przetwornika PWM Mikrokontroler używa formatu stałoprzecinkowego. Zarówno faza, jak i jej przyrost mają 32 bity, z których 6 najstarszych jest ignorowanych, kolejne 10 wyznacza adres pamięci, a 16 najmłodszych stanowi część ułamkową. Najmniejsza możliwa do uzyskania niezerowa wartość D to 1/65536; odpowiadałaby jej częstotliwość 1/65536/ (1024 1,6 ms)=0,00931 Hz. W generatorze wartość D zawiera się w przedziale od 0,03276 do 32,76. Rys. 2. Redukcja tętnień dzięki dodaniu 2-go filtra AVT 1569 Synteza odbywa się w przerwaniach Timera 0, które są generowane co 32 okresy wewnętrznego systemowego zegara taktującego (20 MHz). Częstotliwość wytwarzanego przebiegu sinusoidalnego jest więc pochodną częstotliwości zegara systemowego. Źródłem tego zegara jest wewnętrzny generator RC. W danym egzemplarzu układu scalonego jego częstotliwość może się nieco różnić od standardowej. Dlatego w układzie wprowadzono możliwość dostrojenia (ka- 44 ELEKTRONIKA PRAKTYCZNA 5/2010

2 trzaski potencjometru są filtrowane cyfrowo ze stałą czasową 50 ms. Charakterystyka potencjometru zawiera trzy strefy nieczułości o niewielkiej szerokości. Ułatwiają one ustawienie częstotliwości 20 Hz, 100 Hz, 200 Hz, 1 khz, 2 khz, 10 khz i 20 khz, często używanych w praktyce. Kalibracja Kalibracja wewnętrznego generatora RC polega na zmniejszaniu lub zwiększaniu stanu rejestru OSCCAL. Nową wartość OSCCAL program generatora zapisuje w nieulotnej pamięci EEPROM i wartość ta jest przywracana po każdym włączeniu zasilania. Rys. 3. Schemat ideowy generatora ELEKTRONIKA PRAKTYCZNA 5/2010 libracji) generatora RC z dokładnością ok. 1%. Przetwornik C/A jest oparty na układach modulacji szerokości impulsu (PWM) mikrosterownika. Metoda przetwarzania PWM wykorzystuje fakt, że prostokątny przebieg cyfrowy o amplitudzie U i współczynniku wypełnienia K (0...1) ma wartość średnią równą U K. Po odfiltrowaniu składowej zmiennej przebiegu otrzymujemy napięcie wprost proporcjonalne do współczynnika K. Układ złożony z generatora fali prostokątnej o sterowanej szerokości i z filtru dolnoprzepustowego staje się więc przetwornikiem C/A. Na rys. 1 przedstawiono ideę przetwarzania PWM. Kolorem niebieskim narysowano przebieg cyfrowy (przed filtrem), a kolorem czerwonym jego wartość średnia (po filtrze). Założeniem przyjętym przy projektowaniu generatora było użycie wysokiej częstotliwości f PWM kilka MHz. Modulator PWM, taktowany z 80 MHz i pracujący z rozdzielczością 8 bitów, generowałby jednak przebieg o częstotliwości 80 MHz/256=312,5 khz. Dlatego wykorzystano dwa modulatory. Każdy z nich ma rozdzielczość 4-bitową, a więc f PWM =80 MHz/16=5 MHz. Modulator A przetwarza górne 4 bity każdej próbki, a modulator B 4 bity dolne (o 16-krotnie mniejszej wadze). Przebiegi obu modulatorów są sumowane w R1/R2. Odpowiednie wagi zapewnia stosunek rezystancji wynoszący 1:16. Rezystory tworzą wraz z C1 filtr dolnoprzepustowy 1. rzędu. Sinusoidalny sygnał wyjściowy ma częstotliwość do 20 khz. Filtr nie powinien tłumić go bardziej niż o 0,5 db, stąd częstotliwość graniczna f g wynosząca 70 khz. f PWM wynosi 5 MHz, tętnienia osiągają więc ok. 100 mv pp. Przewidziano ich redukcję poprzez dodanie drugiego filtru dolnoprzepustowego, jak pokazano na rys. 2. Nastawa częstotliwości Zakres generatora jest wybierany 3-pozycyjnym przełącznikiem S1 i wynosi, w pozycjach 1, 2 i 3, odpowiednio Hz, 200 Hz...2 khz i khz. Przełącznik ustawia na wejściu PB2 napięcia 0 V, +2,5 V lub +5 V, mierzone przez przetwornik A/C. Regulacja częstotliwości wewnątrz zakresu jest wykonywana potencjometrem P1. Ewentualne W celu przeprowadzenia kalibracji należy wybrać zakres 200 Hz...2 khz (przełącznik S1 w pozycji 2), a potencjometrem P1 ustawić częstotliwość 200 Hz, 1 khz lub 2 khz. Zmniejszenie/zwiększenie częstotliwości o jeden krok odbywa się przez dołączenie wejścia PB2 odpowiednio do masy lub +5 V przez rezystor 10 kv. Można w tym celu dodać na stałe rezystor (R6) i zworki (J2) ew. przyciski. Aby zapobiec efektowi drgania styków, program nie reaguje na zmiany stanu na PB2, jeśli są one krótsze niż 20 ms. Podczas kalibracji należy unikać ustawiania częstotliwości większych niż znamionowa, gdyż wiązałoby się to z przekroczeniem dopuszczalnej częstotliwości zegara systemowego. Rys. 4. Schemat montażowy generatora 45

