OTRZYMYWANIE I STRUKTURA ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH TYTAN W OSNOWIE STOPOWEJ Ni-Mo

Podobne dokumenty
OTRZYMYWANIE I STRUKTURA ELEKTROLITYCZNYCH POWŁOK ZAWIERAJĄCYCH WANAD JAKO SKŁADNIK KOMPOZYTU W OSNOWIE STOPOWEJ Ni-Mo

WPŁYW AMPLITUDY I SEKWENCJI PRĄDOWEJ NA INDUKOWANE ELEKTROOSADZANIE WARSTW KOMPOZYTOWYCH NA OSNOWIE STOPU Ni-Mo

OTRZYMYWANIE WARSTW KOMPOZYTOWYCH NA OSNOWIE STOPU Ni-Mo O PODWYŻSZONEJ ZAWARTOŚCI Mo

ELEKTROLITYCZNE OTRZYMYWANIE I WŁASNOŚCI WARSTW KOMPOZYTOWYCH NIKLU Z MOLIBDENEM

CHARAKTERYSTYKA WARSTW KOMPOZYTOWYCH NA OSNOWIE NIKLU ZAWIERAJĄCYCH TYTAN I ALUMINIUM

WŁASNOŚCI ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH NIKLU Z TYTANEM

ELEKTROLITYCZNE OTRZYMYWANIE I WŁASNOŚCI WARSTW KOMPOZYTOWYCH NIKLU Z WANADEM

CHARAKTERYSTYKA ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH KOBALT I TLENEK NIKLU W AMORFICZNEJ OSNOWIE STOPOWEJ Ni-P

OTRZYMYWANIE I WŁASNOŚCI ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH NA OSNOWIE NIKLU ZAWIERAJĄCYCH TYTAN

WPŁYW OBRÓBKI CIEPLNEJ NA ODPORNOŚĆ KOROZYJNĄ ELEKTROLITYCZNYCH POWŁOK NIKLU Z TYTANEM, MOLIBDENEM LUB WANADEM

WPŁYW OBRÓBKI CIEPLNEJ NA WŁASNOŚCI ELEKTROCHEMICZNE POWŁOK Ni+Ti W ŚRODOWISKU ALKALICZNYM

OBRÓBKA TERMICZNA WARSTW KOMPOZYTOWYCH Ni-P+TiO2+Ti

OBRÓBKA CIEPLNO-CHEMICZNA WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH TYTAN

ELEKTROLITYCZNE OTRZYMYWANIE POWŁOK Ni+Mo+SiNi

ELEKTROLITYCZNE OTRZYMYWANIE POWŁOK Ni-Mo ZAWIERAJĄCYCH POLIPIROL

Elektrochemiczne osadzanie antykorozyjnych powłok stopowych na bazie cynku i cyny z kąpieli cytrynianowych

CHARAKTERYSTYKA STRUKTURY ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH NA OSNOWIE AMORFICZNEGO NIKLU, ZAWIERAJĄCYCH SKŁADNIK TLENKOWY I METALICZNY

ELEKTROLITYCZNE OTRZYMYWANIE I CHARAKTERYSTYKA WARSTW KOMPOZYTOWYCH Ni-P+W I Ni-P+NiO+W W ŚRODOWISKU ALKALICZNYM

ELEKTROCHEMICZNA CHARAKTERYSTYKA WARSTW KOMPOZYTOWYCH Ni+Ti, Ni-P+Ti W ŚRODOWISKU ALKALICZNYM

STRUKTURA I WŁAŚCIWOŚCI WARSTW KOMPOZYTOWYCH NA OSNOWIE AMORFICZNEGO NIKLU MODYFIKOWANYCH WOLFRAMEM LUB TLENKIEM NIKLU

OTRZYMYWANIE I TERMICZNA MODYFIKACJA WARSTW KOMPOZYTOWYCH Ni+Al

STRUKTURA ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH Ni+Al PODDANYCH OBRÓBCE CIEPLNEJ

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Problemy elektrochemii w inżynierii materiałowej

IDENTYFIKACJA FAZ W MODYFIKOWANYCH CYRKONEM ŻAROWYTRZYMAŁYCH ODLEWNICZYCH STOPACH KOBALTU METODĄ DEBYEA-SCHERRERA

Struktura, właściwości i metody badań materiałów otrzymanych elektrolitycznie

KRZEPNIĘCIE KOMPOZYTÓW HYBRYDOWYCH AlMg10/SiC+C gr

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

Dr inż. Paulina Indyka

PL B1. Elektrolityczna, nanostrukturalna powłoka kompozytowa o małym współczynniku tarcia, zużyciu ściernym i korozji

ALUMINIOWE KOMPOZYTY Z HYBRYDOWYM UMOCNIENIEM FAZ MIĘDZYMETALICZNYCH I CERAMICZNYCH

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

STRUKTURA WARSTW KOMPOZYTOWYCH Ni-P/Si3N4 WYTWARZANYCH METODĄ CHEMICZNĄ

SILUMIN NADEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW DUPLEX WYTWARZANYCH W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ POKRYTEJ STOPEM NIKLU

