Spectral analysis of signals. Lecturer: dr hab. inż. Janusz Nieznański, prof. nadzw. PG (WEiA, PG)

Podobne dokumenty
deep learning for NLP (5 lectures)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Installation of EuroCert software for qualified electronic signature

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

LEARNING AGREEMENT FOR STUDIES


Zarządzanie sieciami telekomunikacyjnymi

Tychy, plan miasta: Skala 1: (Polish Edition)

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION


Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

PLSH1 (JUN12PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Rev Źródło:

Instrukcja obsługi User s manual


KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Faculty: Management and Finance. Management

UWAGA!!!! Nie odsyłać do Spółki ATTENTION!!!!! Do not send it to the Company

Hard-Margin Support Vector Machines

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

OpenPoland.net API Documentation

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Stargard Szczecinski i okolice (Polish Edition)

Standardized Test Practice

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

Patients price acceptance SELECTED FINDINGS

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

CEE 111/211 Agenda Feb 17

Sargent Opens Sonairte Farmers' Market

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

UMOWY WYPOŻYCZENIA KOMENTARZ

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

WYDZIAŁ BIOLOGII I OCHRONY ŚRODOWISKA

RE11RMMU przekaźnik czasowy opóźniający 10-funkcyjny - 1 s..100 h V AC - 1 OC

Erasmus Incoming Students 2013/2014 Basic Information

PROJECT. Syllabus for course Negotiations. on the study program: Management

PLSH1 (JUN11PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

METHOD 2 -DIAGNOSTIC OUTSIDE

Osoby 50+ na rynku pracy PL1-GRU

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Revenue Maximization. Sept. 25, 2018

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system


Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Healthix Consent Web-Service Specification

RADIO DISTURBANCE Zakłócenia radioelektryczne

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

II wariant dwie skale ocen II alternative two grading scales

BAZIE KWALIFIKACJI ZAGRANICZNYCH

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)


Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)


Lecture 18 Review for Exam 1

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

EPS. Erasmus Policy Statement

Camspot 4.4 Camspot 4.5

RADIO DISTURBANCE Zakłócenia radioelektryczne

Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Transkrypt:

Spectral analysis of signals Lecturer: dr hab. inż. Janusz ieznański, prof. nadzw. PG (WEiA, PG) Level of study PhD Year of study 1 Seester 1 Duration 20 Hrs ECTS 4 Course objective Learning outcoes Content Suggested reading Grading ethod Course language Achieving the learning outcoes indicated below, notably deepening the student s knowledge and skills in the signal analysis and signal processing, along with the capability to apply the knowledge to practical engineering probles. KW-1, KU-1, KK-1 LECTURE (10 hours) Eleentary continuous-tie signals. Sapling and discrete-tie signals. Frequency of discrete-tie signals. Coplex exponential signals and their orthogonality. Coplex Fourier series of continuous-tie and discrete-tie signals. Fourier transfor of continuous-tie and discrete-tie signals. Discrete Fourier transfor (DFT). Recursive coputation of DFT. Spectral factoring of PAM signals. Reconstruction of analog signals. Upsapling and downsapling. Spectral analysis of distorted power line wavefors (single-phase and three-phase); evaluation of haronic distortion of voltages and currents. Related topics: phase locked-loop, coordinate transforations in ultiphase systes, active power filters, spectru analyzers for EMC applications etc. LABORATORY (10 hours) Using sapling and DFT for the analysis of selected continuous-tie signals. Recursive ipleentation of DTF. Measureent of the fundaental haronic of a distorted and/or aplitude-odulated signal. Ipleentation of the phase-locked loop (PLL). Exaple spectral analyses of distorted power line wavefors (single-phase and three-phase). Coputing the total haronic distortion (THD) of power line wavefors. 1. Chen Chi-Tsong: Syste and Signal Analysis. 2nd edition, Saunders College Publishing, 1994 2. Jackson L.B.: Digital Filters and Signal Processing. 3rd edition, Kluwer Acadeic Publishers, 1996. 3. Lyons R.G.: Understanding Digital Signal Processing. 3rd Edition, Prentice Hall, 2010 (Polish translation available: Wprowadzenie do cyfrowego przetwarzania sygnałów. WKŁ 2010). Test of lecture-related knowledge (50%) Evaluation of laboratory assignents (50%) English Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

