BADANIE SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SKŁADOWE SUBHARMONICZNE

Podobne dokumenty
WPŁYW SUBHARMONICZNYCH I INTERHARMONICZNYCH NAPIĘCIA NA PRĄDY W UZWOJENIACH SILNIKA INDUKCYJNEGO

SILNIK INDUKCYJNY ZASILANY NAPIĘCIEM ZAWIERAJĄCYM SKŁADOWE INTERHARMONICZNE

WPŁYW PODHARMONICZNYCH NA OBCIĄŻENIE CIEPLNE SILNIKA INDUKCYJNEGO

BADANIA WSTĘPNE SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SUBHARMONICZNE Z WYKORZYSTANIEM METOD POLOWYCH

OBCIĄŻALNOŚĆ MOCĄ SILNIKA INDUKCYJNEGO W WARUNKACH WYSTĘPOWANIA ODCHYLENIA NAPIĘCIA I CZĘSTOTLIWOŚCI

WPŁYW WAHAŃ NAPIĘCIA NA OBCIĄŻENIA CIEPLNE SILNIKA INDUKCYJNEGO BADANIA WSTĘPNE

OBCIĄŻENIA CIEPLNE SILNIKA INDUKCYJNEGO W WARUNKACH JEDNOCZESNEGO WYSTĘPOWANIA SUBHARMONICZNYCH I ODCHYLENIA NAPIĘCIA

BADANIE WPŁYWU SUBHARMONICZNYCH NAPIĘCIA NA PRACĘ TRANSFORMATORA JEDNOFAZOWEGO

BADANIA WSTĘPNE SILNIKA O MOCY 5600 kw W WARUNKACH WYSTĘPOWANIA SUBHARMONICZNYCH NAPIĘCIA

WSTĘPNE BADANIA WAHAŃ PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SUBHARMONICZNE

BADANIE WPŁYWU SUBHARMONICZNYCH NA PRACĘ TRANSFORMATORA JEDNOFAZOWEGO W STANIE OBCIĄŻENIA

BADANIA WSTĘPNE SILNIKA INDUKCYJNEGO W WARUNKACH WAHAŃ NAPIĘCIA Z WYKORZYSTANIEM METOD POLOWYCH

KONCEPCJA BADAŃ DRGAŃ I WIBRACJI SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SUBHARMONICZNE

WPŁYW TEMPERATURY UZWOJEŃ SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SUBHARMONICZNE NA MOMENT ELEKTROMAGNETYCZNY

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

ANALIZA JAKOŚCI ENERGII ELEKTRYCZNEJ

W tym krótkim artykule spróbujemy odpowiedzieć na powyższe pytania.

BADANIA EKSPERYMENTALNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM ŚREDNIEGO NAPIĘCIA POPRZEZ JEGO ZASILANIE Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

WST PNY MODEL POLOWY SILNIKA INDUKCYJNEGO ZASILANEGO NAPI CIEM ZAWIERAJ CYM SUBHARMONICZNE

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).

WSPÓŁCZYNNIK MOCY I SPRAWNOŚĆ INDUKCYJNYCH SILNIKÓW JEDNOFAZOWYCH W WARUNKACH PRACY OPTYMALNEJ

POMIARY I ANALIZA WSKAŹNIKÓW JAKOŚCI ENERGII ELEKTRYCZNEJ

Eksperymentalny dobór układu chłodzenia do bezszczotkowej prądnicy synchronicznej reluktancyjnej

POMIARY I ANALIZA WSKAŹNIKÓW JAKOŚCI ENERGII ELEKTRYCZNEJ

POMIARY WSKAŹNIKÓW JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

ZASTOSOWANIE SKOSU STOJANA W JEDNOFAZOWYM SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI

BADANIA GENERATORA INDUKCYJNEGO WZBUDZANEGO KONDENSATORAMI OBCIĄŻENIE NIESYMETRYCZNE

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi

ROZRUCH SILNIKÓW SYNCHRONICZNYCH DUŻEJ MOCY PRZY CZĘŚCIOWYM ZASILANIU UZWOJENIA STOJANA

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

WPŁYW ROZMIESZCZENIA MAGNESÓW NA WŁAŚCIWOŚCI EKSPOATACYJNE SILNIKA TYPU LSPMSM

Badanie skuteczności ochrony łożysk przed skutkami przepływu prądów łożyskowych z zastosowaniem pierścieni zwierających

