REALIZACJA PRZEMYSŁOWA PRZETWORNICY CZĘSTOTLIWOŚCI DUŻEJ MOCY W UKŁADZIE ACTIVE FRONT-END Z PROSTOWNIKIEM WEJŚCIOWYM O JEDNOSTKOWYM WSPÓŁCZYNNIKU MOCY

Podobne dokumenty
Zeszyty Problemowe Maszyny Elektryczne Nr 80/

Przekształtniki napięcia stałego na stałe

Eliminacja wpływu napędów dużych mocy na sieć zasilającą

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

Wykaz symboli, oznaczeń i skrótów

ZE ZWROTEM ENERGII DO SIECI

Sposoby poprawy jakości dostawy energii elektrycznej

Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56. Studia i Materiały Nr

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

PASYWNE UKŁADY DOPASOWANIA IMPEDANCJI OBCIĄŻENIA INDUKCYJNIE NAGRZEWANEGO WSADU

Dobór współczynnika modulacji częstotliwości

REGULATOR NAPIĘCIA DC HYBRYDOWEGO ENERGETYCZNEGO FILTRU AKTYWNEGO DC BUS VOLTAGE CONTROLLER IN HYBRID ACTIVE POWER FILTER

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO

TRÓJFAZOWY RÓWNOLEGŁY ENERGETYCZNY FILTR AKTYWNY ZE Z ZMODYFIKOWANYM ALGORYTMEM STEROWANIA OPARTYM NA TEORII MOCY CHWILOWEJ

ANALIZA STEROWANIA WEKTOROWEGO NAPĘDEM INDUKCYJNYM Z PRZEKSZTAŁTNIKIEM DWUSTRONNYM AC/DC/AC W STANACH PRACY SILNIKOWEJ I HAMOWANIA ODZYSKOWEGO

BADANIA MODELU WIELOPOZIOMOWEGO FALOWNIKA PRĄDU

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego

JAKOŚĆ ENERGII ELEKTRYCZNEJ ZAPADY NAPIĘCIA

PL B1. Sposób regulacji prądu silnika asynchronicznego w układzie bez czujnika prędkości obrotowej. POLITECHNIKA GDAŃSKA, Gdańsk, PL

UKŁADY NAPĘDOWE Z SILNIKAMI INDUKCYJNYMI STEROWANE METODAMI WEKTOROWYMI DFOC ORAZ DTC-SVM ODPORNE NA USZKODZENIA PRZEMIENNIKA CZĘSTOTLIWOŚCI

STANOWISKO DO BADANIA DŁAWIKÓW DLA NAPĘDÓW

Odbiorniki nieliniowe problemy, zagrożenia

NOWE TOPOLOGIE I STEROWANIE OBWODÓW WEJŚCIOWYCH PRZEMIENNIKÓW CZĘSTOTLIWOŚCI ŚREDNIEGO NAPIĘCIA UMOŻLIWIAJĄCE ICH SZEROKIE ZASTOSOWANIE

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.

Część 2. Sterowanie fazowe

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Stanowisko do badania filtrów dla napędów prądu przemiennego

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

Silnik indukcyjny - historia

W4. UKŁADY ZŁOŻONE I SPECJALNE PRZEKSZTAŁTNIKÓW SIECIOWYCH (AC/DC, AC/AC)

PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

STEROWANIE CZĘSTOTLIWOŚCIOWE SILNIKÓW INDUKCYJNYCH SYNCHRONIZOWANYCH

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO

KOMPATYBILNOŚĆ ELEKTROMAGNETYCZNA W APLIKACJACH Z PRZETWORNICAMI CZĘSTOTLIWOŚCI - WYBRANE ZAGADNIENIA OGRANICZANIA ZAKŁÓCEŃ W OBWODACH ZASILANIA

Przekształtniki impulsowe prądu stałego (dc/dc)