Exaple test questions 1. A periodic sequence of period is ade of the following saples (per period): 4, 2, 0, 3, 0, -3, 2, 0. Find the Fourier series coefficient c2. d 2. Find an approxiate value of Fourier series coefficient c 11 of a sequence obtained by sapling an analog periodic signal whose Fourier coefficients are given by c a 2, + 1 2 Z The sapling frequency is 27 saples per period. The approxiation should take into account 5 aliased haronics of the analog signal. 3. Deterine the Fourier series expansion of the analog periodic signal shown below using the spectral factorization into the discriination factor and shape factor. Hint: The Fourier transfor of the rectangular pulse sketched below is given by F Ωa π ( Ω ) 2 aa sinc Use this forula and the tie-shifting property of the Fourier transfor to find the required shape factor. Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

Exaple laboratory tasks Task 1 (wavefor approxiation by partial Fourier series) Write a MATLAB function M-file with the following call syntax: [y,t]rectappr0(m) coputing an approxiation of a square wave of aplitude Vax as a partial su of its Fourier series. The approxiation should be ade of M odd real haronics. The Fourier coefficients of the coplex expansion can be evaluated using the following forula: c ( ) 1 1 2 2Vax 1 π The outputs of the function are as follows: t is a tie vector that spans two fundaental periods and has sufficient resolution to ensure that the graph of the approxiation created by the plot function is not visibly distorted; y is a vector of values of the approxiating wavefor at tie points in t. Useful relationships: j 0t jω t ( Ω t + φ ) c e Ω + c e 0 A cos c A 2 e 0 jφ, c A 2 e jφ where c denotes Fourier coefficients of the coplex expansion. Suggested tests: Call the rectappr0 function fro MATLAB coand window, starting with M1 >> [y,t] rectappr0(1); and plot the result using >> plot(t,y); grid Repeat the above coands for increasing values of M and observe how the the approxiation converges to the square wave. Make sure that the tie resolution reains adequate as M increases. ote the appearance of the approxiation around the points of discontinuity of the square wave. Task 4 (recursive coputation of DFT) Write a MATLAB function M-file with the following call syntax: crecursive_dft(,n,x) ipleenting recursive coputation of the Fourier series coefficients of discretetie sequence x. The arguent n is the order of the haronic for which the coefficients are to be coputed, while denotes the period of the analyzed sequence (sequence x ay contain transient states, but it is assued that it is periodic with period at steady state). The output c is a vector (tie sequence) of Fourier series coefficients of the n-th haronic of x. Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

Hints: Consider the conventional discrete Fourier transfor (DFT): 1 k 0 [ ] x[ k] e 2π j k It coputes the saples of the Fourier transfor of sequence x[k] based on tie saples at k 0, 1,, -1. The sequence can be considered finite-duration (with zero values at other saple points k) or periodic with period. In the latter case, the DFT divided by represents the coefficients of the Fourier series: [ ] c (2) Strictly speaking, a periodic signal never exhibits any changes in its repeatable pattern (the sae periodic pattern is repeated over tie fro inus to plus infinity). As a practical atter, however, signals that are noinally periodic (such as the power line voltages and currents) inevitably exhibit various fors of sporadic or slow variation. Despite the fact that such signals are not sensu stricto periodic, it is sensible (and even necessary!) to evaluate their fundaental aplitude or rs value, as well as their haronic content (both changing over tie). To this end, we can evaluate the Fourier coefficients of interest over owing tie windows in such a way that at a current saple tie k the windows spans over the ost recent saple ties (that is, k-+1 through k). The ovingwindow DFT forula could be as follows: [ k] x[ r] k r k + 1 e 2π j 2π j r k r k + [ ] W [ r ] x 1r (1), (3) where W e. In this case the Fourier transfor saples are theselves tie sequences (functions of discrete tie k), which is reflected by the odified notation (the haronic order is now used as a subscript and the dependence of on tie k is explicitly indicated). Consider the sets of values assued by the bound variable r for [ k 1] [ k]. [ k 1] [ k] and The coparison of the above sets suggests a siple ethod of recursive k k 1 : coputation of [ ] based on [ ] [ k] [ k 1 ] x[ k ] W [ k ] + x[ k] W [ k] [ k ] P[ k ] P[ k] 1 + (4) Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

