17-03-006 D. Kiełczewska Super-Kamiokande after upgrade. Jan 006 Copyright by Paweł Przewłocki
Future long-baseline program What remains to be measured via neutrino oscillations Which problems need to be solved (degeneracies) Current experiments: MiniBoone Minos (K. Grzelak coming soon!) Future experiments Double-Chooz TK NOvA JK (Japan to Korea) Super-NOvA 17-03-006 D. Kiełczewska
Four new initiatives approved by DoE HEP office Nov. 005 (CriticalDecision0 level) http://www.science.doe.gov/hep/newinitiatives.shtm A generic accelerator-based electron neutrino appearance experiment to measure neutrino mixing and to probe the neutrino mass hierarchy 1) NOvA ) TK 3) do nothing A generic reactor-based neutrino detector to precisely measure neutrino mixing 1) Double Chooz, ) Daya Bay, 3) Braidwood 4) do nothing A generic ground-based dark energy experiment A generic neutrinoless double beta decay experiment to probe the Majorana nature and an absolute mass scale of neutrinos 17-03-006 D. Kiełczewska
Status of: Neutrino masses Normal hierarchy Reversed hierarchy U ei U µi U τi Already measured: 3 m3 = (1.9 3.0) 10 ev @ 90% c.l. 5 m 1 = 7.9 ± 0.6 10 ev 17-03-006 D. Kiełczewska Unless MiniBoone complicates the whole picture
What about LSND observations or Is there a 4-th light neutrino a sterile ν? ν µ ν e significantly coupled with active A global analysis of all atmosph., solar, accelerator and reactor data by: SND sol very weakly coupled with active excluded at 5.1 σ M. Maltoni et al, hep-ph/040517 Mini-Boone results? LSND atm 17-03-006 D. Kiełczewska also inconsistent with existing data
MiniBooNE (00~) (Fermilab) ν µ ν e at m 1eV (LSND) 8 GeV proton beam (Be target) Eν~700 MeV, L~541m (L/E~0.77) Mineral Oil Cherenkov Detector 800 tons 180 eight-inch PMT s 40 PMT for VETO. Michel e from µ decay µ candidate 611,000 ν events. 17-03-006 D. Kiełczewska π 0 candidate
MiniBoone results soon 10 10 0 POT (Proposal) LSND 90% 90% 3σ 5σ 5 10 0 POT (now) LSND 90% 90% 3σ 5σ PANIC, Oct 05 At the current time have collected 6.5x10 0 p.o.t. Plan is to open the box when analysis is ready. Problems with cross sections Next step: Need to run with since LSND signal was ν µ ν Jan 006: Started to run Antineutrinos e ν µ ν µ MiniBooNE has the sensitivity now. 17-03-006 D. Kiełczewska Djurcic, PANIC05
Dalej zakładamy tylko 3 stany masowe 17-03-006 D. Kiełczewska
Neutrino masses to be measured Normal hierarchy U ei U µi sin ϑ 13 Reversed hierarchy U τi m 3 > 0 m 3 < 0 Already measured: To be measured: 3 m3 = (1.9 3.0) 10 ev @ 90% c.l. 5 m 1 = 7.9 ± 0.6 10 ev And improve 17-03-006 D. Kiełczewska precision of: sgn( m ) 3 m 3
Dlaczego ustalenie hierarchii jest ważne? sgn( m ) 3 9 mev normalne 45-55 mev 17-03-006 D. Kiełczewska odwrócone Większa szansa na pomiar m ββ β 0ν większe