ROZPŁYW ZABURZEŃ GENEROWANYCH PRZEZ CZTEROKWADRANTOWE PRZEMIENNIKI CZĘSTOTLIWOŚCI W SIECIACH LOKALNYCH NISKICH NAPIĘĆ

PRZEKSZTAŁTNIK REZONANSOWY W UKŁADACH ZASILANIA URZĄDZEŃ PLAZMOWYCH

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM ŚREDNIEGO NAPIĘCIA POPRZEZ JEGO ZASILANIE Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU

PowerFlex 700AFE. Funkcja. Numery katalogowe. Produkty Napędy i aparatura rozruchowa Przemienniki czestotliwości PowerFlex PowerFlex serii 7

PLAN PREZENTACJI. 2 z 30

PL B1. GRZENIK ROMUALD, Rybnik, PL MOŁOŃ ZYGMUNT, Gliwice, PL BUP 17/14. ROMUALD GRZENIK, Rybnik, PL ZYGMUNT MOŁOŃ, Gliwice, PL

PRZYSTOSOWANIE TRÓJFAZOWEGO PRZEMIENNIKA CZĘSTOTLIWOŚCI DO ZASILANIA SILNIKA PRĄDU STAŁEGO Z SIECI AC

PL B1. Sposób regulacji prędkości obrotowej silnika asynchronicznego zasilanego z falownika napięcia z filtrem silnikowym

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 20/10. JAROSŁAW GUZIŃSKI, Gdańsk, PL WUP 05/15. rzecz. pat.

PRĄDNICA TRÓJFAZOWA MAŁEJ MOCY WZBUDZANA MAGNESAMI TRWAŁYMI

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

WSPÓŁCZYNNIK MOCY I SPRAWNOŚĆ INDUKCYJNYCH SILNIKÓW JEDNOFAZOWYCH W WARUNKACH PRACY OPTYMALNEJ

Zastosowanie dławika składowej zerowej w falownikowym napędzie silnika indukcyjnego

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

WIELOPOZIOMOWY FALOWNIK PRĄDU

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

Wykład 2 Silniki indukcyjne asynchroniczne

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

PL B1. Układ falownika obniżająco-podwyższającego zwłaszcza przeznaczonego do jednostopniowego przekształcania energii

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

Zeszyty Problemowe Maszyny Elektryczne Nr 78/

Elektroniczne Systemy Przetwarzania Energii

Prostowniki. Prostownik jednopołówkowy

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI

UKŁAD HAMOWANIA ELEKTRYCZNEGO DO BADANIA NAPĘDÓW

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

JAKOŚĆ ENERGII ELEKTRYCZNEJ - PROCES ŁĄCZENIA BATERII KONDENSATORÓW

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

Wzmacniacz jako generator. Warunki generacji

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych

PL B1. Sposób i układ kontroli napięć na szeregowo połączonych kondensatorach lub akumulatorach

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Część 4. Zagadnienia szczególne

PRZEKSZTAŁTNIKI ENERGOELEKTRONICZNE AC/DC/AC I AC/AC - UKŁADY TOPOLOGICZNE I STEROWANIE

Tytuł Aplikacji: FILTRY AKTYWNE - SKUTECZNA METODA REDUKCJI SKŁADOWYCH WYŻSZYCH HARMONICZNYCH PRĄDU

Spis treści 3. Spis treści

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

SILNIK INDUKCYJNY KLATKOWY

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Przerywacz napięcia stałego

2.Rezonans w obwodach elektrycznych

13 K A T E D R A F I ZYKI S T O S O W AN E J

PL B1. UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE, Olsztyn, PL BUP 26/15. ANDRZEJ LANGE, Szczytno, PL

Zeszyty Problemowe Maszyny Elektryczne Nr 80/

UKŁADY NAPĘDOWE POMP I WENTYLATORÓW - OSZCZĘDNOŚĆ ENERGII. Mgr inż. Adam Tarłowski TAKOM Sp. z o.o.