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

SILUMIN OKOŁOEUTEKTYCZNY Z DODATKAMI Cr, Mo, W i Co

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE

NANOKRYSTALICZNE WARSTWY KOMPOZYTOWE Ni-Al2O3 - WYTWARZANIE I STRUKTURA

BADANIA WPŁYWU ZWIĄZKÓW ORGANICZNYCH I CZĄSTEK DYSPERSYJNYCH NA KINETYKĘ ELEKTROOSADZANIA HYBRYDOWYCH WARSTW KOMPOZYTOWYCH Ni-SiC-FLUOROPOLIMER

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

PL B1. Uniwersytet Śląski w Katowicach,Katowice,PL BUP 20/05. Andrzej Posmyk,Katowice,PL WUP 11/09 RZECZPOSPOLITA POLSKA

ZMIANY MIKROSTRUKTURY I WYDZIELEŃ WĘGLIKÓW W STALIWIE Cr-Ni PO DŁUGOTRWAŁEJ EKSPLOATACJI

Laboratorium Ochrony przed Korozją. Ćw. 9: ANODOWE OKSYDOWANIEALUMINIUM

KONTROLA STALIWA GXCrNi72-32 METODĄ ATD

ANTYŚCIERNE I ANTYKOROZYJNE WARSTWY NOWEJ GENERACJI WYTWARZANE W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ

ANALIZA KRYSTALIZACJI STOPU AlMg (AG 51) METODĄ ATND

LEJNOŚĆ KOMPOZYTÓW NA OSNOWIE STOPU AlMg10 Z CZĄSTKAMI SiC

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

STRUKTURA GEOMETRYCZNA POWIERZCHNI KOMPOZYTÓW ODLEWNICZYCH TYPU FeAl-Al 2 O 3 PO PRÓBACH TARCIA

MECHANIKA KOROZJI DWUFAZOWEGO STOPU TYTANU W ŚRODOWISKU HCl. CORROSION OF TWO PHASE TI ALLOY IN HCl ENVIRONMENT

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA II Ćw. 6: ANODOWE OKSYDOWANIE ALUMINIUM

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

WPŁYW DYSPERSYJNEJ FAZY CERAMICZNEJ NA WŁAŚCIWOŚCI NIKLOWYCH WARSTW KOMPOZYTOWYCH

ODPORNOŚĆ KOROZYJNA WARSTW KOMPOZYTOWYCH Z OSNOWĄ NIKLOWĄ I DYSPERSYJNĄ FAZĄ CERAMICZNĄ

metody nanoszenia katalizatorów na struktury Metalowe

WPŁYW OBCIĄŻEŃ ZMĘCZENIOWYCH NA WYSTĘPOWANIE ODMIAN POLIMORFICZNYCH PA6 Z WŁÓKNEM SZKLANYM

OBRÓBKA CIEPLNA SILUMINU AK132

WYKORZYSTANIE METODY ZAWIESINOWEJ W PROCESIE WYTWARZANIA KOMPOZYTÓW IN SITU W UKŁADZIE ALUMINIUM TLENEK ŻELAZO-TYTANU

Andrzej Sobkowiak Rzeszów, dnia 28 grudnia 2016 r. Wydział Chemiczny Politechnika Rzeszowska

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

WPŁYW CHROPOWATOŚCI POWIERZCHNI MATERIAŁU NA GRUBOŚĆ POWŁOKI PO ALFINOWANIU

Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI

Materiały stopowe kobalt-pallad

ul. Grabska 15A, Niepołomice NIP Niepołomice, DOTYCZY: zakupu Elektrodializera pilotowego ED/EDR

Właściwości niklu chemicznego

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

OKREŚLANIE WŁASNOŚCI MECHANICZNYCH SILUMINU AK20 NA PODSTAWIE METODY ATND

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

ZASTOSOWANIE ZŁOŻONYCH TLENKÓW DO WYTWARZANIA DYSPERSYJNYCH FAZ ZBROJĄCYCH W STOPACH ALUMINIUM

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Elektrochemia - prawa elektrolizy Faraday a. Zadania

CIENKOŚCIENNE KONSTRUKCJE METALOWE

BADANIA DYFRAKCYJNE WARSTWY ALFINOWANEJ NA STOPACH ŻELAZA

NANOKOMPOZYTOWE WARSTWY NIKIEL/NANORURKI WĘGLOWE WYTWARZANE METODĄ REDUKCJI ELEKTROCHEMICZNEJ

OKREŚLENIE TEMPERATURY I ENTALPII PRZEMIAN FAZOWYCH W STOPACH Al-Si

NOWE ODLEWNICZE STOPY Mg-Al-RE

KATALIZA I KINETYKA CHEMICZNA

Laboratorium z Krystalografii. 2 godz.