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO Z USZKODZONĄ KLATKĄ WIRNIKA

BADANIA SKUTKÓW CIEPLNYCH ZWARĆ ZWOJOWYCH W UZWOJENIACH STOJANA SILNIKA INDUKCYJNEGO

OBLICZENIOWE BADANIE ZJAWISK WYWOŁANYCH USZKODZENIEM KLATKI WIRNIKA

Opracował: mgr inż. Marcin Wieczorek

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego

Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników:

Autoreferat przedstawiający informacje o osiągnięciach zawodowych i naukowych

Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

BADANIA GENERATORA INDUKCYJNEGO W PRACY AUTONOMICZNEJ Z KONDENSATORAMI WYZNACZANIE SPRAWNOŚCI

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

BADANIE SKUTECZNOŚCI OCHRONY ŁOŻYSK PRZED SKUTKAMI PRZEPŁYWU PRĄDÓW ŁOŻYSKOWYCH Z ZASTOSOWANIEM PIERŚCIENI ZWIERAJĄCYCH

BADANIE SKUTECZNOŚCI OCHRONY ŁOŻYSK PRZED SKUTKAMI PRZEPŁYWU PRĄDÓW ŁOŻYSKOWYCH Z ZASTOSOWANIEM PIERŚCIENI ZWIERAJĄCYCH

Silnik indukcyjny - historia

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

Wyznaczanie strat w uzwojeniu bezrdzeniowych maszyn elektrycznych

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

OKREŚLENIE OBSZARÓW ENERGOOSZCZĘDNYCH W PRACY TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

Ćwiczenie: "Silnik indukcyjny"

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

PORÓWNANIE SILNIKA INDUKCYJNEGO Z SILNIKIEM SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM

Zeszyty Problemowe Maszyny Elektryczne Nr 80/

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

JAKOŚĆ ENERGII ELEKTRYCZNEJ JAKO PODSTAWA KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ W ELEKTROENERGETYCE

TRÓJFAZOWY GENERATOR Z MAGNESAMI TRWAŁYMI W REśIMIE PRACY JEDNOFAZOWEJ

Diagnostyka silnika indukcyjnego z wykorzystaniem dostępnych napięć stojana

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:

Management Systems in Production Engineering No 3(19), 2015

BADANIA SILNIKA SZEREGOWEGO BEZKOMUTATOROWEGO

OCENA JAKOŚCI DOSTAWY ENERGII ELEKTRYCZNEJ

Obciążenia nieliniowe w sieciach rozdzielczych i ich skutki

WPŁYW PRZEKSZTAŁTNIKA NA MOC ZNAMIONOWĄ TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

CHARAKTERYSTYKI EKSPLOATACYJNE SILNIKA INDUKCYJNEGO DUŻEJ MOCY Z USZKODZONĄ KLATKĄ WIRNIKA

PROPOZYCJE NOWYCH METOD WYZNACZANIA SPRAWNOŚCI SILNIKÓW INDUKCYJNYCH KLATKOWYCH

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

SILNIK INDUKCYJNY KLATKOWY

DIAGNOSTYKA SILNIKA INDUKCYJNEGO Z ZASTOSOWANIEM SYGNAŁU SKUTECZNEJ WARTOŚCI RUCHOMEJ PRĄDU CZĘŚĆ 2 ZASILANIE NIESYMETRYCZNE

Modelowanie samowzbudnych prądnic indukcyjnych

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

MODELOWANIE SAMOWZBUDNYCH PRĄDNIC INDUKCYJNYCH

AWARYJNE STANY PRACY SILNIKÓW INDUKCYJNYCH PIERŚCIENIOWYCH

WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO

Odbiorniki nieliniowe problemy, zagrożenia

Badanie silnika indukcyjnego jednofazowego i transformatora

SILNIK INDUKCYJNY KLATKOWY

PORÓWNANIE JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO I JEDNOFAZOWEGO SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI. BADANIA EKSPERYMENTALNE

Przenoszenie wyższych harmonicznych generowanych przez odbiory nieliniowe przez transformatory do kablowych sieci zasilających

Wykład 2 Silniki indukcyjne asynchroniczne

ZWARCIE POMIAROWE JAKO METODA WYKRYWANIA USZKODZEŃ KLATKI WIRNIKA SILNIKA INDUKCYJNEGO

WPŁYW PRZEKSZTAŁTNIKA NA MOC ZNAMIONOWĄ TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO POWER CONVERTER INFLUENCE ON THE NOMINAL POWER THREE PHASE INDUCTION MOTOR