, the values of [ k 1] and P[ k ] should be available as previously coputed and stored values. The evaluation of [ k] only takes When coputing [ k] coputing the new saple product P [ k], adding it to the previous transfor value [ k 1] and subtracting the oldest saple product P[ k ] included in the coputation of [ k 1]. Each newly coputed saple product [ k] becoes [ k ] P effectively P after saple periods, eaning that it is necessary not only in the current coputation, but will also be necessary in a future coputation, and thus it should be stored over the consecutive saple periods. A convenient way to achieve this is to use a cyclic buffer of length. The idea is illustrated in the figure below. Assue that at a given tie k the circular buffer ade of cells stores ost recent saple products P[.] denoted P[oldest_tie] through P[oldest_tie+-1]. The latter product was coputed at tie k-1. At tie k we will need the value of P[oldest_tie] stored in the buffer, so the buffer address at tie k (denoted cirbuf_address in the figure) should indicate the cell holding this value. Once P[oldest_tie] has been retrieved and used in coputing the new transfor value, the cell can be used to store the new saple product for future use, whereupon the buffer address should be increented to indicate the stored product value to be used in the next coputation. In constructing a MATLAB ipleentation of recursive DFT, use the following variables: a scalar intended to store the current value of the transfor (it corresponds k k 1 in eqn. 4); to both [ ] and [ ] c a vector intended to store the tie sequence of Fourier series coefficients of the analyzed sequence x; the entries in c are the consecutive values of /; the length of c is length(x); cirbuff a vector of length serving as a circular buffer; cirbuff_address a scalar used to address (index) the cirbuff (the address should be increented odulo to ensure that the buffer is circular); for the appropriate value of the address, cirbuff(cirbuff_address) will P k in eqn. 4); correspond to [ ] new_product a scalar representing the product of the new signal saple and the appropriate coplex exponential saple; it corresponds to P[k] in eqn. 4. Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

Using the above ideas, the coputation of ight be perfored in the following steps: 1) copute the new_product (that is, the product of the new signal saple and the appropriate coplex exponential saple); new_product corresponds to k in (4); [ ] 2) copute - cirbuff(cirbuff_address)+ new_product (that is, copute eqn. 4); 3) store new_product in cirbuff(cirbuff_address) for future use; 4) increent cirbuff_address (with reduction odulo ); 5) append / to c (i.e. the vector of Fourier series coefficients); 6) go back to step 1 (until the last saple in x has been reached). Suggested tests: Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu

1) Synthesize a sequence ade of a fundaental frequency sine wave of unity aplitude and a third haronic of aplitude 0.3. The sequence should span two fundaental periods. Analyze the sequence using recursive_dft. Start by coputing the Fourier coefficients corresponding to the fundaental haronic, then plot and interpret the coefficient sequence. Repeat the sae for the third haronic. 2) Synthesize a sequence ade of a sine wave which is aplitude-odulated by a piecewise-constant odulating sequence. The initial section of the odulating sequence should have aplitude 1.0 and the subsequent sections each should have aplitude increased by 0.1 copared to the preceding section. The length of each section should be equal to 10 periods of the sine wave. Both sequences should span 100 periods of the sine wave. Analyze the sequence using recursive_dft. Plot and interpret the coefficient sequence. TERMIY WYKLADÓW Data Dzień tygodnia Godzina Sala 2014-04-02 środa 13.15-15.15 WEiA E28 2014-04-09 środa 13.15-15.15 WEiA E28 2014-04-16 środa 13.15-15.15 WEiA E28 2014-04-23 środa 13.15-15.15 WEiA E28 2014-05-07 środa 13.15-15.15 WEiA E28 2014-05-14 środa 13.15-15.15 WEiA E28 2014-05-21 środa 13.15-15.15 WEiA E28 2014-05-28 środa 13.15-14.00 WEiA E28 Projekt Centru Studiów Zaawansowanych - rozwój interdyscyplinarnych studiów doktoranckich na Politechnice Gdańskiej w obszarach kluczowych w kontekście celów Strategii Europa 2020 jest współfinansowany przez Unię Europejską w raach Europejskiego Funduszu