3 Montaż i uruchomienie Schemat generatora przedstawia rys. 3. Żółtą linią zaznaczono układ w wersji minimalnej. Aby zapewnić możliwość regulacji poziomu sygnału wyjściowego i jednocześnie odciąć składową stałą wynoszącą ok. +2,2 V, należy dołączyć kondensator C3 i potencjometr P2. Elementy R3 i C2 tworzą dodatkowy opcjonalny filtr dolnoprzepustowy, obniżający tętnienia do poziomu kilku miliwoltów. Złącze J2 i rezystor R6 służą do kalibracji częstotliwości. Przez złącze J3 można zaprogramować mikrokontroler (przedtem należy przełączyć S1 w pozycję 2). Ustawienia bitów-bezpieczników są następujące: LOW BYTE = 0xF1: CKDIV8=1, CKO- UT=1, SUT1:0=11 (14 CK+16K CK+64 ms), CKSEL3:0=0001 (PLL Clock_ HIGH BYTE = 0xDF: RSTDISBL=1, DWEN = 1, SPIEN=0, WDTON=1, EESAVE=1, BODLEVEL2:0=111 EXTENDED=0xFF: SELFPRGEN = 1 Zaprogramowanie pamięci flash jest jedyną czynnością wymaganą przy uruchamianiu układu. Do zasilania generatora należy użyć stabilizowanego napięcia stałego 5 V±10%. Jarosław Ziembicki j.ziembicki@gmx.at Generator szumu różowego W elektroakustyce do ustawienia parametrów audio używa się generatora szumu. Podany na wejście urządzenia szum bada się na wyjściu analizatorem widma. Podobne badanie przy użyciu przestrajanego generatora i miernika poziomu sygnału trwa dość długo. Generator szumu i analizator dają wynik w ułamku sekundy. Dzięki temu na bieżąco możemy widzieć zmiany wnoszone przez np. korektor barwy dźwięku. Badaniu pasma przenoszenia można poddać wzmacniacz, głośniki czy mikrofon. Szum może pomóc ustawić korektorem graficznym płaską charakterystykę przenoszenia zestawu audio, łącznie z głośnikami. Szum można wygenerować przy użyciu komputera z kartą dźwiękową. Rozwiązanie jest proste, ale może nie być zbyt wygodne, jeśli nie dysponujemy laptopem. W Internecie można znaleźć wiele schematów generatorów. Najczęściej są to ukła- Rys. 1. Schemat ideowy generatora szumu dy oparte o szumiące złącze PN tranzystora lub diody. Generatory takie są proste, ale ich parametry nie są powtarzalne. Dobry generator można zbudować na procesorze sygnałowym. Niestety, takie procesory nie są zbyt tanie. Używając jednak generatora pseudolosowego zbudowanego z rejestru przesuwnego i bramki exor oraz filtru, można zbudować AVT-1571 w ofercie AVT: AVT-1571A płytka drukowana AVT-1571A płytka drukowana + elementy Dodatkowe materiały na CD i FTP: ftp://ep.com.pl, user: 15257, pass: 1ajsf046 wzory płytek PCB karty katalogowe i noty aplikacyjne elementów oznaczonych na Wykazie Elementów kolorem czerwonym Wykaz elementów R1, R3: 220 kv R2, R4: 100 kv R5: 47 kv R6: 22 kv R7: 10 kv R8: 4,7 kv R9: 2,2 kv R10: 1 kv C1, C2, C4, C12: 10 mf/16 V C3, C5: 47 nf C6: 22 nf C7: 10 nf C8: 4,7 nf C9: 2,2 nf C10: 1 nf C11: 470 pf U1: ATtiny85-20SU U2: 78L05 U3: TL062 D1: S380 mostek prostowniczy D2: dioda LED J1: PC-GL2.1 złącze J2: goldpin 3 2 J3, J4: goldpin 2 1 AVT 1571 Na CD: karty katalogowe i noty aplikacyjne elementów oznaczonych na wykazie elementów kolorem czerwonym 46 ELEKTRONIKA PRAKTYCZNA 5/2010