BADANIE WYŁĄCZNIKA RÓŻNICOWOPRĄDOWEGO

WPŁYW KLINÓW MAGNETYCZNYCH NA WŁAŚCIWOŚCI ROZRUCHOWE SILNIKA INDUKCYJNEGO

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

SKŁADOWE MOCY I ICH ROZDZIAŁ MIĘDZY RÓWNOLEGLE PRACUJĄCE PRĄDNICE NA PROMIE PASAŻERSKO-SAMOCHODOWYM Z NAPĘDEM ELEKTRYCZNYM

I. Podstawowe wiadomości dotyczące maszyn elektrycznych

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

WPŁYW ODKSZTAŁCEŃ NAPIĘCIA W SIECI ZASILAJĄCEJ NA ROZKŁAD TEMPERATURY SILNIKA SYNCHRONICZNEGO WZBUDZONEGO MAGNESAMI TRWAŁYMI

Silniki synchroniczne

Silniki prądu stałego. Wiadomości ogólne

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan.

Transkrypt:

Piotr Gnaciński Marcin Pepliński Mariusz Szweda Akademia Morska w Gdyni BADANIE SILNIKA INDUKCYJNEGO ZASILANEGO NAPIĘCIEM ZAWIERAJĄCYM SKŁADOWE SUBHARMONICZNE Jednym z najczęściej występujących zaburzeń jakości napięcia są odkształcenia jego przebiegu, które zazwyczaj wiążą się z obecnością wyższych harmonicznych. W niektórych systemach elektroenergetycznych oprócz wyższych harmonicznych występują również składowe interharmoniczne i subharmoniczne. Ich obecność powoduje dodatkowe straty mocy oraz wzrost obciążeń cieplnych silników indukcyjnych. W artykule przedstawiono wyniki badań wpływu subharmonicznych na prądy i nagrzewanie silnika indukcyjnego. WSTĘP Zaburzeniem jakości napięcia powszechnie występującym niemal we wszystkich systemach elektroenergetycznych są odkształcenia krzywej jego przebiegu. Odkształcenia krzywej przebiegu napięcia zazwyczaj wiążą się z obecnością wyższych harmonicznych, niemniej w niektórych systemach morskich i lądowych mogą występować również zaburzenia o częstotliwości mniejszej od częstotliwości składowej podstawowej harmonicznej, zwane subharmonicznymi [17]. Przykładowo, w pracy [2] odnotowano znaczące poziomy subharmonicznych w budynku z dużą liczbą odbiorników nieliniowych, znajdującym się w pobliżu huty. Maksymalna wartość pierwiastka z sumy kwadratów subharmonicznych o częstotliwości 5, 10... 45 Hz wynosiła 1,67% amplitudy podstawowej harmonicznej. Przyczyny występowania subharmonicznych w przebiegach napięcia mogą być związane z pracą takich urządzeń, jak: piece łukowe, maszyny spawalnicze, podgrzewacze plazmowe, silniki pracujące z obciążeniem okresowo zmiennym oraz niektóre urządzenia energoelektroniczne [17]. Subharmoniczne są zaburzeniem jakości napięcia szczególnie niekorzystnie oddziaływającym na odbiorniki. Powodują m.in. zjawisko migotania światła, momenty pasożytnicze [4], wahania prędkości obrotowej wału [18] oraz wzrost strumienia [13] i strat mocy w silnikach indukcyjnych [3, 4] i w konsekwencji przegrzewanie się ich uzwojeń [1, 3, 4, 10, 12, 14]. Skutkiem zwiększenia temperatury