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi

SILNIK INDUKCYJNY KLATKOWY

PN-EN :2012

WZMACNIACZ OPERACYJNY

(54) Filtr aperiodyczny

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Transkrypt:

Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 62 Politechniki Wrocławskiej Nr 62 Studia i Materiały Nr 28 2008 Andrzej WNUK* falownik, przetwornica częstotliwości dużej mocy układ active front end REALIZACJA PRZEMYSŁOWA PRZETWORNICY CZĘSTOTLIWOŚCI DUŻEJ MOCY W UKŁADZIE ACTIVE FRONT-END Z PROSTOWNIKIEM WEJŚCIOWYM O JEDNOSTKOWYM WSPÓŁCZYNNIKU MOCY Danfoss Drives A/S zrealizował pomyślnie praktyczny projekt przetwornicy częstotliwości o mocy 1,2 MVA w układzie Active Front End (AFE). Celem tego projektu było przebadanie skuteczności zaproponowanego rozwiązania, w szczególności w układach podnoszenia dźwigów przemysłowych. Dodatkowym ograniczeniem były ramy czasowe projektu. Dlatego też zaproponowana koncepcja musiała gwarantować poprawną pracę dźwigu bez możliwości wykonywania dodatkowych badań. Z tego względu zastosowano standardowe moduły falownikowe, które były już wykorzystywane w produkowanych seryjnie przetwornicach. Niniejszy artykuł przedstawia zasadnicze zagadnienia, które zostały przeanalizowane podczas realizacji tego projektu. Zebrane doświadczenia posłużyły do wykonania kilku zespołów napędowych o mocy 1,2 MVA w układzie AFE, które zostały zastosowane do napędu suwnic kontenerowych w jednym z portów w Afryce. 1. WPROWADZENIE W ostatnim czasie obserwuje się na świecie rosnące wymagania odnośnie jakości energii elektrycznej, co narzuca producentom przetwornic częstotliwości konieczność wprowadzania zawansowanych rozwiązań, mających na celu poprawę kształtu prądu pobieranego z sieci zasilającej. Zasilanie przetwornic częstotliwości poprzez prostownik 6-pulsowy powoduje znaczącą emisję do sieci zasilającej 5-tej i 7-mej harmonicznej. Dlatego też poszukiwane są rozwiązania, które zapewniają nie tylko skuteczną eliminację wyższych harmonicznych w prądzie zasilającym, ale też zapewniają, że zespół napędowy pracuje ze współczynnikiem mocy bliskim jedności. Ponadto współczesne aplikacje wymaga- * DANFOSS, sp. z o.o. Napędy Elektryczne, Andrzej_Wnuk@danfoss.com

604 ją od napędu szybkiej reakcji na zmianę trybu silnikowego na tryb generatorowy przy jednoczesnej skutecznej kontroli napięcia w obwodzie DC. Bardzo konkurencyjnym rozwiązaniem (w odniesieniu do układów filtrów pasywnych), spełniającym powyższe założenia, jest układ z prostownikiem wejściowym o jednostkowym współczynniku mocy, tzw. Active Front End (AFE). Rozwiązanie to zostało zaproponowane w zakresie największych mocy produkowanych przez firmę Danfoss do 1,2 MVA. 2. UKŁAD ACTIVE FRONT END Aby uzyskać skuteczną filtrację prądu zasilającego, układ AFE musi być odseparowany od sieci zasilającej odpowiednim filtrem dolnoprzepustowym. Klasyczny dławik AC nie jest tutaj optymalnym rozwiązaniem, gdyż przy mocy 1,2 MVA posiada wielkie wymiary i jest stosunkowo drogi. Dlatego też został zastosowany filtr LCL posiadający charakterystykę 2-go rzędu, który skutecznie ogranicza zarówno wyższe harmoniczne częstotliwości sieciowej jak i składowe prądu o częstotliwości kluczowania (zakres kilku khz), bądź będących ich wielokrotnością. Rysunek 1 przedstawia schematycznie przetwornicę częstotliwości wyposażoną w układ AFE wraz z filtrem LCL. Rys. 1. Przemiennik częstotliwości z układem AFE oraz filtrem LCL na wejściu Fig. 1. Frequency converter with AFE and LCL filter at the input Ponieważ zastosowanie filtru LCL pogarsza stabilność pętli regulacji prądu, dlatego też rozważano kilka metod zwiększenia stabilności. Klasyczne metody poprawy stabilności wymagają dodatkowym czujników, np. mierzących napięcie na kondensatorze filtru. Ostatecznie zastosowano jako metodę tłumienia rezystor tłumiący włączony w szereg z kondensatorem filtru. Zaletą takiego rozwiązania jest prostota, szybkość działania oraz niewrażliwość na zmiany impedancji sieci w punkcie przyłączenia napędu. Wadą rezystora tłumiącego są powstające w nim straty mocy. Aby osiągnąć moc 1,2 MVA należało połączyć równolegle 3 jednostki AFE. Takie rozwiązanie wymaga odpowiedniego sterowania, gdyż asymetria w sterowaniu prowadzi do powstania prądów wyrównawczych pomiędzy poszczególnymi modułami