4 List. 1. Najważniejszy fragment programu //Pętla generująca szum - LSFR void LosLSFR() { while(1) { ClkEor; // Do pomiaru częstotliwości zegarowej wdt_reset(); // Reset WDG if ( (_rand(255) & 1) == 0 ) // Zależnie od wylosowanej liczby OutH; // ustaw wyjście w stan wysoki else OutL; // lub niski } } //Generuje liczbę pseudolosową int _rand(unsigned int zakres) { static unsigned long lfsr = 1; lfsr = (lfsr >> 1) ^ (-(lfsr & 1) & 0xd ); return( lfsr ); } Generator może być zasilany napięciem w zakresie V, AC lub DC, ponieważ ma własny prostownik i stabilizator. Rys. 2. Schemat montażowy generatora szumu Montaż i uruchomienie Schemat montażowy generatora umieszczono na rys. 2. Montaż generatora przeprowadzamy w sposób klasyczny. Po wlutowaniu wszystkich elementów (poza mikrokontroletani generator o zadowalających parametrach. Chciałem generator zbudować w taki właśnie sposób, ale przyszedł mi do głowy inny pomysł. Generator na rejestrach zastąpiłem mikrokontrolerem. Dzięki temu można eksperymentować z różnymi algorytmami pseudolosowymi. Schemat generatora pokazano na rys. 1. Zastosowałem mikrokontroler AVR ATtiny85. Wybór procesora był podyktowany jego małymi wymiarami, niską cena oraz bardzo niską ceną debuggera AVR Dragon. W docelowym rozwiązaniu wystarczy ATtiny25, ponieważ program zajmuje niecałe 700 b. Sygnał pseudolosowy jest filtrowany w pasywnych filtrach RC (R4-R9 i C5-C11). Odfiltrowany sygnał jest buforowany przez wzmacniacz operacyjny U3B. Na wyjściu wzmacniacza dostępny jest sygnał szumu różowego (złącze J4). Dodatkowo, sygnał bez filtrowania trafia na bufor U3A. Dzielnik R1/ R2/C3 ogranicza amplitudę sygnału na wyjściu U3A do poziomu zbliżonego do sygnału na wyjściu U3B. Ponadto, dzięki zastosowaniu w dzielniku kondensatora, wysokie częstotliwości leżące poza pasmem akustycznym są odcinane, dzięki czemu w szumie są ograniczone wyższe harmoniczne. Na wyjściu J3 bufora dostępny jest sygnał szumu białego. Program Dzięki zastosowaniu mikrokontrolera program jest banalny. Napisano go w języku C, w bezpłatnym środowisku AVR Studio. Do generowania liczb pseudolosowych C udostępnia funkcję rand(). Niestety funkcja ta wykonuje się dość długo, przez co umożliwia przy zegarze 8 MHz generowanie szumu z częstotliwością około 4,5 khz. Próbowałem użyć innego algorytmu. Wykonywał się około 3 razy szybciej, ale to wciąż za mało, aby generować dobry szum. Zastosowałem więc metodę LSFR ( Linear_feedback_shift_register). Dzięki temu uzyskałem częstotliwość generowania szumu około 120 KHz, co przy ciągu 32-bitowym, daje powtórzenie po 35 sekundach. Najistotniejszy fragment kodu programu znajduje się na list. 1. Pierwszą czynnością po uruchomieniu programu jest ustawienie kierunku portów procesora. Następnie funkcja srand() inicjalizuje generator pseudolososowy. W głównej pętli sprawdzany jest stan wejścia PB0. Jeśli wejście to jest w stanie wysokim, to szum jest generowany funkcją LSFR. Gdy wyprowadzenie to jest podłączone do masy, szum jest generowany funkcją rand(). Wyprowadzenie PB0 jest testowane tylko raz po restarcie procesora. Rys. 3. Bity konfiguracji rem) podłączamy zasilanie. Następnie kontrolujemy wartość napięcia na wyjściu stabilizatora. Jeśli napięcie jest poprawne, można zamontować mikrokontroler. Można go zaprogramować przed wlutowaniem lub po nim. Służy do tego 6-pinowe złącze J2. Ustawienie bitów konfiguracyjnych procesora przedstawiono na rys. 3. Po poprawnym zaprogramowaniu procesora urządzenie podejmie pracę. Sygnał szumu można skontrolować, podłączając do wyjścia wzmacniacz lub słuchawki. Płytka jest przeznaczona do umieszczenia w obudowie KM35. Sławomir Skrzyński, EP slawomir.skrzynski@ep.com.pl ELEKTRONIKA PRAKTYCZNA 5/