50 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 66, grudzień 2010 uzwojeń może być znaczące skrócenie czasu życia maszyny, szczególnie w przypadku silników dużej i średniej mocy [1]. Wpływ subharmonicznych na silnik indukcyjny analizowano w pracach [1, 3, 4, 7, 10, 12, 13, 14, 18]. W artykule [1] przedstawiono wyniki obliczeń wpływu subharmonicznych na zmniejszenie czasu życia silnika w wyniku nadmiernych obciążeń cieplnych. Należy podkreślić, że nie przedstawiono weryfikacji eksperymentalnej wykorzystanego modelu silnika. Z kolei w pracy [18] przeprowadzono analizę subharmonicznych i interharmonicznych prądu w uzwojeniach silnika indukcyjnego za pomocą metody obliczeniowej. Również w rozważanym artykule [18] nie przedstawiono weryfikacji wykorzystanego modelu silnika. W pracy [4] zamieszczono wyniki obliczeń dotyczących wpływu subharmonicznych na straty mocy i moment obrotowy silnika (bez weryfikacji wykorzystanego modelu) oraz zmierzone przyrosty temperatury dla subharmonicznych o wartości skutecznej 5% składowej podstawowej napięcia (U 1 ) i częstotliwości 50... 75% f N. Wyniki badań eksperymentalnych zamieszczono również w pracach [10, 12, 14]. Wykazano między innymi, że modele silnika zastosowane we wspomnianych artykułach de Abreu i Emanuela oraz Fuchsa i innych [1, 3, 4] prowadzą do znaczącego niedoszacowania temperatury uzwojeń [14]. Z kolei w pracy [13] udowodniono, że subharmoniczne powodują znacznie mniejszy wzrost strumienia magnetycznego w maszynie niż wynikający z dotychczasowych analiz teoretycznych [1]. W pracach [10, 12] przedstawiono wstępne wyniki badań dotyczące wpływu subharmonicznych na rozkład temperatury w maszynie oraz wpływu częstotliwości subharmonicznych na dodatkowy przyrost temperatury uzwojeń. W niniejszym artykule przedstawiono wyniki badań eksperymentalnych wpływu amplitudy subharmonicznych na temperaturę uzwojeń i przebieg prądu silnika indukcyjnego. 1. STANOWISKO POMIAROWE Badania eksperymentalne, których wyniki zaprezentowano w niniejszym artykule, przeprowadzono dla stosunkowo mocno nasyconego [16] silnika indukcyjnego klatkowego typu TSg100L-4B o mocy 3 kw. W różnych częściach badanego silnika czołach uzwojeń, części żłobkowej uzwojenia, zębach i rdzeniu stojana, na obudowie, pod łożyskami oraz w powietrzu wewnątrz maszyny wbudowano 19 termopar, natomiast w wirniku zainstalowano indywidualnie kalibrowane termistory. Badany silnik obciążono prądnicą prądu stałego oraz zasilano z układu wielomaszynowego do generowania subharmonicznych. W jego skład wchodzą dwie prądnice synchroniczne sprzęgnięte poprzez transformator (układ połączeń zaczerpnięto z pracy [15]). W celu generowania subharmonicznych jedną z prądnic synchronicznych należy napędzać z prędkością odpowiadającą częstotliwości podstawowej harmonicznej, a drugą z prędkością odpowiadającą częstotliwości składowej subharmonicznej. Pomiar zawartości subharmonicznych w przebiegach napięcia przeprowadzono za pomocą komputerowego analizatora jakości energii

P. Gnaciński, M. Pepliński, M. Szweda, Badanie silnika indukcyjnego zasilanego napięciem... 51 elektrycznej opracowanego w Katedrze Elektroenergetyki Okrętowej Akademii Morskiej w Gdyni. Schemat stanowiska pomiarowego przedstawiono na rysunku 1, dane badanego silnika w pracy [9], a schemat rozmieszczenia termopar w artykule [7]. Układ wielomaszynowy do generowania interharmonicznych i subharmonicznych GS GS Tr Komputerowy analizator jakości energii elektrycznej Napięcie zasilające R Silnik TSg100L-4B Rys. 1. Schemat stanowiska pomiarowego [oprac.własne] 2. WPŁYW SUBHARMONICZNYCH NA STRATY Dla określonych warunków chłodzenia przyrosty temperatury w maszynie zależą od strat w jej poszczególnych elementach. Największy wpływ na temperaturę uzwojeń mają straty, które bezpośrednio się w nich wydzielają [5, 8, 10]. W przypadku rozważanego zaburzenia wzrost strat w uzwojeniach wiąże się m.in. z przepływem subharmonicznych prądu. Przy pominięciu wpływu temperatury na rezystancję uzwojeń dodatkowe straty mocy są proporcjonalne do kwadratu wartości skutecznej subharmonicznych prądu. Należy jednak zauważyć, że zwiększenie rezystancji uzwojeń w wyniku przegrzania maszyny powoduje dalszy wzrost strat w maszynie, a w szczególności wzrost strat w uzwojeniach od podstawowej harmonicznej prądu [5, 6, 8, 9, 10]. Jak już wspomniano, subharmoniczne napięcia wywołują również inne zjawiska, niekorzystnie odziaływające na silnik. Jak wynika z badań doświadczalnych autorów, powodują one m.in. niewielki wzrost harmonicznej podstawowej prądu pobieranego przez silnik. W przypadku badanego stosunkowo mocno nasyconego

