Andrzej Gonet*, Jerzy Fijał**, Aleksandra Jamrozik*, Stanisław Stryczek*, Torleiv Bilstad***

Podobne dokumenty
Conception of reuse of the waste from onshore and offshore in the aspect of

Kick off metting. Conception of reuse of the waste from onshore and offshore in the aspect of environmental protection"

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Sargent Opens Sonairte Farmers' Market

Hard-Margin Support Vector Machines

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science


Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

SNP SNP Business Partner Data Checker. Prezentacja produktu

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

deep learning for NLP (5 lectures)


Patients price acceptance SELECTED FINDINGS

Streszczenie rozprawy doktorskiej


SNP Business Partner Data Checker. Prezentacja produktu

DOI: / /32/37


ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Zarządzanie sieciami telekomunikacyjnymi

Krytyczne czynniki sukcesu w zarządzaniu projektami

Tychy, plan miasta: Skala 1: (Polish Edition)

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Checklist for the verification of the principles of competitiveness refers to Polish beneficiaries only

PRZEDSIEBIORSTWO LUSARSKO-BUDOWLANE LESZEK PLUTA

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Recent Developments in Poland: Higher Education Reform Qualifications Frameworks Environmental Studies

Stargard Szczecinski i okolice (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

No. of subject Subject ECTS. Employees of the Institute of Textile Engineering and Polymer Materials (I_21)

European Crime Prevention Award (ECPA) Annex I - new version 2014

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

DYSKRET POLSKA

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

Profil Czasopisma / The Scope of a Journal

Revenue Maximization. Sept. 25, 2018

No matter how much you have, it matters how much you need

kierunek: BIOTECHNOLOGIA specjalność: Bioinformatics RW , Obowiązuje od 2013/2014

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Analiza uszkodzeń systemów chłodniczych jednostek rybackich

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Call 2013 national eligibility criteria and funding rates

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)


POLITYKA PRYWATNOŚCI / PRIVACY POLICY

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

The Professionals of Irrigation Specjaliści w nawadnianiu

PL-DE data test case. Kamil Rybka. Helsinki, November 2017

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

efekty kształcenia grupa zajęć** K7_K03 K7_W05 K7_U02 K7_W05 A Z K7_K02 K7_W05 K7_U02 A Z K7_U03 K7_U04 K7_W01

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

EPS. Erasmus Policy Statement

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Akademia Morska w Szczecinie. Wydział Mechaniczny

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Auschwitz and Birkenau Concentration Camp Records, RG M

Has the heat wave frequency or intensity changed in Poland since 1950?


Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Działania w dziedzinie klimatu, środowisko, efektywna gospodarka zasobami i surowce

OpenPoland.net API Documentation

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

WYKAZ DOROBKU NAUKOWEGO

Hippo Boombox MM209N CD. Instrukcja obsługi User s Manual

Auditorium classes. Lectures

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Space for your logo, a photograph etc. Action (WBU)

Wytwarzanie energii elektrycznej i ciepła z odpadów Wartość dodana

WSPIERAMY TWOJĄ LOGISTYKĘ

poltegor - projekt sp. z o.o.

Katarzyna Samsel Narodowe Centrum Badań i Rozwoju

PLANY I PROGRAMY STUDIÓW

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

Zastosowanie Internetu w małych i średnich przedsiębiorstwach

Przemysłowe zastosowania technologii generatywnych

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10


TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.