Parametrization of mixing matrix iα1 / νe e ν 1 iα / νµ = U e ν ν ν τ 3 c α are Majorana phases = cosθ s = sin θ ij ij ij ij cc sc se 1 13 1 13 13 U= s c c s s c c s s s e s c s s c c s e c s s c s e c c iδ 1 3 1 3 13 1 3 1 3 13 3 13 iδ iδ 1 3 1 3 13 1 3 1 3 13 3 13 i δ θ1 θ3 θ13 δ (CP violation) 17-03-006 D. Kiełczewska
Status of: the mixing matrix c s 0 1 0 0 c 0 s e i δ 1 1 13 13 s1 c1 0 = 0 c3 s3 0 1 0 iδ 0 0 1 0 s 3 c 3 s 13e 0 c13 solar atmospheric c CP = cosθ s = sin θ ij ij ij ij o ϑ 3 > sin 0.90 at 90% c.l. (37-53 ) o - is it maximal? Which octant? +.4 ϑ1 = + ϑ1 =. sin 0.8 0.07 ( 33.9 ) o ϑ13 ϑ13 sin < 0.14 at 90% c.l. ( < 10 ) -isitzero? - more precisely To be measured: 17-03-006 D. Kiełczewska ϑ ϑ δ 3 13
Czyli pozostają pytania: Jak duży jest ϑ 13 Czy ϑ 3 jest maksymalny czy też: Czy widmo mas normalne (podobne do kwarkowego) czy odwrócone? Czy neutrina zachowują CP? 17-03-006 D. Kiełczewska
Degeneracja ϑ 3 ϑ3 wyznaczamy z eksperymentu disappearance : 3 P( ν ν ) 1 sin ϑ sin µ µ 1.7 m E 3 L Jeżeli ϑ 3 45 ϑ to niepewność 3 lub 90 ϑ3 propaguje się w formułach zawierających sinϑ 3 17-03-006 D. Kiełczewska
How to measure ϑ 13 sin ϑ 13 We need: an experiment sensitive to i.e. L/E ~500 km/gev m atm involving ν e Reactor ν e ν e disappearance e.g. Chooz - the best current limit: sin ϑ < 13 13 0.14 for m = 0.05 ev 13 0.18 for m = 0.00 ev Accelerator ν µ ν e appearance 1.7 m P vac ( νµ νe ) sin ϑ13 sin ϑ3 sin E 13 L at one of the prob. max: 1 P vac µ e = 17-03-006 D. Kiełczewska ( ν ν ) sin ϑ 13
How to measure ϑ 13 sin ϑ 13 We need: an experiment sensitive to i.e. L/E ~300 km/gev m atm involving ν e L E km 300 GeV 17-03-006 D. Kiełczewska ν e reactor at L~1 km ( of a few MeV) disappearance: accelerator long baseline ( ν, ν of GeV) appearance: ν ν ν µ µ e ν ν ν e e e µ µ
θ 13 mixing angle from global analysis m atm at 3σ from solar, KamLAND and CHOOZ (90%,3σ) sigma: sin ϑ < 0.051 13 sin ϑ13 < 0.0 at 90% M. Maltoni, T. Schwetz, M. Tortola and J. Valle, hep-ph/040517 17-03-006 D. Kiełczewska
Eksperymenty typu disappearance P( ν ν ) = δ 4 Re * * ( U iu iu ju j) α β αβ α β α β i> j * * ( UαiUβiUα juβ j) sin ± Im sin i> j W eksperymentach disappearnce : * * ( UαiUβiUα juβ j) Im = 0 for α = β ij ij 1.7 ij ij E ν ml - for neutrinos + for antineutrinos W szczególności w eksperymentach reaktorowych: 1.7 m13l 4 1.7 m1 13 + 13 1 P( νe νe) 1 sin ϑ sin cos ϑ sin ϑ sin E E L Czysty pomiar ϑ 13 Efekt <10% ale nic więcej! 17-03-006 D. Kiełczewska W szczególności nie ma zależności od fazy CPV
ν µ ν e appearance where: P( ν ν ) = µ 4s s c 3 13 13 ( δ ) 1 3 13 13 1 3 1 3 13 1 3 13 1 3 13 1 13 1 3 3 13 13 1 3 13 1 3 13 3 13 sin 13 + 8s s s c c c cos s s s 8s s s c c c sinδ sin sin sin ij E ν 17-03-006 D. Kiełczewska sin sin cos 13 1 3 13 1 3 + 4 s c ( c c + s s c s s s c c cos δ ) sin 8s s c s e αl ( 1 s ) s 4 E sin ϑ, c cosϑ ij ij ij ij 1.7 ij 13 sin 13 co 3 ml α = GnE F e matter effects CP violation 1 matter effects 1 << 13 solar s 1 large is a good news!