52 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 66, grudzień 2010 silnika typu TSg100L-4B subharmoniczna napięcia o wartości U sh = 3,5% U 1 i częstotliwości równej 5 Hz powoduje wzrost podstawowej harmonicznej prądu stojana o ok. 0,3 A, tj. o ok. 4 5% I N. Należy nadmienić, że na obecnym etapie badań nie została jeszcze poznana zależność pomiędzy amplitudą, częstotliwością subharmonicznej, parametrami silnika oraz wzrostem podstawowej harmonicznej prądu. Jedną z możliwych przyczyn tego wzrostu mogą być nieliniowe właściwości obwodu magnetycznego silnika (subharmoniczne powodują wzrost strumienia magnetycznego [13]). Załóżmy, że składowa podstawowa prądu I 1 wzrośnie o wartość ΔI 1 << I 1. Wówczas można napisać następującą zależność (przy pominięciu wpływu temperatury uzwojeń na straty mocy [5, 8, 10]): ΔP u ~ (I 1 + ΔI 1 ) 2 = I 2 1 + 2I 1 ΔI 1 + ΔI 2 1 I 2 1 + 2I 1 ΔI 1 (1) gdzie: ΔP u straty mocy w uzwojeniach, I 1 wartość skuteczna podstawowej harmonicznej prądu, ΔI 1 przyrost podstawowej harmonicznej prądu spowodowany występowaniem składowych subharmonicznych. Zgodnie z powyższą zależnością straty mocy w uzwojeniach spowodowane przepływem prądu podstawowej harmonicznej rosną w przybliżeniu proporcjonalnie do przyrostu ΔI 1. Ponieważ, jak już wspomniano, na obecnym etapie badań, zjawisko wzrostu podstawowej harmonicznej prądu nie zostało wystarczająco poznane, na podstawie analizy czynników powodujących wzrost strat w maszynie nie można jednoznacznie stwierdzić, czy dodatkowe przyrosty temperatury uzwojeń silnika powinny rosnąć z kwadratem subharmonicznej, czy zgodnie z inną zależnością. Charakter powyższej zależności można zbadać za pomocą metod eksperymentalnych. 3. WYNIKI BADAŃ DOŚWIADCZALNYCH Poniżej przedstawiono wyniki badań eksperymentalnych dotyczących wpływu subharmonicznych o kolejności zgodnej na prądy w stojanie silnika i na nagrzewanie się czół uzwojeń. Odpowiednie pomiary wykonano dla momentu obciążenia równego znamionowemu oraz podstawowej harmonicznej napięcia o wartości znamionowej. Na rysunku 2 i 3 zamieszczono charakterystyki znormalizowanej wartości subharmonicznych prądu stojana (odniesionej do prądu znamionowego) w funkcji znormalizowanej wartości subharmonicznych napięcia (odniesionej do wartości napięcia znamionowego). Na rysunku 2 przedstawiono wyniki pomiarów dla częstotliwości subharmonicznych f sh równych 5 Hz (10% częstotliwości podstawowej harmonicznej), a na rysunku 3 dla częstotliwości f s równej 40 Hz (80% częstotliwości podstawowej harmonicznej). Dla częstotliwości f sh równej 5 Hz (rys. 2) subharmoniczna napięcia U sh o wartości 3,5% napięcia znamionowego (U n ) spo-