5 Spowalniacz serwomechanizmu Modelarze zajmujący się budową modeli zdalnie sterowanych często napotykają problem, jak odwzorować powolne ruchy mechanizmów modelu. Dotyczy on takich mechanizmów, jak opuszczane podwozie lub klapy w modelach samolotów lub śmigłowców, obracane wieże artyleryjskie w modelach okrętów. Podałem tylko przykłady. Każdy modelarz może z łatwością rozszerzyć tę listę. Współczesne aparatury projektowane są z myślą o jak najszybszej odpowiedzi serwomechanizmu na ruch drążka lub przełącznika w nadajniku. Oczywiście można połączyć bezpośrednio serwomechanizm z odbiornikiem, ale efekt w przypadku choćby opuszczanego i podnoszonego podwozia jest po prostu śmieszny. Koła wyskakują z kadłuba, jakby poruszane były sprężyną. Sam widziałem kilka takich rozwiązań na filmach dostępnych w Internecie i za każdym razem miałem wrażenie zupełnego braku realizmu. Opisywane urządzenie ma pomóc w rozwiązaniu tego problemu. Odbiorniki zdalnego sterowania mogą być zasilane napięciem 3,5...9 V, natomiast serwomechanizmy 4,8...6 V. Aby dostosować napięcie ze źródła zasilania do potrzeb toru odbiorczego, wykorzystuje się stabilizatory, które obniżają napięcie. Sterowanie modelem odbywa się Rys. 1. Parametry impulsu sterującego pracą serwomechanizmu poprzez wysyłanie impulsów o określonym okresie powtarzania i zmiennym wypełnieniu do serwomechanizmów. Wypełnienie impulsu określa aktualne położenie serwomechanizmu. Typowym czasem powtarzania impulsów sterujących jest 20 ms, chociaż serwomechanizmy działają poprawnie nawet przy czasach powtarzania 30 i więcej ms. Czas trwania impulsu to ms. Położeniu środkowemu serwomechanizmu odpowiada czas 1,5 ms. Amplituda impulsu zawiera się w granicach V. Na rys. 1 przedstawiono parametry impulsu sterującego serwomechanizmem. Opisywany układ służy do sterowania urządzeniami pomocniczymi, wobec czego dokładność ustawienia nie ma tu większego znaczenia, natomiast kluczową rolę odgrywają AVT 1570 przede wszystkim małe wymiary, niski pobór prądu, możliwość pracy przy dużej rozpiętości napięć zasilania, prostota i niski koszt urządzenia. Aby spowolnić ruch serwomechanizmu, należy wykonać trzy czynności: zmierzyć długość impulsu z odbiornika, odczytać wartość opóźnienia oraz zgodnie z odczytaną wartością zmieniać wypełnienie impulsu wysyłanego do serwomechanizmu, aż do osiągnięcia zrównania się wypełnienia impulsów na wejściu i wyj- AVT-1570 w ofercie AVT: AVT-1570A płytka drukowana AVT-1570B płytka drukowana + elementy Dodatkowe materiały na CD i FTP: ftp://ep.com.pl, user: 15257, pass: 1ajsf046 wzory płytek PCB karty katalogowe i noty aplikacyjne elementów oznaczonych na Wykazie Elementów kolorem czerwonym Wykaz elementów R1, R2: 1 kv R3: 300 V P1: 10 kv potencjometr montażowy C1,C2: 10 mf (ceramiczny, SMD) U1: SPX1117-MP3.3 U2: ATiny85 (SMD) T1: BSS138 D1: LED (SMD) Z1,Z2: goldpin męski, kątowy 3 1 ZW1: goldpin męski, prosty 6 1 ZW2: goldpin męski, prosty 3 1 Na CD: karty katalogowe i noty aplikacyjne elementów oznaczonych na wykazie elementów kolorem czerwonym Rys. 2. Schemat elektryczny układu spowalniacza 48 ELEKTRONIKA PRAKTYCZNA 5/2010

6 Rys. 3. Schemat montażowy spowalniacza ściu. Mikrokontroler musi zatem być wyposażony w co najmniej 2 timery, w tym jeden umożliwiający generowanie impulsu o zmiennym wypełnieniu. Musi mieć również możliwość zadawania wielkości opóźnienia. Do tego celu dobrze nadaje się potencjometr połączony z wejściem przetwornika A/C. Z tych powodów wybór padł na ATtiny85 w obudowie SMD. Na rys. 2 widać schemat układu. W celu umożliwienia pracy układu w szerokim zakresie napięć zasilania zastosowano stabilizator SX1117. Układ ten zapewnia poprawną stabilizację napięcia wyjściowego już przy napięciu zasilania 4,5 V. Maksymalne napięcie wejściowe nie może przekraczać 20V. Napięcie zasilania serwomechanizmu jest podawane bezpośrednio z odbiornika. Jest to najczęściej stosowana metoda. Każdy szanujący się odbiornik może zasilać wszystkie podłączone do niego serwomechanizmy. Impulsy wejściowe z odbiornika są podawane na złącze Z1. Należy zwrócić uwagę na układ wyprowadzeń złącza. Jest on typowy dla zdecydowanej większości aparatur zdalnego sterowania. W celu zminimalizowania zewnętrznych elementów wykorzystałem wewnętrzny generator RC procesora. Pracuje on z częstotliwością 8 MHz i dokładnością wystarczającą na potrzeby urządzenia. Pomiar wypełnienia impulsu jest realizowany przez timer T0 mikrokontrolera. Częstotliwość taktowania ustawiono na 125 khz. Ponieważ zmiana wypełnienia to około 1 ms, dokładność pomiaru wynosi ok. 1,2%. Jeżeli założymy, że serwomechanizm ma zakres ruchu 180, dokładność ustawienia wynosi ok. 2. Program sprawdza, czy nie został przekroczony minimalny oraz maksymalny czas wypełnienia, co może się zdarzyć w przypadku działania odbiornika. Jeżeli sprawdzenie da wynik negatywny, wynik pomiaru jest ignorowany. Do generowania impulsu sterującego serwomechanizmem użyłem timera T1. Jest on taktowany przebiegiem o częstotliwości 100 khz. Przy tak dobranej częstotliwości impuls wyjściowy ma od 10 ms do 2,54 ms. Taki zakres umożliwia pełny ruch serwomechanizmu. Dokładność ustawienia wynosi 1/254 całego zakresu. Poza generowaniem impulsu sterującego timer T1 wyznacza czas powtarzania impulsów. Czas jego pracy podzielony jest na 13 odcinków czasowych. W jednym generowany jest impuls, w pozostałych 12 do rejestru porównania jest wpisywana wartość FF, co blokuje wyjście licznika. Rezystor R5 ogranicza prąd wejścia PB2 procesora. Potencjometr P1 jest podłączony do wejścia przetwornika A/C. Służy on do ustawiania czasu opóźnienia ruchu. Czas opóźnienia może być ustawiany w zakresie s. Sterowanie serwomechanizmem odbywa się poprzez tranzystor T1. Zwora Z2 służy do ustawiania napięcia zasilającego tranzystor. Umożliwia to zmianę amplitudy impulsów sterujących serwomechanizmem. Dioda LED, po połączeniu wyprowadzeń ZW1 5 i ZW1-3, sygnalizuje pojawianie się poprawnych impulsów z odbiornika. Złącze ZW1 służy do zaprogramowania procesora. Zygmunt Dziewoński zygdziew@polnet.cc R E K L A M A ELEKTRONIKA PRAKTYCZNA 5/