ELEKTROCHEMICZNE ROZTWARZANIE STABILIZOWANEGO STALIWA AUSTENITYCZNEGO

ROZSZERZALNOŚĆ CIEPLNA KOMPOZYTÓW NA OSNOWIE STOPU AlSi13Cu2 WYTWARZANYCH METODĄ SQUEEZE CASTING

Institute of Metallurgy and Materials Science, Polish Academy of Sciences: metallurgist (since 2010), assistant professor (since 2014).

RHODUNA Diamond Bright Rodowanie błyszcząco-białe

Przetwarzanie energii: kondensatory

ZMIANY STRUKTURALNE WYSTĘPUJĄCE PODCZAS WYTWARZANIA KOMPOZYTÓW GRE3 - SiC P

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd

Struktura elektrolitycznie osadzanych stopów. Zn-Ni

Laboratorium z Krystalografii. 2 godz.

Podstawy elektrochemii

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Obwody prądu stałego. Materiały dydaktyczne dla kierunku Technik Optyk (W12)Kwalifikacyjnego kursu zawodowego.

Odporność korozyjna wybranych powłok nakładanych metodą tamponową

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

Transkrypt:

KOMPOZYTY (COMPOSITES) 3(2003)6 Jolanta Niedbała 1 Uniwersytet Śląski, Instytut Fizyki i Chemii Metali, ul. Bankowa 12, 40-007 Katowice OTRZYMYWANIE I STRUKTURA ELEKTROLITYCZNYCH WARSTW KOMPOZYTOWYCH ZAWIERAJĄCYCH TYTAN W OSNOWIE STOPOWEJ Ni-Mo Warstwy kompozytowe na osnowie stopu Ni-Mo, zawierające wbudowany tytan, otrzymywano na drodze elektroosadzania. Proces prowadzono w warunkach galwanostatycznych z kąpieli cytrynianowej zawierającej zawiesinę pyłu Ti. Badania porównawcze przeprowadzono dla warstw stopowych Ni-Mo otrzymanych w analogicznych warunkach prądowych z kąpieli niezawierającej pyłu tytanowego. Określono szybkość osadzania i skład chemiczny otrzymanych warstw stopowych i kompozytowych. Badania składu chemicznego wykonano metodą rentgenowskiej spektrometrii fluorescencyjnej. Stwierdzono, że zawartość molibdenu w warstwach stopowych Ni-Mo mieści się w przedziale od 20,7 (j = 100 ma/cm 2 ) do 30,5% (j = = 250 ma/cm 2 ). Wzrost gęstości prądowej do j = 300 ma/cm 2 powoduje nieznaczny spadek zawartości Mo w warstwach do 28,1%. W przypadku warstw kompozytowych Ni-Mo+Ti zawartość molibdenu w warstwach wynosi od 5,7% (j = = 100 ma/cm 2 ) do 24,6% (j = 200 ma/cm 2 ). Należy zatem stwierdzić, że dodatek proszku tytanowego do kąpieli galwanicznej powoduje spadek zawartości molibdenu w osnowie stopowej. Sądzić więc można, że obecność proszku tytanowego ogranicza proces indukowanego elektroosadzania molibdenu z niklem. Stwierdzono, że przy j = 100 300 ma/cm 2 otrzymuje się warstwy Ni-Mo+Ti zawierające od 9,9 do 66,7%Ti. Badania składu fazowego wykonano metodą dyfrakcji promieni rentgenowskich. Analizie fazowej poddano warstwy stopowe Ni-Mo oraz warstwy kompozytowe Ni-Mo+Ti przed i po obróbce termicznej w temperaturze 1100 C. Stwierdzono, że otrzymane na drodze elektroosadzania warstwy stopowe Ni-Mo mają strukturę nanokrystaliczną, warstwy kompozytowe mają wbudowany krystaliczny tytan do nanokrystalicznej osnowy stopowej Ni-Mo. Stwierdzono, że obróbka termiczna powoduje zmianę składu fazowego warstw Ni-Mo oraz Ni-Mo+Ti. Zarówno w przypadku warstw stopowych, jak i kompozytowych poddanych obróbce cieplnej stwierdzono na dyfraktogramach obecność refleksów dyfrakcyjnych pochodzących od związków międzymetalicznych; w warstwach Ni-Mo stwierdzono obecność Ni 4Mo, w warstwach Ni-Mo+Ti obecność Ni 4Mo oraz NiTi i Ni 3Ti. Obecność tych związków świadczy o tym, że podczas procesu wygrzewania warstw stopowych Ni-Mo zaszła reakcja krystalizacji nanokrystalicznej fazy stopowej. W warstwach kompozytowych zaszła zarówno reakcja krystalizacji osnowy Ni-Mo, jak i chemiczna reakcja osnowy z wbudowanym proszkiem Ti i utworzenie połączeń niklowo-tytanowych. Słowa kluczowe: stop Ni-Mo, tytan, elektrolityczne warstwy kompozytowe, elektroosadzanie PRODUCTION AND STRUCTURE OF ELECTROLYTIC COMPOSITE LAYERS CONTAINING TITANIUM IN Ni-Mo ALLOY MATRIX The composite layers on a base of Ni-Mo alloy containing titanium were obtained by electrodeposition from the citrate bath containing a suspension of titanium powder. The process was carried out under galvanostatic conditions. For comparison Ni- Mo alloys were also obtained under the same conditions from the citrate solution without Ti powder and comparative tests were conducted on them. The rate of layers deposition was estimated, and their chemical composition was determined using X-ray fluorescence spectroscopy method. It was stated, that the content of molybdenum in Ni-Mo alloys varies in the range from 20.7 (j = 100 ma/cm 2 ) to 30.5% (j = 250 ma/cm 2 ). Further increase in deposition current density to 300 ma/cm 2 causes a slight decrease in Mo content in the layers to 28.1%. For Ni-Mo+Ti layers the content of Mo lies between the limits 5.7% (j = 100 ma/cm 2 ) to 24.6% (j = 200 ma/cm 2 ). So, it should be stated, that incorporation of Ti powder into the galvanic bath causes a decrease in the Mo content in alloy matrix. Moreover, it could be ascertained, that the presence of titanium powder in galvanic bath inhibits the process of induced electrodeposition of molybdenium with nickel. It was stated that Ni-Mo+Ti composite layers deposited in the range of deposition current density from 100 to 300 ma/cm 2 contain from 5.7 to 24.6% of Mo and from 9.9 to 66.7% of Ti. Structural investigations were conducted by X-ray diffraction method. The phase composition of Ni-Mo alloys and Ni-Mo+Ti composite layers before and after thermal treatment at a temperature of 1100 o C was determined. It was ascertained that electrodeposited Ni-Mo alloys are characterized by nanocrystalline strucure whereas Ni-Mo+Ti composite layers have an crystalline Ti phase built into the nanocrystalline Ni-Mo matrix. It was stated, that thermal treatment changes the phase composition of Ni-Mo alloys and Ni-Mo+Ti composite layers. X-ray diffractograms of the alloys and composite layers show the reflects coming from intermetallic compounds. In the Ni-Mo alloys the presence of Ni 4Mo was stated and in Ni-Mo+Ti composite layers additionaly NiTi and Ni 3Ti phases are present. The presence of these compounds conformed the fact of nanocrystalline Ni-Mo matrix crystallization proceeding during thermal treatment of the layers. In Ni-Mo+Ti layers the chemical reaction between Ni-Mo matrix and incorporated Ti powder occurs. Key words: Ni-Mo alloys, titanium, electrolytic composite layers, electrodeposition 1 dr

54 J. Niedbała WSTĘP W procesie elektrolitycznego osadzania warstw kompozytowych istnieje możliwość wykorzystywania zdolności wbudowywania zdyspergowanych cząstek z zawiesiny kąpieli galwanicznej w strukturę materiału osnowy [1, 2]. Celowość takiego postępowania jest zasadna, gdy w zasadniczy sposób zmienia ono właściwości otrzymanej warstwy. Stąd wiele prac poświęcono otrzymywaniu materiałów kompozytowych na drodze elektrochemicznej poprzez wprowadzenie do galwanicznej kąpieli i następnie wbudowanie do warstwy galwanicznej różnych cząstek (np. tlenki metali, PTFE-teflon) [1-4]. Tą techniką można otrzymać również kompozyty zawierające wbudowane proszki metali [5]. Materiały kompozytowe ze względu na specyficzne własności fizykochemiczne wynikające z różnorodności składu chemicznego i fazowego oraz efektów wzajemnego oddziaływania składników osnowy oraz dużego rozwinięcia powierzchni posiadają zdolność katalizowania reakcji, m.in. wydzielania tlenu, wodoru lub utleniania np. związków organicznych [6]. Zróżnicowany skład chemiczny i fazowy materiału kompozytowego może być przyczyną występowania par układów utleniającoredukujących oraz efektów synergetycznych na powierzchni elektrody. Przykładem tego typu są elektrody kompozytowe [6] oraz materiały kompozytowe autodomieszkowane o stwierdzonej szczególnie dużej aktywności elektrokatalitycznej [7]. Materiały kompozytowe są na ogół mieszaniną metalicznej osnowy z nieorganicznymi aktywatorami procesu elektrochemicznego [6, 9-11]. W dotychczasowych publikacjach materiał osnowy to metal najczęściej z grupy żelazowców. Stopy otrzymane drogą elektrolityczną do tej pory nie były stosowane jako osnowa materiałów kompozytowych. Stopy niklu z dodatkiem molibdenu charakteryzują się znaczną odpornością korozyjną w środowisku alkalicznym. Ponadto są stosowane jako materiały elektrodowe i charakteryzują się własnościami katalitycznymi w różnych procesach elektrochemicznych [12-15]. Wykazano, że stopy niklu z molibdenem są dobrymi materiałami elektrodowymi w procesie wydzielania wodoru, a zawartość molibdenu w stopie decyduje o parametrach procesu [16]. Stwierdzono, że wraz ze wzrostem zawartości molibdenu w stopie wzrasta zdolność do katalizowania procesu wydzielania wodoru [16]. Obecnie materiały elektrolityczne Ni-Mo otrzymuje się z kąpieli winianowych i cytrynianowych [2-4, 10, 11, 17]. Z kąpieli winianowych w warunkach galwanostatycznych otrzymano stopy zawierające do 25% Mo. Wprowadzenie podfosforynu sodowego do takich kąpieli pozwoliło na otrzymanie warstw zawierających około 38% Mo z kilkuprocentową zawartością fosforu w powłoce. Z kąpieli cytrynianowych otrzymano warstwy stopowe Ni-Mo zawierające około 30% Mo [11, 17]. Biorąc pod uwagę własności stopu Ni-Mo można przypuszczać, że materiał ten zachowa swe własności katalityczne, stanowiąc osnowę kompozytu. Materiały kompozytowe zawierające tytan wykazują bardzo dobre parametry pracy jako materiały elektrodowe oraz charakteryzują się dużą selektywnością i małymi nadpotencjałami wybranych reakcji [18]. Można zatem sądzić, że połączenie parametrów stopu Ni-Mo z właściwościami tytanu pozwoli na uzyskanie nowego materiału kompozytowego o bardzo interesujących własnościach. Dlatego celem niniejszej pracy było elektrochemiczne otrzymanie warstw kompozytowych na osnowie stopu Ni-Mo z wbudowanym proszkiem tytanu, określenie optymalnych warunków procesu elektroosadzania tych warstw oraz przeprowadzenie charakterystyki składu chemicznego i fazowego uzyskanych materiałów względem otrzymanych warstw stopowych Ni-Mo. CZĘŚĆ DOŚWIADCZALNA Do osadzania stopu Ni-Mo przygotowano kąpiel cytrynianową o następującej zawartości składników (mol/dm 3 ): Na 2 MoO 4 0,035; NiSO 4 0,75; Na 3 C 6 H 5 O 7 0,45. Do osadzania warstw kompozytowych Ni-Mo+Ti przygotowano kąpiel o analogicznym składzie, zawierającą ponadto proszek tytanowy (325 mesh 99,98%Ti firmy Aldrich) w ilości 10 g/dm 3 kąpieli. Kąpiele przygotowano z odczynników wyprodukowanych przez POCh Gliwice (stopień czystości cz.d.a.). W przypadku kąpieli do osadzania warstw stopowych Ni-Mo każdy składnik kąpieli rozpuszczano oddzielnie w niewielkiej ilości wody podwójnie destylowanej. Następnie mieszano roztwory, zlewano ze sobą w ten sposób, że do roztworu zawierającego cytrynian sodowy dolewano roztworu zawierającego siarczan niklowy starannie mieszając, a następnie dodano roztworu soli molibdenu. Otrzymaną objętość roztworu uzupełniano do objętości 1 dm 3. W przypadku kąpieli do osadzania warstw Ni-Mo+Ti postępowano analogicznie, dodając pyłu tytanowego. Po 24 godzinach roztwory przeznaczano do elektrolitycznego otrzymywania warstw. Każdorazowo przed osadzaniem określano ph roztworu, utrzymując je w przedziale 6,0 7,0 przy pomocy stężonego roztworu NaOH. Elektroosadzanie powłok prowadzono na podłożu stalowym (stal węglowa St3S). Powierzchnia płytek, na których prowadzono proces osadzania, wynosiła 4 cm 2. Podłoże wstępnie oczyszczano mechanicznie przy użyciu papieru ściernego, a następnie chemicznie w stężonym kwasie solnym. Po opłukaniu płytki w wodzie destylowanej, jej osuszeniu, zważeniu prowadzono proces osadzania. Warstwy osadzano na powierzchnię płytki, której druga strona była izolowana odpornym chemicznie klejem typu DISTAL.

Otrzymywanie i struktura elektrolitycznych warstw kompozytowych zawierających tytan w osnowie stopowej Ni-Mo 55 Wartości gęstości prądowych galwanostatycznego osadzania wynosiły: 100, 150, 200, 250, 300 ma/cm 2. Elektroosadzanie wszystkich warstw prowadzono w warunkach kulostatycznych, określając szybkość osadzania warstwy kompozytowej i porównawczo warstwy stopowej. Grubość warstw określono na podstawie przyrostu mas elektrod oraz składu chemicznego warstw. Skład chemiczny otrzymanych warstw określono metodą rentgenowskiej spektrometrii fluorescencyjnej, stosując aparat rentgenowski DRON z odpowiednią przystawką. Badania strukturalne uzyskanych warstw wykonano metodą dyfrakcji promieni rentgenowskich, stosując dyfraktometr firmy Philips oraz promieniowanie lampy CuK α. Warunki pracy lampy: U = 40 kv, J = 20 ma. Graficzną rejestrację refleksów dyfrakcyjnych prowadzono w następujących warunkach, zakres kątowy 20 < 2Θ < 100, szybkość licznika 2 min 1, szybkość przesuwu taśmy 20 mm min 1, stała czasowa 1 s, zakres gęstości impulsów 2 10 3 imp. s 1. Otrzymane dyfraktogramy były podstawą do przeprowadzenia identyfikacji fazowej przy wykorzystaniu kart ICDD. Obróbkę termiczną warstw kompozytowych oraz stopowych prowadzono w piecu rurowym poziomym PRC 75 HM w atmosferze argonu w temperaturze 1100 C przez 12 h. Po schłodzeniu wykonano ponownie badanie składu fazowego warstw Ni-Mo+Ti oraz Ni-Mo. Morfologię powierzchni warstw badano z użyciem mikroskopu stereoskopowego NIKON SMZ 2T. Warstwy kompozytowe Ni-Mo+Ti wykazują dobrą przyczepność do podłoża. Charakteryzują się niezależnie od stosowanych warunków prądowych ich otrzymywania matową, porowatą, niepopękaną, jasnoszarą powierzchnią. Przyczyną takiej struktury powierzchni jest wbudowanie cząstek tytanu do osnowy Ni-Mo. Ze wzrostem ilości wbudowanego tytanu wzrasta rozwinięcie powierzchni (rys. 1). Na podstawie przeprowadzonej analizy fluorescencyjnej stwierdzono, że zawartość molibdenu w warstwach stopowych Ni-Mo mieści się w przedziale od 20,7 (j = 100 ma/cm 2 ) do 30,5% (j = 250 ma/cm 2 ). Wzrost gęstości prądowej do j = 300 ma/cm 2 powoduje nieznaczny spadek zawartości Mo w warstwach do 28,1%. Należy przypuszczać, że przyczyną tego faktu jest wydzielający się intensywnie przy tej gęstości prądowej wodór, który utrudnia tym samym dostęp jonów do elektrody. W przypadku warstw kompozytowych Ni-Mo+Ti zawartość molibdenu w warstwach wynosi od 5,7 (j = 100 ma/cm 2 ) do 24,6% (j = 200 ma/cm 2 ). Należy zatem stwierdzić, że dodatek proszku tytanowego do kąpieli galwanicznej powoduje spadek zawartości molibdenu w osnowie stopowej. Sądzić więc można, że obecność proszku tytanowego ogranicza proces indukowanego elektroosadzania molibdenu z niklem. Zatem proces zabudowania proszku tytanowego jest procesem konkurencyjnym dla procesu indukowanego osadzania molibdenu. Przyczyną zabudowywania się proszku tytanu do struktury warstwy jest adsorpcja jonów niklowych na powierzchni proszku. Naładowane ładunkiem dodatnim cząstki proszku tytanu przemieszczają się w kierunku katody, utrudniając tym samym efekty indukowanego rozładowania się jonów molibdenianowych. Następuje zatem ograniczenie szybkości procesu indukowanego elektroosadzania molibdenu. Wyznaczona zawartość tytanu w warstwach kompozytowych Ni-Mo+Ti wynosi od a) 9,9 do 66,7%. Maksymalną zawartość uzyskano w warstwach otrzymanych dla gęstości prądowej j = 100 ma/cm 2. b) OMÓWIENIE WYNIKÓW c) d)

56 J. Niedbała Rys. 1. Zależność morfologii powierzchni od zawartości tytanu w warstwie Ni-Mo+Ti: a) 66,7% Ti j = 100 ma/cm 2, b) 28,6% Ti j = = 250 ma/cm 2, c) 9,9% Ti j = 300 ma/cm 2, d) 0% Ti j = = 300 ma/cm 2 (pow. 200x) Fig. 1. Surface morfology of Ni-Mo+Ti layers in dependence on Ti content in the layer: a) 66,7% Ti j = 100 ma/cm 2, b) 28,6% Ti j = = 250 ma/cm 2, c) 9,9% Ti j = 300 ma/cm 2, d) 0% Ti j = = 300 ma/cm 2 (magn. 200x) Wzrost gęstości prądu osadzania powoduje znaczny spadek zawartości tytanu w warstwie. Taki efekt może być związany ze zdolnością adsorbowania jonów obecnych w kąpieli galwanicznej na powierzchni metalicznego proszku tytanu. Zaadsorbowane jony niklowe podlegają oddziaływaniu pola elektrycznego między elektrodami, czego wynikiem jest transport masy proszku w kierunku katody. Te jony, które pozbawione są już częściowo swojej otoczki hydratacyjnej wskutek adsorpcji na powierzchni proszku, łatwiej niż w pełni zhydratowane jony niklowe w kąpieli ulegają elektrolitycznemu osadzaniu na katodzie, wbudowując do struktury warstwy proszek tytanu. Wzrost gęstości prądu osadzania powoduje wzrost natężenia pola elektrycznego, czego wynikiem może być desorpcja jonów z powierzchni proszku metalu w kąpieli. Obserwuje się wtedy zmniejszenie zawartości wbudowanego składnika i masy osadzanej warstwy. Dlatego najmniejszą zawartość Ti (9,9%) stwierdzono w warstwie otrzymanej dla najwyższej gęstości prądowej j = 300 ma/cm 2. Grubość warstw kompozytowych Ni-Mo+Ti określona na podstawie przyrostu masy warstwy i jej przekroju poprzecznego mieści się w przedziale od 300 do 412 μm i zależy od warunków prądowych osadzania. Stwierdzono, że wraz ze wzrostem gęstości prądu osadzania maleje grubość warstw Ni-Mo+Ti. Maksymalną grubość uzyskano dla warstwy otrzymanej dla najniższej gęstości prądowej 100 ma/cm 2, najmniejszą dla warstwy otrzymanej dla j = 300 ma/cm 2. Stwierdzono, że warstwy stopowe Ni-Mo charakteryzują się mniejszą grubością niż warstwy kompozytowe. Grubość warstw Ni-Mo mieści się w zakresie 40 60 μm. W oparciu o wykonane przekroje poprzeczne warstw kompozytowych (rys. 2) stwierdzono, że wykazują one jednorodną strukturę na całej grubości. Nie stwierdzono obecności wewnętrznych pęknięć lub porów, które mogłyby świadczyć o występowaniu okluzji gazowych. Rys. 2. Zgład poprzeczny warstwy kompozytowej Ni55,6%-Mo15,8%+ +Ti28,6% (j = 250 ma/cm 2 ) Fig. 2. Cross-sectional image of Ni55,6%-Mo15,8%+Ti28,6% (j = = 250 ma/cm 2 ) composite layer Badania składu fazowego warstw stopowych Ni-Mo potwierdziły wnioski uzyskane w poprzedniej pracy [17], stwierdzono obecność sąsiadujących ze sobą poszerzonych refleksów dyfrakcyjnych pochodzących od nanokrystalicznej fazy stopu Ni-Mo. Na wszystkich dyfraktogramach warstw Ni-Mo+Ti stwierdzono obecność sąsiadujących ze sobą poszerzonych refleksów dyfrakcyjnych pochodzących od nanokrystalicznej fazy osnowy Ni-Mo oraz obecność ostrych pików dyfrakcyjnych charakterystycznych dla występowania fazy krystalicznego tytanu (rys. 3). Rys. 3. Dyfraktogramy warstw kompozytowych Ni-Mo+Ti oraz stopowych 1 Ni-Mo przed i po obróbce termicznej w temp. 1100 C: a) Ni- Mo+Ti, b) Ni-Mo+Ti po obróbce cieplnej, c) Ni-Mo, d) Ni-Mo 2 po obróbce cieplnej; Ni 4Mo; α Ni; NiTi; Ni 3Ti; Ti. Fig. 3. X-ray diffraction patterns of Ni-Mo+Ti composite layers and Ni-Mo alloys before and after thermal treatment at 1100 C: a) Ni-Mo+Ti, b) Ni-Mo+Ti after thermal treatment, c) Ni-Mo, d) Ni-Mo after thermal treatment; Ni 4Mo; α Ni; NiTi; Ni 3Ti; Ti mg cm -2 min -1 4 3 2 1 0 100 150 200 250 300 j/ma cm -2

Otrzymywanie i struktura elektrolitycznych warstw kompozytowych zawierających tytan w osnowie stopowej Ni-Mo 57 Rys. 4. Zależność szybkości procesu osadzania warstw kompozytowych Ni- Mo+Tio (1) oraz warstw stopowych Ni-Mo (2) od gęstości prądu osadzania Fig. 4. The rate of deposition as function of deposition current density for: 1) Ni-Mo+Ti, 2) Ni-Mo Zauważono, że obróbka termiczna powoduje zmianę składu fazowego warstw Ni-Mo oraz Ni-Mo+Ti. Zarówno w przypadku warstw stopowych, jak i kompozytowych poddanych obróbce cieplnej stwierdzono na dyfraktogramach obecność refleksów dyfrakcyjnych pochodzących od związków międzymetalicznych; w warstwach Ni-Mo stwierdzono obecność Ni 4 Mo, w warstwach Ni-Mo+Ti obecność Ni 4 Mo oraz NiTi i Ni 3 Ti. Obecność tych związków świadczy o tym, że podczas procesu wygrzewania warstw stopowych Ni-Mo zaszła reakcja krystalizacji nanokrystalicznej fazy stopowej. W warstwach kompozytowych zaszła zarówno reakcja krystalizacji osnowy Ni-Mo, jak i chemiczna reakcja osnowy z wbudowanym proszkiem Ti i utworzenie połączeń niklowo-tytanowych. Przyrost masy warstwy w jednostce czasu na jednostkę powierzchni podłoża wskazuje, że szybkość elektroosadzania warstw jest zależna od wartości stosowanej gęstości prądowej (rys. 4). Zarówno w przypadku warstw stopowych, jak i kompozytowych szybkość procesu osa-dzania rośnie wraz ze wzrostem gęstości prądu osadzania, jednak w przypadku warstw kompozytowych uzyskuje się znacznie wyższe wartości. WNIOSKI Na podstawie przeprowadzonych badań stwierdzono, że: Z kąpieli cytrynianowej w zakresie ph 6,5 7,5 możliwe jest otrzymanie warstw stopowych Ni-Mo zawierających maksymalnie około 30% molibdenu oraz warstw kompozytowych Ni-Mo+Ti zawierających maksymalnie około 25% Mo oraz 67% Ti. Mechanizm zabudowania tytanu do stopowej osnowy Ni-Mo opiera się na zjawisku adsorpcji jonów obecnych w kąpieli galwanicznej na powierzchni metalicznego proszku tytanu. Proces zabudowywania proszku tytanowego jest procesem hamującym i konkurencyjnym do procesu indukowanego współosadzania molibdenu z niklem. Szybkość osadzania kompozytu Ni-Mo+Ti jest większa od szybkości osadzania warstw stopowych Ni- -Mo. Wynika to prawdopodobnie z wpływu adsorpcji jonów niklowych na proszku tytanu i faktu równoczesnego jego zabudowywania. Obróbka termiczna warstw Ni-Mo oraz Ni-Mo+Ti powoduje zmianę składu fazowego zarówno warstw stopowych, jak również kompozytowych i pozwala na otrzymanie związków międzymetalicznych Ni 4 Mo oraz NiTi i Ni 3 Ti. Praca finansowana ze środków KBN Projekt Nr PBZ32/KBN/-013/T08/10. LITERATURA [1] Niedbała J., Budniok A., Gierlotka D., Surówka J., Thin Solid Films 1995, 226, 113. [2] Łosiewicz B., Stępień A., Gierlotka D., Budniok A., Thin Solid Films 1999, 349. [3] Gierlotka D., Rówiński E., Budniok A., Łągiewka E., J. Appl. Electrochem. 1997, 27, 12, 1324. [4] Serek A., Budniok A., Archiwum Nauki o Materiałach 1999, 20, 4, 259-268. [5] Makifuchi Y., Terunuma Y., Nagumo M., Materials Science Engineering 1997, A226-228, 312-316. [6] Niedbała J., Budniok A., Electrolytic composite Ni-P-MeO layers as anode materials, Surface Electrochemistry of the metal/electrolyte interface as portrayed by structure sensitive data, Alicante SPAIN, 7-10 September 1997. [7] Nawrat G., Małachowski A., Gonet M., Korczyński A., II Ogólnopolska Konf. Nauk. Inżynieria Powierzchni 96, Problemy Eksploatacji 1996, 4(23), 213-226. [8] Degrez M., Winand D., Oberflache-Surface 1990, 8, 8. [9] Crousier J., Eyraud M., Crousier J.P., Roman J.M., J. Appl. Electrochem. 1992, 22, 749. [10] Podhala E.J., Landolt D., Proc. Electrochemical Soc. 1994, 94-31, 71. [11] Niedbała J., Wykpis K., Budniok A., Łągiewka E., Archiwum Nauki o Materiałach (w druku). [12] Bełtowska-Lehman E., Chassaing E., J. of Applied Electrochemistry 1997, 5, 27, 568-572. [13] Zeng Y., Yao S.W., Cao X.Q., Huang X.H., Zhong Z.Y., Guo H.T., Chinese Journal of Chemistry 1997, 3, 15, 193- -200. [14] Shervedani R.K., Lasia A., J. Electrochem. Soc. 1998, 145, 7, 2219-2225. [15] Landolt D., Podlaha E.J., Zech N., Zeitschrift für Physikalische Chemie 1999, 208, 1-2, 167-182. [16] Jakšic J.M., Vojnovic M.V., Krstajic N.V., Electrochim. Acta 2000, 45, 4151. [17] Łągiewka E., Budniok A., Niedbała J., Struktura stopów Ni-Mo otrzymanych elektrolitycznie, Archives of Material Science 2002, 23, 2, 137-150. [18] Panek J., Serek A., Budniok A., Rówiński E., Łągiewka E., J. Hydrogen Energy 2003, 28/2, 169-175. Recenzent Henryk Bala