P. Gnaciński, M. Pepliński, M. Szweda, Badanie silnika indukcyjnego zasilanego napięciem... 53 wodowała przepływ subharmonicznej prądu równego około 46% prądu znamionowego (I n ). Natomiast dla częstotliwości f sh równej 40 Hz (rys. 3) znormalizowane wartości subharmonicznej prądu są ponadczterokrotnie mniejsze. Przykładowo, subharmonicznej napięcia U sh o wartości 3,5% U n odpowiadała subharmoniczna prądu I sh równa 3% I n. Znaczące różnice pomiędzy rozważanymi częstotliwościami subharmonicznych wynikają z faktu, że prądy wywołane subharmonicznymi o niskich częstotliwościach są ograniczone tylko niewielką rezystancją uzwojeń. Natomiast dla subharmonicznych o większych częstotliwościach prądy te dodatkowo ogranicza reaktancja rozproszenia. Warto również nadmienić, że obie rozważane charakterystyki są liniowe. Znormalizowana subharmoniczna prądu [%] 50 40 30 20 10 0 0 1 2 3 4 Znormalizowana subharmoniczna napięcia [%] Rys. 2. Znormalizowana wartość subharmonicznej prądu stojana (odniesiona do prądu znamionowego) w funkcji znormalizowanej wartości subharmonicznej napięcia (odniesionej do napięcia znamionowego) dla subharmonicznych o częstotliwości f = 5 Hz [oprac. własne] Znormalizowana subharmoniczna prądu [%] 12 8 4 0 0 1 2 3 4 Znormalizowana subharmoniczna napięcia [%] Rys. 3. Znormalizowana wartość subharmonicznej prądu stojana (odniesiona do prądu znamionowego) w funkcji znormalizowanej wartości subharmonicznej napięcia (odniesionej do napięcia znamionowego) dla subharmonicznych o częstotliwości f = 40 Hz [oprac. własne] Na kolejnych rysunkach (rys. 4 i 5) zamieszczono charakterystyki dodatkowego przyrostu temperatury uzwojeń w funkcji znormalizowanej wartości subharmonicznej napięcia. Rysunek 4 dotyczy badań cieplnych dla częstotliwości subharmonicznych f sh równej 5 Hz, a rysunek 5 40 Hz. W przypadku badanego silnika, dla częstotli-

54 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 66, grudzień 2010 wości f sh równej 5 Hz dodatkowy przyrost temperatury uzwojeń jest nawet ok. cztero-, pięciokrotnie wyższy niż dla f sh równej 40 Hz. Dla częstotliwości 5 Hz i subharmonicznej napięcia U sh równej 3% U n zmierzony dodatkowy przyrost temperatury wynosił ok. 22 K, natomiast dla częstotliwości 40 Hz i subharmonicznej U sh równej 3,5 wynosił ok. 5 K. Ponadto, analiza rozważanych wykresów wskazuje, że dla badanego silnika dodatkowy przyrost temperatury uzwojeń rośnie w przybliżeniu z kwadratem subharmonicznej napięcia dla częstotliwości f sh równej 5 Hz oraz wolniej dla częstotliwości 40 Hz. 25 Przyrost temperatury [K] 20 15 10 5 0 0 1 2 3 4 Znormalizowana subharmoniczna napięcia [%] Rys. 4. Zmierzony dodatkowy przyrost temperatury czół uzwojeń w funkcji znormalizowanej wartości subharmonicznej napięcia (odniesionej do napięcia znamionowego) dla subharmonicznych o częstotliwości f = 5 Hz [oprac. własne] Przyrost temperatury [K] 6 5 4 3 2 1 0 1 1,5 2 2,5 3 3,5 Znormalizowana subharmoniczna napięcia [%] Rys. 5. Zmierzony dodatkowy przyrost temperatury czół uzwojeń w funkcji znormalizowanej wartości subharmonicznej napięcia (odniesionej do napięcia znamionowego) dla subharmonicznych oczęstotliwości f = 40 Hz [oprac. własne] WNIOSKI Prezentowane wyniki badań eksperymentalnych dla subharmonicznych o kolejności zgodnej dowodzą, że subharmoniczne te powodują nieznaczny wzrost podstawowej harmonicznej prądu pobieranego przez silnik indukcyjny. Ponadto dla częstotliwości subharmonicznych znacznie mniejszej od częstotliwości harmo-