Transkrypt:

AGH DRILLING, OIL, GAS Vol. 33 No. 2 2016 http://dx.doi.org/10.7494/drill.2016.33.2.447 Andrzej Gonet*, Jerzy Fijał**, Aleksandra Jamrozik*, Stanisław Stryczek*, Torleiv Bilstad*** CATEGORIZATION OF THE DRILLING WASTE AS A CRITERION OF SELECTING THE METHODS OF THEIR DETOXICATION, RECOVERY AND MANAGEMENT**** 1. INTRODUCTION Growing awareness of a deleterious impact of various waste types on the natural environment and the human health [3, 5, 9] gives rise to the development of novel technologies centered on waste detoxication, recovery and utilization [1, 2, 4, 6, 8, 10 12, 18, 22]. Mining, including also prospecting for and extraction of hydrocarbons, is one of the sectors of economy generating significant volumes of waste. The drilling waste are inherently represented by rock cuttings and spent drilling muds and fluids [7, 13, 14, 17, 19, 23], highly diversified in their chemical composition. Such a variability of the composition requires detailed tests prior to selecting the most suitable technology of the utilization of a drilling mud. Drilling muds are formulated generally on the basis of water. However, more and more often oil-based drilling fluids are used because of their technological advantages. As leading goals of utilization of all types of spent drilling liquids should be producing a mineral material suitable to be applied to engineering earthen works or to agriculture. * AGH University of Science and Technology, Faculty of Drilling, Oil and Gas, Krakow, Poland ** AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Krakow, Poland *** University in Stavanger, Faculty of Science and Technology **** The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009 2014 in the frame of Project Contract No. Pol-Nor/200375/58/201 447

Among many technologies of detoxification, recovery and utilization of drilling waste, the following should be mentioned [7]: Physico-chemical methods. They include the solidification and stabilization of waste with the use of selected materials (e.g., cement, bentonite, lime or flying ash) and procedures (neutralization, precipitation of heavy metals, removal of substances hindering utilization, e.g., by leaching chlorides). Recycling. Understood as utilization of waste in the form of substitutes for building materials, for instance in road or railway line constructions. Burning or thermal transformation. It refers only to the waste containing hydrocarbons. Bioremediation. It also refers only to the waste containing hydrocarbons. Disposal. It can be done as an injection into a rock mass, deposition in the facilities that neutralize drilling waste, dumping on industrial or communal landfills. According to general rules of waste management, the essential procedures followed in the course of drilling should include: preventing waste generation, minimizing waste volumes, and reducing a negative impact of waste by their most effective treatment and utilization. 2. CLASSIFICATION CRITERIA OF DRILLING WASTE Based on the results of investigations of several tens of drilling muds and fluids of various types [7], a detailed evaluation of their chemical composition, physico-chemical, physico-mechanical and microbiological properties as well as a comprehensive analysis of their mineral and phase composition have been prepared. In particular, the procedures applied involved the following: instrumental chemical methods to determine main and trace elements (using, for instance, atomic absorption spectroscopy AAS, induced plasma spectroscopy ICP, X-ray fluorescence XRF); scanning electron microscopy SEM to analyse the morphology and microstructure of solid waste components and their chemical composition in microareas SEM-EDS; chromatographic analyses to identify organic compounds with a special attention to hydrocarbons. The mineral and phase composition was established using X-ray diffractometry, Fourier transformed infrared spectroscopy FTIR and combined thermal methods. In turn, microbiological analyses were used to establish ecotoxicity of spent drilling liquids, and to assess with biological tests the possibilities of utilization in water-soil environments the processed and transformed drilling waste. The results of all the mentioned research methods and a review of standards [15, 16, 20, 21, 24] have allowed us not only to evaluate a detail quality of various types of drilling waste but also to determine adequate possibilities of their treating, detoxicating and utilizing. As a result, three categories of waste separated from spent drilling muds and fluids have been distinguished (Tab. 1). The flow chart (Fig. 1) presents the procedures leading to the determination of a category of the spent drilling muds and fluids on the basis of their possible utilization. 448

Table 1 Parameters of spent drilling muds and fluids important for their utilization [7] Fig. 1. The categorization procedure of spent drilling liquids based on their utilization aspect [7] 449