605 AFE. W projekcie zastosowano wspólny blok sterujący, który wysyła sygnały PWM jednocześnie do wszystkich sterowników mocy w 3 jednostkach AFE. W ten sposób zminimalizowano różnice w sterowaniu jedyna asymetria pochodzi od różnic w czasach załączenia/wyłączenia tranzystorów IGBT oraz różnic w innych parametrach tranzystorów, jak np. ich rezystancji dynamicznych. Taką samą ideę sterowania zastosowano w układzie falownika ASD, sterującego silnikiem. Częstotliwość kluczowania tranzystorów IGBT w modułach AFE w testowanym układzie wynosiła 2 khz. W układach AFE zaleca się jednak wyższą wartość częstotliwości kluczowania, gdyż wówczas taki układ pracuje poprawnie już z mniejszą indukcyjnością filtru sieciowego LCL; otrzymuje się też mniejsze tętnienia prądu, zmniejszone straty w elementach indukcyjnych oraz mniejsze wymiary fizyczne komponentów filtru LCL. 3. DOBÓR FILTRU LCL Filtr LCL charakteryzuje się określonym tłumieniem (zależnym od częstotliwości) oraz własną częstotliwością rezonansową f rez. Z analizy charakterystyki częstotliwościowej filtru wynika, że dla częstotliwości mniejszych od połowy jego częstotliwości rezonansowej, charakterystyka częstotliwościowa oraz fazowa filtru są identyczne jak dławika AC. Dużo większe tłumienie w odniesieniu do tłumienia dławika AC uzyskuje się dla częstotliwości powyżej częstotliwości rezonansowej filtru. Dla filtru przedstawionego na rysunku 1 indukcyjność zastępcza L składa się z L t indukcyjności rozproszenia sieci, L m indukcyjności dławika filtru od strony sieci, L c indukcyjności dławika filtru od strony AFE. Przykładową charakterystykę amplitudową i fazową filtru LCL przedstawia rysunek 2. Rys. 2. Charakterystyki filtru LCL Fig. 2. LCL filter characteristics Górny wykres, krzywa przedstawia charakterystykę amplitudową rozumianą jako stosunek prądów i m /i c (patrz rys.1, i m prąd sieciowy, i c prąd wejściowy AFE), natomiast linia prosta charakterystykę amplitudową zastępczego dławika. Widać wyraźnie skuteczniejsze tłumienie filtru LCL przy wzroście częstotliwości powyżej jego