P. Gnaciński, M. Pepliński, M. Szweda, Badanie silnika indukcyjnego zasilanego napięciem... 55 nicznej podstawowej dodatkowy przyrost temperatury uzwojeń rośnie w przybliżeniu z kwadratem subharmonicznej napięcia. Natomiast dla subharmonicznych o częstotliwości zbliżonych do częstotliwości podstawowej harmonicznej dodatkowy przyrost temperatury rośnie wolniej niż z kwadratem subharmonicznych napięcia w przypadku silnika stosunkowo mocno nasyconego. Dokładne poznanie rozważanych zagadnień będzie tematem dalszych dociekań autorów. LITERATURA 1. Abreu J.P.G. de, Emanuel A.E., Induction motor thermal aging caused by voltage.istortion and imbalance: loss of useful life and its estimated costs, IEEE Transactions on Industry Applications, January/February 2002, vol. 38, s. 12 20. 2. Barros J., Apraiz M. de, Measurement of subharmonics in power voltage, Proc. of 2007 IEEE Power Tech, Lausanne, Switzerland, 1 5 July 2007, s. 1736 1740. 3. Fuchs E.F., Roesler D.J., Kvacs K.P., Aging of electrical appliances due to harmonics of the power system voltage, IEEE Trans. on Power Delivery, Jul. 1986, vol. PWRD-1, no. 3, s. 301 307. 4. Fuchs E.F., Roesler D.J., Masoum M.A.S., Are harmonics recommendations according to IEEE and IEC too restrictive?, IEEE Trans. on Power Delivery, 2004, 19(4) s. 1775 1786. 5. Gnaciński P., Effect of power quality on windings temperature of marine induction motors. Part I. Machine model, Energy Conversion and Management, Elsevier, October 2009, vol. 50, no. 10, s. 2463 2476. 6. Gnaciński P., Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine. Energy Conversion and Management, April 2008, vol. 49, no. 4, s. 761 770. 7. Gnaciński P., Energy saving work of frequency-controlled induction cage machine, Energy Conversion and Management, Elsevier, March 2007, vol. 48, no. 3, s. 919 926. 8. Gnaciński P., Prediction of windings temperature rise in induction motors supplied with distorted voltage. Energy Conversion and Management, April 2008, vol. 49, no. 4, s. 707 717. 9. Gnaciński P., Windings temperature and loss of life of an induction machine under voltage unbalance combined with over or undervoltages, IEEE Trans. on Energy Conversion, June 2008, vol. 23, no. 2, s. 363 371. 10. Gnaciński P., Wybrane zagadnienia wpływu jakości energii elektrycznej na obciążenia cieplne silników indukcyjnych klatkowych małej mocy, Wydawnictwo Akademii Morskiej w Gdyni, Gdynia 2009. 11. Gnaciński P., Mindykowski J., Tarasiuk T., Effect of power quality on windings temperature of marine induction motors. Part II. Results of investigations and recommendations for related regulations, Energy Conversion and Management, Elsevier, October 2010, vol. 50, no. 10, s. 2477 2485. 12. Gnaciński P., Pepliński M., Szweda M., The effect of subharmonics on induction machine heating, Proc. of 13th International Power Electronics and Motion Control Conference EPE-PEMC 2008, Poznań, 1 3 września 2008, s. 826 829. 13. Gnaciński P., Pepliński M., Szweda M., The effect of subharmonics on the flux in an induction cage machine, Proc. of 5 th International Workshop Compatibility in Power Electronics CPE 07, Gdańsk-Jelitkowo, 29 maja 1 czerwca 2007 (CD-ROM).

56 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 66, grudzień 2010 14. Gnaciński P., Pepliński M., Szweda M., Wpływ podharmonicznych na obciążenie cieplne silnika indukcyjnego, Zeszyty Problemowe Maszyny Elektryczne, 2009, nr 84, s. 97 101. 15. Ho S.L., Fu W.N., Analysis of indirect temperature-rise tests of induction machines using time stepping finite element method, IEEE Transactions on Energy Conversion, March 2001, vol. 16, no. 1, s. 55 60. 16. Latek W., Badanie maszyn elektrycznych w przemyśle, WNT, Warszawa 1979. 17. PN-EN 61000-2-4:2003, Kompatybilność elektromagnetyczna (EMC). Część 2 4. Środowisko Poziomy kompatybilności dotyczące zaburzeń przewodzonych małej częstotliwości w sieciach zakładów przemysłowych. 18. Tennakoon S., Perera S., Robinson D., Flicker attenuation Part I: Response of three-phase induction motors to regular voltage fluctuations, IEEE Transactions on Power Delivery, April 2008, vol. 23, no. 2, s. 1207 1214. INVESTIGATIONS OF INDUCTION MACHINE SUPPLIED WITH VOLTAGE CONTAINING SUBHARMONIC COMPONENTS Summary One of the most frequently appearing power quality disturbances are waveform voltage distortions that are usually connected with higher harmonics. However, on some powers systems interharmonic and subharmonic voltage components are present too. They cause additional power losses and an increase in thermal loads of induction machines. This paper deals with an effect of subharmonic on currents and heating of an induction cage machine.