Into the category I (Tab. 1) have been included waste that are usually generated in the course of drilling shallow wellbores using drilling muds that do not contain any toxic or deleterious substances. Such waste may be treated with relatively simple methods and then separated into grain-size fractions that can be directly utilized in the natural environment. The flow chart (Fig. 2) presents details of such procedures tailored to specific utilization possibilities. Fig. 2. Processing and utilization possibilities of the drilling waste of the category I [7] Into the category II (Tab. 1) have been included drilling waste [3] containing either admixtures of toxic compounds (such as hydrogen disulphide and hydrocarbon compounds) exceeding the permitted values, or high concentrations of salts soluble in water. Such waste may be efficiently detoxicated with relatively simple chemical and/or biochemical methods. The detoxication and a separation into grain-size fractions make possible recovering and full utilizing useful compounds. It particularly refers to the solid phase, which represents a mineral-organic composite, highly reactive to mineral components of soils and usually possessing high ion exchange capability. Such a material may be used in agriculture in the form of compounds improving the soil microstructure and/or the soil quality class, and also the soil fertility especially in post-industrial areas [9, 21]. The saline solutions separated in the treatment processes should be de-ionized and the salts 450

precipitated may be a useful product used in the winter maintenance of roads. The flow chart (Fig. 3) presents details of such procedures tailored to the specified utilization possibilities. Fig. 3. Processing and utilization possibilities of the drilling waste of the category II [7] Into the category III (Tab. 1) have been included spent drilling fluids containing concentrations of toxic elements and/or compounds exceeding the permitted values, mainly of barium as BaSO 4 (barite) or, sometimes, other heavy metals, whose removal using chemical methods is uneconomic. Their treating and processing requires more 451

advanced methods. In some waste types of this category the contribution of barite to the total solid fraction separated is sometimes higher than 25 wt.%. Such drilling waste are proposed to be processed with gravitational and/or flotation methods to separate barite concentrates that can be reused to formulate highly weighted drilling fluids. If the amounts BaSO 4 in the solid phase are lower than 25 wt.%, such waste may be utilized for producing ceramic materials, mainly plasters and shields absorbing X-ray radiation (for instance in X-ray medical or research laboratories). The flow chart (Fig. 4) presents details of such procedures tailored to the specified utilization possibilities. Fig. 4. Processing and utilization possibilities of the drilling waste of the category III [7] 452

3. CONCLUSIONS 1. A reduction of adverse impacts of the drilling industry on the natural environment can be made by designing the wellbores and by their drilling in the ways that minimize the volume of the waste generated and maximize their management. 2. Considering a substantial variability of the chemical and phase-mineral compositions of drilling waste, corroborated also by the authors, the technology of their processing should be properly selected. Some indications of the respective procedures have been shown in Figure 1, whereas some limitations in Table 1. 3. The drilling waste recognized as the category I should be processed according to the procedures shown in Figure 2 to obtain the materials for ground stabilization, for making ballast or sub-crust of transporting routes and also as additives increasing the soil quality class and the fertility of degraded or post-industrial soils. 4. The waste recognized as the category II should be treated following the procedures shown in Figure 3, including, separation, aggregation, detoxication and the final separation of the solids from the saline water solution. The final products have the same applicability as already specified in the conclusion (3), while salt phases may be used in road deicing (NaCl) and reused in drilling fluids (KCl). 5. The waste belonging to the category III should be treated according to the procedures shown in Figure 4, applying their separating, aggregating, coagulating and again final separating the solids from the saline water solutions. The applicabilities are generally the same as those given in the conclusion (4), and the additional ones are related to barite that may be reused in drilling fluids and used for protection against X-ray radiation (in plasters and shields). 6. The processes identified by the authors are technologically viable to be introduced in Poland. The materials proposed are commonly available and there are no restrictions as to their use. The final products fulfill an important ecological effect of representing usable materials. The only problem is of the economic nature and involves an analysis of the costs incurred and the financial benefits gained. REFERENCES [1] Fijał J. et al.: Zagospodarowanie odpadów wiertniczych w aspekcie ochrony środowiska naturalnego. Międzynarodowa Konferencja Naukowo-Techniczna Nowoczesne metody prac poszukiwawczych i eksploatacyjnych całkowicie bezpieczne dla środowiska naturalnego, Piła, 10 12.04.2013. [2] Fijał J. et al.: Sposób przetwarzania i odzysku odpadowych płuczek wiertniczych. Zgłoszenie patentowe. CTT 622-77/14 z 04.08.2014. [3] Fijał J. et al.: Sposób usuwania siarkowodoru i uzdatniania odpadowych płuczek wiertniczych deponowanych na składowiskach odpadów. Zgłoszenie patentowe. CTT 622-69/2015 z 18.09.2015. [4] Goc A.: Nowoczesne rozwiązanie problemu utylizacji płynnych odpadów wydobywczych zawierających chlorki. Nauka i Technika, No. 9 (173), 2013. 453