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Pętla fazowa

Podstawy Elektroniki dla Informatyki. Pętla fazowa AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE GENERATORÓW PRZEBIEGÓW PROSTOKĄTNYCH I GENERATORÓW VCO

LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE GENERATORÓW PRZEBIEGÓW PROSTOKĄTNYCH I GENERATORÓW VCO LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE GENERATORÓW PRZEBIEGÓW PROSTOKĄTNYCH I GENERATORÓW VCO Opracował: mgr inż. Andrzej Biedka . Zapoznać się ze schematem ideowym płytki ćwiczeniowej 2.

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

Generator tonów CTCSS, 1750Hz i innych.

Generator tonów CTCSS, 1750Hz i innych. Generator tonów CTCSS, 75Hz i innych. Rysunek. Schemat ideowy Generatora tonów CTCSS V6. Generator tonów CTCSS został zbudowany w oparciu o popularny mikrokontroler firmy Atmel z rodziny AVR, ATTINY33.

Bardziej szczegółowo

Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE

Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

Uniwersalna płytka generatora tonów CTCSS, 1750Hz i innych.

Uniwersalna płytka generatora tonów CTCSS, 1750Hz i innych. 1 Uniwersalna płytka generatora tonów CTCSS, 1750Hz i innych. Rysunek 1. Schemat ideowy Generatora tonów CTCSS V5. Generator tonów CTCSS został zbudowany w oparciu o popularny mikrokontroler firmy Atmel

Bardziej szczegółowo

1 Badanie aplikacji timera 555

1 Badanie aplikacji timera 555 1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje

Bardziej szczegółowo

Nowy MULTIMETR z czujnikiem Halla

Nowy MULTIMETR z czujnikiem Halla Nowy MULTIMETR z czujnikiem Halla - do zasilaczy, prostowników - MULTIMETR HALL - do wzmacniaczy mocy RF - RF MULTIMETR HALL - do elektrowni wiatrowych, paneli - GREEN ENERGY HALL opr. Piotrek SP2DMB aktualizacja:

Bardziej szczegółowo

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.

Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu. E113 microkit Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100 1.Opis ogólny. Zestaw do samodzielnego montażu. Edukacyjny sterownik silnika krokowego przeznaczony jest

Bardziej szczegółowo

W.J WIELICZKA

W.J WIELICZKA Możliwość sterowania modelem robota do ośmiu stopni swobody lub innym urządzeniem wymagającym kontroli ruchu przestrzennego. Rozdzielczość pozycjonowania 512 położeń 9 bitów. Sterowanie z komputera przez

Bardziej szczegółowo

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie

Bardziej szczegółowo

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 24 100_LED8 Moduł zawiera 8 diod LED dołączonych do wejść za pośrednictwem jednego z kilku możliwych typów układów (typowo jest to układ typu 563). Moduł jest wyposażony w dwa złącza

Bardziej szczegółowo

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC

ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych

Bardziej szczegółowo

4. Dane techniczne 4.1. Pomiar częstotliwości Zakres pomiaru Czas pomiaru/otwarcia bramki/

4. Dane techniczne 4.1. Pomiar częstotliwości Zakres pomiaru Czas pomiaru/otwarcia bramki/ 9 2. Przeznaczenie przyrządu Częstościomierz-czasomierz cyfrowy typ KZ 2025A, KZ 2025B, KZ2025C,K2026A, KZ2026B i KZ 2026C jest przyrządem laboratoryjnym przeznaczonym do cyfrowego pomiaru: - częstotliwości

Bardziej szczegółowo

MCAR Robot mobilny z procesorem AVR Atmega32

MCAR Robot mobilny z procesorem AVR Atmega32 MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..