606 częstotliwości rezonansowej wynoszącej na wykresie 1kHz. Dla częstotliwości poniżej 1kHz charakterystyki filtru oraz zastępczego dławika się pokrywają. Dolny wykres przedstawia charakterystykę fazową odpowiednio dla filtru LCL (krzywa) oraz dla zastępczego dławika (prosta). 4. STRUKTURA STEROWANIA Strategia sterowania prostownika wejściowego bazuje na metodzie określonej jako Virtual Flux Oriented Control (VFOC). Na wybór tej metody wpłynęła mała podatność realizowanego wg niej sterowania na niezrównoważenie napięcia sieciowego oraz to, że nie są wymagane żadne dodatkowe układy pomiarowe napięć lub prądów. Podstawą metody VFOC jest zdefiniowanie wirtualnego wektora strumienia ψ(t) otrzymanego poprzez scałkowanie przebiegu chwilowego napięcia U c (t), wyznaczanego bezpośrednio na zaciskach układu AFE, zgodnie z równaniem (1): Aby maksymalnie uprościć równania opisujące zależności pomiędzy napięciem sieciowym a napięciem na zaciskach AFE, zastosowano układ współrzędnych d q, który wiruje synchronicznie wraz ze zdefiniowanym wirtualnym wektorem strumienia ψ(t). (1) Rys. 3. Transformacja wektora napięcia sieciowego U m, prądu I c oraz wirtualnego strumienia ψ pomiędzy układami współrzędnych d q i a b Fig. 3. Transformation of mains voltage, currents and virtual flux signal from fixed a b coordinates to the rotating d q coordinates Wówczas, zarówno wektor strumienia ψ(t) jak i wektory prądów I c i I m oraz napięcie sieciowe U m są w stanach statycznych nieruchome względem układu d q, co upraszcza równania, gdyż nie występuje w nich zmienny kąt ρ. Aby możliwe było sterowanie układem AFE, należy dokonać transformacji wirujących współrzędnych d q do współrzędnych a b, nieruchomych względem stojana. Zależności fazowe pomiędzy układami współrzędnych d q a układem a b przedstawia rysunek 3.

607 W układzie współrzędnych d q wektor napięcia sieciowego U m jest położony na osi q, a wektor strumienia wirującego ψ jest opóźniony o 90º i leży na osi d. Kąt fazowy ρ jest kątem transformacji pomiędzy obydwoma układami współrzędnych. Rys. 4. Schemat blokowy układu sterowania VFOC Fig. 4. Control scheme of the VFOC algorithm 5. WYNIKI SYMULACJI Do symulacji zastosowano środowisko SIMULINK. Rysunek 5 przedstawia spodziewany prąd na wejściu układu AFE oraz spodziewany prąd pobierany bezpośrednio z sieci, po filtracji przez układ filtru LCL wraz z analizami widmowymi. Rys. 5. Symulacja prądu wejściowego układu AFE (lewa kolumna) oraz prądu pobieranego z sieci przez układ AFE (prawa kolumna) wraz z analizami widmowymi Fig. 5.Simulations of the converter current(left) and of the mains current (right) with their respective frequency spectra Oba przebiegi zostały zasymulowane przy założeniu, że falownik napięcia został obciążony mocą ~1MW w trybie pracy generatorowej, tzn. gdy energia była przekazywana do sieci zasilającej. Przeprowadzono też symulację pokazującą jak szybko

608 reaguje układ AFE na skok momentu obciążenia silnika zarówno w trybie pracy silnikowej jak i generatorowej. Symulacja dotyczy zarówno zmian napięcia w obwodzie DC jak i zmian składowych prądu I d i I q w czasie trwania stanu nieustalonego po skokowej zmianie momentu obciążenia silnika. Wg symulacji oczekiwany czas trwania stanu nieustalonego w obu przypadkach nie przekracza 15 18ms. Rys. 6. Symulacja przebiegu napięcia w obwodzie DC oraz składowych I d i I q prądu podczas skoku obciążenia od 0 do 1MW w trybie pracy silnikowej (lewa kolumna) oraz generatorowej (prawa kolumna) Fig. 6. Load step from zero to 1 MW rectifying load (left) and regenerating load (right). Impact on the dc voltage and on id and iq currents. 6. PRAKTYCZNA REALIZACJA UKŁADU AFE Układ AFE o mocy 1,2 MVA został wykonany poprzez równoległe połączenie 3 standardowych bloków o mocy 560kW każdy. Każdy z nich to standardowy moduł falownikowy IGBT, stosowany w modułowych przetwornicach częstotliwości. Dokonano jedynie modyfikacji polegającej na usunięciu dławika DC. Zastosowana została jedna wspólna karta sterująca służąca do regulacji prądów fazowych, napięcia w obwodzie DC oraz do zabezpieczania 3 równolegle połączonych modułów. W przypadku łączenia równoległego modułów należy zwrócić szczególną uwagę na jednoczesność łączeń tranzystorów IGBT. Różnice w czasach załączeń i wyłączeń prowadzą do nierównomiernego rozkładu obciążenia pomiędzy połączonymi równolegle modułami. Schemat blokowy zestawu testowego przestawia załączony rysunek 7. Trzy zespoły AFE zasilają poprzez wspólną szynę DC trzy standardowe równolegle połączone zespoły falownikowe, każdy o mocy 400kW. Są one również sterowane ze wspólnej karty sterującej. Układ testowego przemiennika był zasilany poprzez transformator sieciowy 1 MVA/460 V. Całkowita moc znamionowa przemiennika częstotliwości wynosi 1 MW.

609 7. WYNIKI POMIARÓW UKŁADU TESTOWEGO Prąd wejściowy AFE, prąd sieciowy oraz analizę widmową ich przebiegów czasowych zarejestrowanych na modelu testowym przedstawiono na rysunku 8. Podczas pomiarów sieć była dodatkowo obciążona 6-pulsowym przekształtnikiem AC, który pracował jako aktywne obciążenie silnika współpracującego z badanym przekształtnikiem AFE. Dlatego napięcie sieciowe zawierało dodatkowo harmoniczne generowane przez prostownik 6-pulsowy, co zwiększyło spodziewany współczynnik THDi dla prądu sieciowego do 13,7%. Według symulacji przeprowadzonej dla napięcia nieodkształconego powinien on wynosić ok. 5,41%. Rys. 7. Schemat blokowy przemiennika częstotliwości z układem AFE o mocy 1 MVA Fig. 7. System setup of the 1 MVA AFE converter Rys. 8. Zarejestrowany prąd wejściowy układu AFE oraz jego analiza widmowa (lewa kolumna). Zarejestrowany prąd sieciowy układu AFE oraz jego analiza widmowa (prawa kolumna) Fig. 8. Measured data for both the converter (left) and mains currents (right) with their respective frequency spectra

610 Ponieważ testowany przekształtnik z układem AFE obciążony mocą 1MW był zasilony z transformatora 1 MVA/460 V, celowe było zarejestrowanie kształtu przebiegu czasowego napięcia z transformatora po stronie wtórnej (po stronie filtru LCL). Przebieg czasowy oraz analizę widmową przedstawia rysunek 9. Ponadto został zmierzony współczynnik przesunięcia fazowego pierwszej harmonicznej prądu (cosφ), który podczas pracy generatorowej przekształtnika wynosił 0,989, czyli był bliski jedności, co wskazuje, że układ AFE nie generuje mocy biernej, a zatem nie wymaga kompensacji. Rys. 9. Napięcie fazowe (faza przewód neutralny) po stronie wtórnej transformatora zasilającego przekształtnik Fig. 9. Measured mains voltage waveform on secondary side of the mains supply transformer; line-neutral Zasadniczym celem tego pomiaru było wykazanie, jak zmienia się chwilowy błąd w rozpływie prądu obciążenia pomiędzy 3 równolegle połączonymi układami AFE1, AFE2, AFE3 błąd fazowy. Odchyłka prądu pobieranego przez każdy z układów AFE opisana jest zależnością (2). Przykładowo dla układu AFE1: Według powyższej zasady wyznaczono przebieg czasowy błędu fazowego (rys. 11). Ponieważ błąd fazowy jest przebiegiem zmiennym w czasie, można zatem wyznaczyć jego wartość skuteczną. Ostatecznie otrzymano w modelowym układzie następujące wartości skuteczne błędów fazowych, które osiągają małe wartości (Tabela 1), mimo braku dławików wyrównawczych w obwodzie każdego układu AFE. (2)

611 Rys. 10. Przebieg wartości chwilowej prądu pobieranego przez fazę R odpowiednio przez AFE1, AFE2, AFE3 Fig. 10. R Phase Current AFE1, AFE2, AFE3 Rys. 11. Przebieg wartości chwilowej błędu fazowego prądu pobieranego odpowiednio przez AFE1, AFE2, AFE3 Fig. 11. Dynamic Phase Error AFE1, AFE2, AFE3 Tabela 1. Wartości wartości skuteczne błędów fazowych Table 1. RMS Dynamic Phase Error Summary. AFE1 [%] AFE2 [%] AFE3 [%] 3 1,8 3,6 8. WNIOSKI KOŃCOWE Zgodnie z opisanymi wytycznymi został wykonany moduł AFE o mocy 1,2 MVA. Proces projektowy dotyczył wyboru topologii układu AFE, struktury sterowania wykorzystującej minimum dodatkowych czujników pomiarowych, filtru LCL oraz wyboru metody tłumienia obwodu regulatora prądu. Ostatecznie zdecydowano się na strukturę bazującą na równoległym połączeniu 3 standardowych, obecnie produkowanych modułów falownikowych, w których dokonano drobnych modyfikacji. Uzyskano bardzo mały dynamiczny błąd fazowy, mimo nie stosowania dławików balansujących rozpływ prądów pomiędzy trzema modułami AFE. Bazując na powyższym modelu testowym wykonano kilka egzemplarzy przekształtników zasilających silniki o mocy 1,2MW z układem AFE, które zostały zaimplementowane w układach podnoszenia i jazdy suwnic kontenerowych w jednym z portów przeładunkowych w południowo-wschodniej Afryce.

612 LITERATURA [1] GODBERSEN J.., CLAERBOUT J., Development of a 1,2 MVA Active Front End using Parallel Industrial Units, EPE 2007 Aalborg, [2] LISERRE M., BLAABJERG F., HANSEN S., Design and Control of an LCL-filter based Threephase Active Rectifier, Proc. of IAS 2001 [3] LISERRE M., DELL'AQUILA A., BLAABJERG F., An overview of three-phase voltage source active rectifiers interfacing the utility, IEEE Bologna Power Tech Conference, June 2003 [4] LISERRE M., DELL'AQUILA A., BLAABJERG F., Stability Improvements of an LCL-filter Based Three-phase Active Rectifier, Proc. of PESC, June 2002 [5] TEODORESCU R., BLAABJERG F., LISERRE M., Dell'Aquila A., A stable three-phase LCLfilter based active rectifier without damping, Proc. of IAS, October 2003 [6] HANSEN S., Harmonic Distortion of Rectifier Topologies for Adjustable Speed Drives, Ph.D. thesis, Aalborg University, November 2000 [7] BECK F., KLAMPFER W.L., MELLY S., Netzverträglichkeit rückspeisefähiger Antriebe, 'Bulletin SEV/AES', 3/06, pp.18 20, 2006 [8] KAWABATA T., HIGASHINO S. Parallel Operation of Voltage Source Inverters, IEEE Transactions on Industry Applications, Vol. 24, Issue 2, March/April 1988 [9] LIANGLIANG C., LAN X., WENBIN H., YANGGUANG Y., Application of Coupled Inductors in Parallel Inverter System, Sixth International Conference on Electrical Machines and Systems, 2003, ICEMS 2003 [10] MALINOWSKI M., Sensorless Control Strategies for Three-Phase PWM Rectifiers, Ph.D. thesis, Warsaw University of Technology, 2001 DEVELOPMENT OF A 1,2 MVA ACTIVE FRONT END USING PARALLEL INDUSTRIAL UNITS Danfoss Drives A/S has developed a 1,2 MVA Active Front End (AFE). The purpose was to realize a high power AFE as a study object. The AFE was integrated into a new dynamometer and engaged in testing of high power motor inverters. Because of limited time frames the design had to as-sure immediate successful operation. That was the reason that standard inverter modules have been used. The article presents the crucial problems we had to cope with when developing the AFE project. Based on the gained experience a few 1,2 MVA converters with AFE solution were built and commissioned at the container gantry cranes in a harbor in Africa.