[5] Gołda T.: Rekultywacja. Skrypty Uczelniane AGH, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków 2005. [6] Gonet A. et al.: Metody przetwarzania organiczno-mineralnych odpadów wiertniczych w aspekcie ich zagospodarowania. AGH, Kraków 2006. [7] Gonet A. et al.: Conception of reuse of the waste from onshore and offshore drillings in the aspect of environmental protection. project Pol-Nor/200375/58/2013, WWNiG AGH, Kraków 2015 (unpublished). [8] Jamrozik A. et al.: Interaction quicklime /CaO/ on the microstrukture and the properties of a saline drilling waste. Archives of Mining Sciences, vol. 56, No 1, 2011. [9] Krzaklewski W.: Leśna rekultywacja i biologiczne zagospodarowanie nieużytków poprzemysłowych. Skrypty dla Szkół Wyższych, AR, Kraków 1998. [10] Macnar A., Macnar K.: Sposób przetwarzania odpadów wiertniczych. Patent PL216255B1, 2011. [11] Macnar K.: Sposób odwadniania płuczki wiertniczej. Patent PL201551B1, 2004. [12] Macnar K.: Sposób koagulacji płuczki wiertniczej. Patent PL201552B1, 2004. [13] Materiały firmy Exalo Drilling S. A. 2015. [14] Materiały firmy M-I Swaco, 2013. [15] Ostrowska A. et al.: Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Przyrody, Warszawa 1991. [16] Pisarczyk S.: Gruntoznawstwo inżynierskie. PWN, Warszawa 2001. [17] Podręcznik inżynierii płuczek wiertniczych. M-I Drilling Fluids L.L.C., 1996. [18] Projekt techniczny pt. Wdrożenie mobilnego systemu wyparnego oraz rozbudowa laboratorium. Projekt techniczny, materiały projektowe Exalo Drilling S.A. [19] Raczkowski J. et al.: Płuczki wiertnicze. Skrypty Uczelniane nr 701, Wydawnictwa AGH, Kraków, 1979 [20] Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleby oraz standardów jakości ziemi. Dz.U. 2002 Nr 165 poz. 1359. [21] Skawina T., Trafas M.: Zakres wykorzystania i sposób interpretacji wyników badań geologicznych dla potrzeb rekultywacji. Ochrona Terenów Górniczych, nr 16, Katowice 1971. [22] Stephenson R. S.: Thermal desorption of oil from oil-based drilling fluidscuttings: processes and technologies. SPE Asia Pacific Oil and Gas Conference and Exhibition, 2004. [23] Stryczek S. et al.: Ocena zestalania odpadów wiertniczych deponowanych w dołach urobkowych. Konferencja Naukowo-Techniczna WWNiG, Kraków, 1996. [24] Ustawa o odpadach wydobywczych z dnia 10 lipca 2008 r. Dz.U. 2008 Nr 138, poz. 865 z późn. zm. 454