Bardziej szczegółowo

Tester samochodowych sond lambda

Tester samochodowych sond lambda Tester samochodowych P R O sond J E lambda K T Y Tester samochodowych sond lambda Elektroniczny analizator składu mieszanki AVT 520 Przyrz¹d opisany w artykule s³uøy do oceny sprawnoúci sondy lambda oraz

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

SML3 październik

SML3 październik SML3 październik 2005 16 06x_EIA232_4 Opis ogólny Moduł zawiera transceiver EIA232 typu MAX242, MAX232 lub podobny, umożliwiający użycie linii RxD, TxD, RTS i CTS interfejsu EIA232 poprzez złącze typu

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887

ZL5PIC. Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC Zestaw uruchomieniowy dla mikrokontrolerów PIC16F887 ZL5PIC jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów PIC16F887 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA

WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA Prowadzący: dr inż. Bogdan Kreczmer Autor: Jakub Malewicz Wrocław, 15 VI 2007 SPIS TREŚCI 1. WSTĘP 3 2. DANE STACJI 3 3. SCHEMAT IDEOWY 4 4.

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

SPDIF_Gen generator/ tester sygnału cyfrowego S/PDIF

SPDIF_Gen generator/ tester sygnału cyfrowego S/PDIF PROJEKTY SPDIF_Gen generator/ tester sygnału cyfrowego S/PDIF AVT 5451 Od ostatniego opisu generatora sygnału cyfrowego audio w Elektronice Praktycznej minęło niemal piętnaście lat (EP 12/99 Generator

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:

Bardziej szczegółowo

Cechy karty dzwiękowej

Cechy karty dzwiękowej Karta dzwiękowa System audio Za generowanie sygnału dźwiękowego odpowiada system audio w skład którego wchodzą Karta dźwiękowa Głośniki komputerowe Większość obecnie produkowanych płyt głównych posiada

Bardziej szczegółowo

ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH

ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH 1. WSTĘP Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Zadaniem ćwiczących jest dokonanie pomiaru charakterystyk

Bardziej szczegółowo

Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu.

Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu. microkit E3 Uniwersalny sterownik silnika krokowego z portem szeregowym RS3 z procesorem AT90S33 na płycie E00. Zestaw do samodzielnego montażu..opis ogólny. Sterownik silnika krokowego przeznaczony jest

Bardziej szczegółowo

Audio_Gen generator sygnału sinusoidalnego z DSP

Audio_Gen generator sygnału sinusoidalnego z DSP PROJEKTY Audio_Gen generator sygnału sinusoidalnego z DSP W czasach, gdy studiowałem, w jednej z gablotek, w której były umieszczane tematy prac dyplomowych, na nieco już pożółkłej kartce wisiała propozycja

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Moduł wykonawczy z interfejsem Ethernet Sterowanie 8 przekaźnikami i pomiar napięć przez sieć LAN lub WAN

Moduł wykonawczy z interfejsem Ethernet Sterowanie 8 przekaźnikami i pomiar napięć przez sieć LAN lub WAN AVT 5350 Moduł wykonawczy z interfejsem Ethernet Sterowanie 8 przekaźnikami i pomiar napięć przez sieć LAN lub WAN Gdy zachodzi potrzeba sterowania urządzeniami dużej mocy przez Internet lub sieć LAN,

Bardziej szczegółowo

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia Temat: Przerzutnik monostabilny. Cel ćwiczenia Ćwiczenie 22 Poznanie zasady działania układu przerzutnika monostabilnego. Pomiar przebiegów napięć wejściowego wyjściowego w przerzutniku monostabilny. Czytanie

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

Montaż i uruchomienie

Montaż i uruchomienie Montaż i uruchomienie Całość składa się z kilku płytek drukowanych, z czego dwie pełnią funkcję obudowy. Pozostałe dwie to płyta główna i płytka z przyciskami, przedstawione na rysunku 2. Montaż jest typowy

Bardziej szczegółowo

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski

Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/

Bardziej szczegółowo

Mikrokontroler w roli generatora PWM. Wpisany przez Administrator piątek, 06 lipca :51 -

Mikrokontroler w roli generatora PWM. Wpisany przez Administrator piątek, 06 lipca :51 - PWM - Pulse-width modulation - modulacja szerokości impulsu. Jest to jedna z metod regulacji sygnału prądowego lub napięciowego, polegająca na zmianie szerokości impulsów sygnału o stałej amplitudzie generowanego

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Warsztatowo/ samochodowy wzmacniacz audio

Warsztatowo/ samochodowy wzmacniacz audio Dział Projekty Czytelników zawiera opisy projektów nadesłanych do redakcji EP przez Czytelników. Redakcja nie bierze odpowiedzialności za prawidłowe działanie opisywanych układów, gdyż nie testujemy ich