How to measure (cont.) Reactor experiments which have relatively short baselines and very low energies will measure: but not: δ, sgn( m ), nor sin ϑ down to 0.0 13 13 m13, sin ϑ3 A number of different sites for reactor experiments are considered: - Brasil, China (Daya Bay), France (Double Chooz), Japan (KASKA), Russia, Taiwan and USA (Braidwood ) Complementary to accelerator experiments 17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
17-03-006 D. Motta, D. Kiełczewska Epiphany 006
17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
Eksperymenty reaktorowe - NUSAG or more identical liquid scint Double Chooz syst.7% to 0.3-0.6%, 65 ton/detek Braidwood, Ill, 4 identyczne detek, 3 różne odl,, przesuwane ta sama głębokość żeby odjąć tlo od mionów Daya Bay Źródła tła: przypadkowe koincydencje e+ - gamma - ocena z pomiarów neutrony z mionów CR duże weto na miony i absorber neutronow naokoło dlugozyciowe (>100ms) izotopy (8He i 9Li) produkowane przez mion i rozpadajace się na e+ + n Starzenie się scyntyl: CHOOZ atenuacja światła 5m, starzenie 0.4%/dzień Nowe scyntyl: 15 m; stała > 0dni 17-03-006 D. Kiełczewska
Eksperymenty reaktorowe - czułości Double-Chooz Braidwood błąd syst 0.6% 0.3% det + 0.14% tlo 5 lat st13 90% 0.0 0.005 disc 3s 0.03 0.01 Dane od: daleki detek 007-010 bliski 009 czułośc raczej stat koszt 65M$ 17-03-006 D. Kiełczewska
How to measure CP violating phase δ In vacuum the shift in oscil. prob. due to δ is: ( ν ν ) 0.9 sin ϑ sin sin (cosδcos sinδsin ) P δ µ e 13 sol atm atm atm -for + for ν ν = atm = sol 1.7 m E 3 1 L 1.7 m L E Asymmetry: P( ν ν ) P( ν ν ) µ e µ P( ν ν ) + P( ν ν ) µ e µ measures δ (if CP is violated through δ) e e 17-03-006 D. Kiełczewska from Noνa proposal
CP violation P( ν ν ) = δ 4 Re ( * * U ) iu iu ju j α β αβ α β α β i> j i> j ( * * U ) αiuβiuα juβ j sin ± Im sin ij ij ij 1.7 ij E ν ml - for neutrinos + for antineutrinos CP violation can be observed only in appearance experiments because : ( * * U ) αiuβiuα juβ j Im = 0 for 17-03-006 D. Kiełczewska CPV: P( ν ν ) P( ν ν ) α β α β α = β but CPT invariance implies: P( ν ν ) = P( ν ν ) α α α α
ν µ ν - efekty w materii e W eksperymencie appearance : 1.7 m L P( νµ νe) sin ϑ3 sin ϑ13 sin w próżni E W materii mamy elektywny kąt mieszania 13 E sin ϑm sin ϑ 13 1± s 6 GeV czułość na charakter widma zależy od wyrażnie większa dla eksperymentu z energią wiązki ~ GeV (Nova) niż 0.6 GeV (TK) ϑ 13 17-03-006 D. Kiełczewska + neutrina - antyneutrin s=1 normalne widmo s=-1 odwrócone widmo
How to measure 3 sgn( m ) Matter effects: δ m Effective mixing angle: due to a difference in interactions of flavors with electrons: E( V) δ m ± cos ϑ different sign for E sin ϑm sin ϑ 13 1± s 6 GeV ν Note: matter effects grow with energy ν ( ν ) and of different V = ν G F n e + neutrinos - antyneutrinos s=1 normal s=-1 reversed Good news: matter effects are sensitive to 3 sgn( m ) Bad news: matter effects can mimic CP violation in vacuum 17-03-006 D. Kiełczewska
sgn( m ) How to measure - matter effects can be confused with CP violation (in vacuum) 3 ν ν from Noνa proposal 17-03-006 D. Kiełczewska
Program for long-baseline experiments (next ~10-15 years) Measurement Method Experiments Why? m 3 ν µ ϑ 3 ϑ13 Hierarchy ν CP ν ν e disapp. Minos as above ν e 17-03-006 D. Kiełczewska µ τ Better precision for further studies TK, Nova Max. mixing (a symmetry? or which octant appear. Minos, TK, Nova =0? A symmetry? Essential for disapp. Reactor Hierarchy and CP ν e vs ν e JK, Super-Nova, appearance BNL Unification, Leptogenesis, Ω ν τ appear. OPERA To check oscil. scenario
NuMi Beam @ Fermilab (Neutrinos at the Main INjector) started in Jan 005 with MINOS detector nextsuper-beam with detectors NOvA (approved) Super-Nova discussed ½ Batch (empty) Batch 1 Pbar Target Batch 6 ½ Batch (empty) Main Injector Batch Batch 5 Batch 3 Batch 4 NuMI 17-03-006 D. Kiełczewska K. Lang, Como, Oct 05
Experimental setup: NuMI beam ν µ CC Events/kt/year in Far Det (no oscillations) Monte Carlo (preliminary) Low Medium High 470 1,70,740 (for 4x10 0 protons on target/year) 17-03-006 D. Kiełczewska K. Lang, Como, Oct 05 Far Det Now: 1 event / ~4hrs
MINOS (Main Injector Neutrino Oscillation Search) Two detectors Iron (magnetized) - scintillator sampling calorimeter ND 980tons @1km, FD 5400tons @730km Far detector fully operational since 003 Far Detector 17-03-006 Near detector Far detector D. Kiełczewska
NuMi beam 1x10 0 pot/yr achieved in 005 Def: pot protons on target MINOS would like to integrate 5x10 0 (in a ~5 yr run) Original MINOS proposal yrs @ 3.7x10 0 pot = 7.4x10 0 pot Proposals at Fermilab to upgrade the accelerator complex Upgraded NuMi beam 6.5 10 0 pot/year - Proton Driver to reach 7.x10 0 pot/yr by 009 up to 5x10 0 pot/year 17-03-006 D. Kiełczewska
NuMi future according to NUSAG (Mar 006) In the era after Run II at Fermilab ends, it is estimated that the Main Injector will be able to deliver 6.5 10 0 protons per year to the NuMI target, corresponding to ~0.6 MW of protons at 10 GeV. Fermilab contemplates upgrades to this beam power. Under consideration is a Proton Driver replacing the lower-energy accelerators feeding the Main Injector, perhaps with a superconducting linac using technology similar to that proposed for the International Linear Collider. With upgrades to the Main Injector to handle the increased flux, the power to the neutrino production target would increase to MW. As an alternative, if priorities and budgets do not allow a Proton Driver, Fermilab could pursue a more incremental path that might yield 1 MW or more. 17-03-006 D. Kiełczewska
MINOS Physics Program Decisive low-systematics observation of ν µ ν τ (oscillatory pattern) Determine m 3 with ~10% accuracy Measure (or improve limits) on ν µ ν e / ν µ ν sterile / exotics improve CHOOZ limit by a factor of in Test CPT in atmospheric CC µ charge-separated interactions ϑ 13 0.1 Sensitivity is determined by statistical fluctuation For m = 0.005 ev 17-03-006 D. Kiełczewska Systematic uncertainty PANIC, Oct 05
Oscillation experiments with Super Beams Intense conventional (π decays) neutrino sources (>0.5 MW) Off axis technology TK Nova site Japan USA beam being constructed NuMi (upgraded) E ν (peak) 0.76 GeV. GeV distance 95 km 81 km Far detector Super-Kamiokande to be built of mass (FV).5 kton 30 kton Owing to higher energy, NOvA will have a three-fold bigger matter effect. 17-03-006 Combining the NOvA and D. Kiełczewska TK results will facilitate the separation of CP from matter effects.
p TK Off Axis Beam π Decay Pipe θ ν Super-K 0m 140m 80m km 95 km Muon monitors @ ~140m First front detector @80m Second front detector @ ~km Far detector @ 95km -Super-Kamiokande Kinematics of π decay E ν 0.43 E = 1 + γ θ π Tunable at oscillation max Neutrino energy 17-03-006 D. Kiełczewska Quasi monochromatic beam Reduced tail at high ν energies helps 0 to reduce background due to π production
TK (Tokai to Kamioka) 17-03-006 D. Kiełczewska J-PARC accel. PS: TK I: 0.75 MW at 50 (40) GeV (0xKK) 1.5 G$ (7 years)) TK II: 4 MW 0.4 G$ Data taking starts in 009 beam designed for both: phase I and phase II: 4 MW @ Hyper-Kamiok.
Phase I Far Detector Phase II Super-Kamiokande Hyper-Kamiokande 17-03-006 D. Kiełczewska JPARC -3 o OA beam will cover both sites Good Hyper-K site in another mine nearby
TK Collaboration (formed in 003) 17-03-006 D. Kiełczewska 1 countries, 53 institutions ~150 collaborators (not incl. students)
J-PARC Facility Materials and Life Science Experimental Facility Hadron Beam Facility Nuclear Transmutation 500 m Neutrino to Kamiokande Linac (350m) 3 GeV Synchrotron (5 Hz, 1MW) 50 GeV Synchrotron (0.75 MW) J-PARC = Japan Proton Accelerator Research Complex 17-03-006 D. Kiełczewska K. Nishikawa, Korea
J-PARC Facility (TOKAI Japan) 17-03-006 D. Kiełczewska
J-PARC Facility (TOKAI Japan) Decay pipe construction Jan 006 Main Ring 17-03-006 D. Kiełczewska Feb. 9, 005
TK - Near/Intermediate detectors UA1 Magnet yoke Magnet ECAL ECAL TPCs FGDs Magnet coils beam Pi-zero Tracker 17-03-006 D. Kiełczewska Lq. Ar TPC Water Cherenkov Muon Ranger The Experimental facility at km is not approved yet.
New near neutrino detector for TK UA1 Magnet is proposed by Euopean collaborators. (Italian group takes a responsibility.) Muon range detector EM calorimeter π0 detector FGD FGD TPC The detector is under DESIGN. 17-03-006 D. Kiełczewska FGD: Fine-Grained Detector Nakaya, Venice 005
Conceptual Design for Near Detector @80m(ND80 Off-Axis detector - UA1 magnet - Fine Grained Detector (FGD) - TPC - P0D - ECAL, etc On-Axis detector - Monitor beam direction - Grid layout 17-03-006 D. Kiełczewska
θ 13 measurement (ν e appearance search) sin θ 3 =1and δ=0 are assumed. Signal: 1ring e-like event (CC QE sample) Background: beam ν e contamination (0.4% of ν µ ) mis-reconstructed π 0 event e x0.4% ν µ ν e π 0 17-03-006 D. Kiełczewska Nakaya, Venice 005
θ 13 Sensitivity (w/ δbg sys =10%) m (ev ) 10-90%C.L. sensitivity 0.008 x0 CHOOZ excluded sin θ 13 10-1 10 - Sensitivity versus time δbg=0% δbg=10% δbg= 5% 10-3 10-3 10-10 -1 for δ=0 10-3 17-03-006 D. Kiełczewska Nakaya, Venice 005 TK-I JHF SK TK-II 5xJHF 8xSK sin θ 13 1 10 100 Year Exposure/(.5kt x 10 1 pot)
17-03-006 D. Kiełczewska
TK Sensitivities ν µ disappearance ν e appearance CP phase δ (degrees) 150 100 50 0 m 13 =.5x10-3 ev m 13 = 1.9x10-3 ev m 13 = 3.0x10-3 ev sin θ 3 = 1 m 1 = 8.x10-5 ev tan θ 1 = 0.4 Stat. only (OA.5 ) -50-100 -150 Reactor 90% CHOOZ 90% --68%CL --90%CL --99%CL 10-3 10-10 -1 1 sin θ 13 >10 times improvement from CHOOZ 17-03-006 D. Kiełczewska Goal δ(sin θ 3 )~0.01 δ( m 3 )~<1 10-4
17-03-006 D. Kiełczewska
TK sensitivity v.s. exposure 10% syst. err assumed on BG subtraction sin θ 13 sensitivity (90%) sintht13 sensitivity 0.05 0.05 0.04 0.045 0.04 0.03 0.035 0.03 0.05 0.0 0.0 0.015 0.01 0.01 0.005 90%CL Sensitivity w/ LINAC upgrade Default x Np x Np x1.5 rep x Np x rep 0 0 008 009 010 011 01 013 JFY 009 010 011 01 013 Japanese Fiscal Year (Apr-Mar) 17-03-006 D. Kiełczewska
NOνA 13 m Approved by FNAL PAC in April, 005. 30kton liquid scintill. detector 4% effic. for ν e detection Upgraded NuMi beam ~14mrad off-axis 6.5 10 0 POT/year (5 10 0 with Proton Driver) 15.7m 15.7m Far detector Admirer 3-plane block Baseline: 810 km <E ν>. GeV better sensitivity to matter effects and mass hierarchy than TK 17-03-006 D. Kiełczewska planned for 010
Nova więcej o detektorach Ciekły scyntylator w plastikowych pojemnikach o rozmiarach wzdłuż wiązki z~0.15 długości prom. odczyt za pomocą włókien w.l.s fotodiody lawinowe Daleki detektor na powierzchni lub pod kilkumetrową warstwą ziemi Bliski detektor: 6 tony ale FV=0 tony kilka pozycji (>1km) żadna nie daje takiego samego widma jak daleki Przekroje czynne na produkcję π 0 (NC) będą mierzone na wiązce NuMi w eksperymentach MINERvA i MIPP 17-03-006 D. Kiełczewska
Nova czułość Założenie: syst. błąd na tło: 5% syst. 5 lat wiązki 6.5x10 0 pot/rok sygnał 3 sigma dla: sin ϑ13 0.01 (sygnał 14 przyp, tło 19.5 przyp) TK 10% błędu na tło (7.5% z km) 5 lat wiązki 10 1 pot/rok (0,75 MW przy 40 GeV w 011 czułość 90%: sin ϑ13 0.01 (sygnał 10.3, tło 3 przyp) Czułość na hierarchię mas: przy powyższej wiązce tylko jeśli θ 13 bliskie obecnemu limitowi Dla CP oraz mniejszego θ 13 konieczna ga faza: silniejsza wiązka oraz drugi detektor przy gim max Koszt: $165M, budowa 007-011 17-03-006 D. Kiełczewska Inne źródła: Plan: Construction starts in 008 (4-5 years) Cost: 35M$ (dominated by plastic and mineral oil)
NUSAG o TK syst błędy: 10% 80, 7.5% km km: modest improvement ale gdyby był sygnal to podnosi wiarygodność Przy 4 MW po roku stat=syst chyba ze syst <5% LAr TPC: signal effic 80% for 99% hadronic events rejection For Cher and scint: signal effic 30-40% 17-03-006 D. Kiełczewska
5 years@6.5x10 0 pot/year NOvA Sensitivity NOνA has a sensitivity to determine the ν mass hierarchy. 5 year ν.5 year ν +.5 year ν 17-03-006 D. Kiełczewska
New ideas for CPV sensitivity Need to solve the problem: CP violating solution can be confused with CP conserving one due to unknown mass hierarchy JK Japan to Korea experiment two detectors on the same beam (J-PARC 4MW ) (identical detectors: FV=0.7Mton, water Cher.) spectrum analysis (the same beam spectra) 4 years + 4 years (if > ν ν µ sin ϑ 0.03 (0.055) at σ (3 σ) Super-NOvA detectors at the same (L/E) (but different baseline and different off axis angle and thus different spectra) 13 17-03-006 D. Kiełczewska Minakata & Nunokawa, Phys. Lett. B 413, 369 (1997) Ishitsuka, Kajita, Minakata, Nunokawa, hep-ph/050406 Mena et al., hep-ph/0504015, hep-ph/051018
TK Phase-I and Phase-II We are here in Seoul L=95 km L=50 km Super- Kamiokande TK- 50GeV PS KEK- 1GeV PS KK Joo Seoul National University actually: the direction J-PARC -> SK is 1.3 deg below the horizon The beam axis is 3.0 to 4.1 deg below the horizon. 17-03-006 D. Kiełczewska An International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam @KIAS 005/11/18
TK-Korea? The second detector in Korea at the nd osc. maximum (baseline ~1050km) Hyper-K.5 deg. off axis.5 deg. off axis.5 deg. off axis.5 deg. off axis JPARC 17-03-006 D. Kiełczewska Off-axis angle see hep-ph/0504061)
JK identical detectors hep-ph/050406 1 detector of 0.54 Mton in Kamioka true true δ How to lift 4-fold degeneracies in: CP phase δ and sign( m ) 13 Analysis of data expected after 8 years total of 4MW beam: ν and ν detect. of 0.7 Mton (Kamioka &Korea) true true 17-03-006 D. Kiełczewska CP phase δ The contours crrespondto different c.l. solutions With detectors Assumed set of parameters Result Left panels: π 4 ϑ13 13 δ =, sin = 0.0, m > 0 Right panels: π 4 ϑ13 13 δ =, sin = 0.005, m > 0 only true solution found some degeneracy remains This is due to spectrum analysis
JK identical detectors When going to the second max the rates alone not a solution because although CPV effect gets larger the matter effects stay approx the same However the spectrum modification is very sensitive to sign( m ) True solution (π/4, 0.0) Same sign sol. (.4, 0.0) Mixed sign sol.1 (.54, 0.019) Mixed sign sol. (0.44, 0.0 ( δ, sin ϑ ) 13 17-03-006 D. Kiełczewska Fromtherateonly analysis at SK one gets only 1 degenerate solution with the above parameters. hep-ph/050406
Super-NOvA off-axis detectors Mena et al., hep-ph/0504015, hep-ph/051018 Two detectors at the same (L/E): the first at L f ~800 km (regular NOvA site) thesecondatl n =00 or 434 km at an off-axis angle such that: Ln En = Ef L Upgraded NuMi beam (6.5x10 0 pot/yr) 9 years of ν + 5 years of ν second detector is LAr TPC (15, 30 or 50 kt) f 17-03-006 D. Kiełczewska
Super-NOvA off-axis detectors Mena et al., hep-ph/0504015, hep-ph/051018 17-03-006 D. Kiełczewska
Experimental Sensitivity to sin (θ 13 ) hep-ph/0403068 Correlation with other parameters Syst: δ=0 Degeneracy due to unknown hierarchy Reactor 17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska
17-03-006 D. Kiełczewska BNL Very Long Baseline
Very long baseline scenario (BNL proposal) N~1/L 1.7 P( ν ν ) = µ 4s s c 3 13 13 ( δ ) 1 3 13 13 1 3 1 3 13 1 3 13 1 3 13 1 13 1 3 3 13 13 1 3 13 1 3 13 3 13 sin 13 + 8s s s c c c cos s s s 8s s s c c c sinδ sin sin sin 17-03-006 D. Kiełczewska sin sin cos 13 1 3 13 1 3 + 4 s c ( c c + s s c s s s c c cos δ ) sin 8s s c e P( ν µ νe) P( νµ νe) A P ( ν ν ) + P ( ν ν ) µ e µ sin αl ( 1 s ) s 4 E 13 sin 13 co 3 e sin ϑ m sinϑ 4E m L E 1 1 = sin 1 1 13 N e ~1/L L sinδ w/out matter effects and smaller terms ν L N e ~1/L 1 Some like very long baselines
Summary CP violation in quark sector too small to explain the observed dominance of matter in the universe. CP violation in neutrinos provides a chance to understand matter-antimatter asymmetry Both CP violation and determination of spectrum hierarchy (normal or inverted) depend on θ 13 Current exper (MINOS, OPERA) are probably not sensitive enough to θ 13 Synergy between various experiments needed to resolve degeneracies (TK, NOvA, reactor experiments ) Maybe extended TK and/or NOvA projects needed to determine δ CP Japan to Korea large off-axis detectors
ϑ 13 Różne klasy modeli: m ϑ sol 13 ϑ13 matm sin 1/ 30 sin ~ 0.004 albo m ϑ sol 13 ϑ13 matm sin 1/ 6 sin ~ 0.1 Czułość na CP zależy od: sin ϑ 13 > 0,01 konwencjonalne wiązki (z rozpadów π) < 0,01 fabryki neutrin lub wiązki beta 17-03-006 D. Kiełczewska
Summary - NUSAG Both TK and NOvA would establish q13 non-zero if sq13>0.01 Wtedy hierarchy and CP with conventional but MW beams Nova even with current beam if q13 near the current limit 17-03-006 D. Kiełczewska
sin θ m = G ρe δ m MSW effect One can define effective (matter) mixing angle and mass difference : sin F ν ( cos ) + sin GF ρeν M = δ m ( cos θ) + sin θ δ m θ θ resonant condition if =0 θ Effective mixing θ m may be large even if θ small At resonance effective M much smaller than δm A neutrino passing through various local densities ρ can easily get into a resonant condition Note that matter effects are sensitive to ' ϑ π ϑ 17-03-006 D. Kiełczewska for antineutrinos : δ m δm
Dlaczego badanie CPV jest ważne? Bo daje eleganckie wytłumaczenie asymetrii barionowej we Wszechświecie. Wg. mechanizmu huśtawki lekkie neutrina ν mają bardzo ciężkich (10 15 GeV) partnerów N. W tym modelu zarówno ν jak i N sa cząstkami Majorany czyli: ν ν N N byłyby produkowane w BB i rozpadałyby się: N N l+ H oraz N l + H Jeżeli CP niezachowane to prawdop. rozpadów różne i pojawia się asymetria 17-03-006 leptonowa a w konsekwencji D. Kiełczewska dalej asymetria barionowa.