Bardziej szczegółowo

Sterownik momentu obrotowego silnika prądu stałego

Sterownik momentu obrotowego silnika prądu stałego Politechnika Wrocławska Projekt Sterownik momentu obrotowego silnika prądu stałego Autorzy: Paweł Bogner Marcin Dmochowski Prowadzący: mgr inż. Jan Kędzierski 30.04.2012 r. 1 Opis ogólny Celem projektu

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

Uniwersalna karta I/O

Uniwersalna karta I/O Uniwersalna P R karta O J E KI/O T Y Uniwersalna karta I/O Do zbierania danych i sterowania urządzeniami elektrycznymi często budowane są dedykowane do tego celu autonomiczne przyrządy. Nie zawsze jednak

Bardziej szczegółowo

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6

Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/5 Stabilizator liniowy Zadaniem jest budowa i przebadanie działania bardzo prostego stabilizatora liniowego. 1. W ćwiczeniu wykorzystywany

Bardziej szczegółowo

SERIA D STABILIZATOR PRĄDU DEDYKOWANY DO UKŁADÓW LED

SERIA D STABILIZATOR PRĄDU DEDYKOWANY DO UKŁADÓW LED SERIA D STABILIZATOR PRĄDU DEDYKOWANY DO UKŁADÓW LED Właściwości: Do 91% wydajności układu scalonego z elektroniką impulsową Szeroki zakres napięcia wejściowego: 9-40V AC/DC Działanie na prądzie stałym

Bardziej szczegółowo

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE Przetworniki A/C i C/A Data wykonania LABORATORIUM TECHNIKI CYFROWEJ Skład zespołu: Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach

Bardziej szczegółowo

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń

ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. 1. Wprowadzenie. f bez zakłóceń. Zasilanie FILTR Odbiornik. f zakłóceń ĆWICZENIE 5 EMC FILTRY AKTYWNE RC. Wprowadzenie Filtr aktywny jest zespołem elementów pasywnych RC i elementów aktywnych (wzmacniających), najczęściej wzmacniaczy operacyjnych. Właściwości wzmacniaczy,

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1

Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje

Bardziej szczegółowo

nagrywarka dźwięku Próbkowanie sygnału

nagrywarka dźwięku Próbkowanie sygnału Dodatkowe materiały na CD i FTP AVT 5167 AVt 5167 w ofercie AVt: AVT 5167A płytka drukowana AVT 5167B płytka drukowana + elementy Podstawowe informacje: Płytka o wymiarach 83 47 mm Zasilanie 8...15 V Próbkowanie

Bardziej szczegółowo

Mikrokontrolery AVR techniczne aspekty programowania

Mikrokontrolery AVR techniczne aspekty programowania Andrzej Pawluczuk Mikrokontrolery AVR techniczne aspekty programowania Białystok, 2004 Mikrokontrolery rodziny AVR integrują w swojej strukturze między innymi nieulotną pamięć przeznaczoną na program (pamięć

Bardziej szczegółowo

Ćw. 7 Przetworniki A/C i C/A

Ćw. 7 Przetworniki A/C i C/A Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i

Bardziej szczegółowo

Synteza częstotliwości z pętlą PLL

Synteza częstotliwości z pętlą PLL Synteza częstotliwości z pętlą PLL. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z zasadą działania pętli synchronizacji fazowej (PLL Phase Locked Loop). Ćwiczenie polega na zaprojektowaniu, uruchomieniu

Bardziej szczegółowo

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS

Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168

ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

SWITCH & Fmeter. Fmax 210MHz. opr. Piotrek SP2DMB. Aktualizacja

SWITCH & Fmeter. Fmax 210MHz. opr. Piotrek SP2DMB. Aktualizacja SWITCH & Fmeter Fmax 210MHz opr. Piotrek SP2DMB Aktualizacja 9.03.2015 www.sp2dmb.cba.pl www.sp2dmb.blogspot.com sp2dmb@gmail.com SWITCH & Fmeter przystawka o kilku twarzach Dedykowana do modernizacji

Bardziej szczegółowo

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8

ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega8 (oraz innych w obudowie 28-wyprowadzeniowej). Dzięki wyposażeniu w

Bardziej szczegółowo

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307

Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307 Język C Wykład 9: Mikrokontrolery cz.2 Łukasz Gaweł Chemia C pokój 307 lukasz.gawel@pg.edu.pl Pierwszy program- powtórka Częstotliwość zegara procesora μc (należy sprawdzić z kartą techniczną μc) Dodaje

Bardziej szczegółowo

DTR.AT.01. APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA

DTR.AT.01. APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA DTR.AT.01. APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA EKONOMICZNY GŁOWICOWY PRZETWORNIK TEMPERATURY TYPU AT WARSZAWA, LUTY 2004r. 1 DTR.AT.01 SPIS

Bardziej szczegółowo

8 kanałowy przedłużacz analogowy z RS485

8 kanałowy przedłużacz analogowy z RS485 P R O J E K T Y 8 kanałowy przedłużacz analogowy z RS485 AVT 439 Przesyłanie sygnału analogowego na większe odległości narażone jest na powstanie dużych zakłóceń, a jeśli ma być przesyłanych kilka sygnałów,

Bardziej szczegółowo

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC

ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami

Bardziej szczegółowo

Badanie przerzutników astabilnych i monostabilnych

Badanie przerzutników astabilnych i monostabilnych Badanie przerzutników astabilnych i monostabilnych 1. Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie badania podstawowych układów przerzutników astabilnych, bistabilnych i monostabilnych. 2. Przebieg

Bardziej szczegółowo

ECHO CYFROWE Krzysztof Górski

ECHO CYFROWE Krzysztof Górski ECHO CYFROWE Krzysztof Górski Jeszcze nie tak dawno wykonanie układu echa w warunkach amatorskich było bardzo trudne, konstrukcje przybierały ogromne rozmiary a uzyskiwane czasy opóźnień były niewielkie.

Bardziej szczegółowo

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32

ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107

STM32 Butterfly. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32 Butterfly Zestaw STM32 Butterfly jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity

Bardziej szczegółowo

1. Przeznaczenie testera.

1. Przeznaczenie testera. 1. Przeznaczenie testera. Q- tester jest przeznaczony do badania kwarcowych analogowych i cyfrowych zegarków i zegarów. Q- tester służy do mierzenia odchyłki dobowej (s/d), odchyłki miesięcznej (s/m),

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303.

Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303. Zapoznanie z przyrządami stanowiska laboratoryjnego. 1. Zapoznanie się z oscyloskopem HAMEG-303. Dołączyć oscyloskop do generatora funkcyjnego będącego częścią systemu MS-9140 firmy HAMEG. Kanał Yl dołączyć

Bardziej szczegółowo

Kod produktu: MP01611

Kod produktu: MP01611 CZYTNIK RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi tani i prosty w zastosowaniu czytnik RFID dla transponderów UNIQUE 125kHz, umożliwiający szybkie konstruowanie urządzeń do bezstykowej

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 18 BADANIE UKŁADÓW CZASOWYCH A. Cel ćwiczenia. - Zapoznanie z działaniem i przeznaczeniem przerzutników

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej

XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej. XXXII Olimpiada Wiedzy Elektrycznej i Elektronicznej Zestaw pytań finałowych numer : 1 1. Wzmacniacz prądu stałego: własności, podstawowe rozwiązania układowe 2. Cyfrowy układ sekwencyjny - schemat blokowy, sygnały wejściowe i wyjściowe, zasady syntezy 3.

Bardziej szczegółowo

Generator tonów CTCSS.

Generator tonów CTCSS. Generator tonów CTCSS. Dla niezorientowanych w temacie, system CTCSS jest doskonale opisany na stronie www.radioam.net (http://www.radioam.net/content/view/36/38/), ja skupie się na opisie samego generatora.

Bardziej szczegółowo

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]

ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S] ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).

Bardziej szczegółowo

Dekodery akcesoriów DCC (2)

Dekodery akcesoriów DCC (2) Dekodery akcesoriów DCC (2) Dekodery akcesoriów Projekty DCC Dodatkowe materiały na CD i FTP W poprzednim numerze EP opisaliśmy dekodery akcesoriów do makiety kolejowej: uniwersalny dekoder mocy oraz kontroler

Bardziej szczegółowo

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2016 Nazwa kwalifikacji: Montaż układów i urządzeń elektronicznych Oznaczenie kwalifikacji: E.05 Numer zadania:

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 2 Elektroniczny stetoskop - głowica i przewód akustyczny. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

SPECYFIKACJA HTC-K-VR. Kanałowy przetwornik CO2 z wyjściem analogowym V i progiem przekaźnikowym

SPECYFIKACJA HTC-K-VR. Kanałowy przetwornik CO2 z wyjściem analogowym V i progiem przekaźnikowym SPECYFIKACJA HTC-K-VR Kanałowy przetwornik CO2 z wyjściem analogowym 0...10 V i progiem przekaźnikowym 2016-02-22 HOTCOLD s.c. 05-120 Legionowo, Reymonta 12/26 tel./fax 22 784 11 47 1. Wprowadzenie...3

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

Elektrolityczny kondensator filtrujący zasilanie stabilizatora U12 po stronie sterującej

Elektrolityczny kondensator filtrujący zasilanie stabilizatora U12 po stronie sterującej Designator Part Type Description AM2 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V zasilanie logiki AM3 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V ujemne zasilanie drivera U23 Przetwornica DC/DC 12V/5V

Bardziej szczegółowo

2.1 Porównanie procesorów

2.1 Porównanie procesorów 1 Wstęp...1 2 Charakterystyka procesorów...1 2.1 Porównanie procesorów...1 2.2 Wejścia analogowe...1 2.3 Termometry cyfrowe...1 2.4 Wyjścia PWM...1 2.5 Odbiornik RC5...1 2.6 Licznik / Miernik...1 2.7 Generator...2

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo