THE FLUCTUATIONS OF WATER LEVEL IN THE ODRA ESTUARY

Podobne dokumenty
Zagrożenie powodziowe na obszarach zurbanizowanych w dolnym biegu Odry

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

EXTREME WATER LEVEL FLUCTUATIONS ALONG THE POLISH COAST

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Has the heat wave frequency or intensity changed in Poland since 1950?

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

ACTA UNIVERSITATIS LODZIENSIS FOLIA GEOGRAPHICA PHYSICA 3, Joanna. Wibig PRECIPITATION IN ŁÓDŹ IN THE PERIOD

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

ACTA UNIVERSITATIS LODZIENSIS WIELOLETNIA ZMIENNOŚĆ LICZBY DNI Z OPADEM W KRAKOWIE

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Institute of Meteorology and Water Management, Wroclaw Branch PP 10. Wrocław, June 2007

SPITSBERGEN HORNSUND

THE DAY TO DAY VARIABILITY OF AIR TEMPERATURE IN CRACOW AND ITS SURROUNDINGS

WIATRY SILNE NA POLSKIM WYBRZEŻU MORZA BAŁTYCKIEGO. Strong winds on Poland s Baltic Sea Coast

WEATHER CONDITIONS IN CALYPSOBYEN IN THE SUMMER 1993 (WEST SPITSBERGEN)

Pomiary hydrometryczne w zlewni rzek

2. Synoptic situation between 5 11 November

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Zlodzenie polskiej strefy przybrzeżnej w zimie 2017/18 The Ice Winter 2017/18 on the Polish Baltic Sea Coast

ZMIANY SKŁADOWEJ STREFOWEJ PRĘDKOŚCI WIATRU (U-wind) W REJONIE SPITSBERGENU ZACHODNIEGO ( )

Extraclass. Football Men. Season 2009/10 - Autumn round

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

С R A C OV I E N S I A

SPITSBERGEN HORNSUND

Akademia Morska w Szczecinie. Wydział Mechaniczny

Patients price acceptance SELECTED FINDINGS

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Sargent Opens Sonairte Farmers' Market

Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

SPITSBERGEN HORNSUND

Cracow University of Economics Poland


VARIABILITY OF THE MERIDIONAL CIRCULATION INDEX OVER POLAND ACCORDING TO THE LITYŃSKI CLASSIFICATION FORMULA

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

ZMIENNOŚĆ ZJAWISK HYDROLOGICZNYCH NA DOLNEJ ODRZE W LATACH

ZMIENNOŚĆ ZJAWISK HYDROLOGICZNYCH NA DOLNEJ ODRZE W LATACH

ZMIENNOŚĆ EKSTREMALNEJ TEMPERATURY POWIETRZA W REJONIE BYDGOSZCZY W LATACH

Badanie i prognozowanie zmian brzegu morza bezpływowego.

Faculty of Meteorology and Climatology, University of Warmia-Mazury ul. Plac Łódzki 1, Olsztyn

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

SPITSBERGEN HORNSUND

Zlodzenie polskiej strefy przybrzeżnej w zimie 2015/2016 The Ice Winter 2015/2016 on the Polish Baltic Sea Coast

TENDENCJE ZMIAN TEMPERATURY POWIETRZA W POLSCE. Tendencies of air temperature changes in Poland

ICE CONDITIONS IN NOTTINGHAMBUKTA DURING SEASONS

Instytut Geografii / Institute of Geography Uniwersytet Pedagogiczny w Krakowie / Pedagogical University of Cracow. Karviná, May 2014

ACTA UNIVERSITATIS LODZIENSIS

Skala zjawisk abrazyjnych w minionym 20 leciu na przykładzie Mierzei Dziwnowskiej

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Journal of Ecology and Protection of the Coastline

ACTA UNIVERSITATIS LODZIENSIS

Wprowadzenie. Małgorzata KLENIEWSKA. nawet już przy stosunkowo niewielkim stężeniu tego gazu w powietrzu atmosferycznym.

SOME REMARKS ON THE HIGHEST WIND SPEED VALUES IN LUBLIN

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Opracowanie operacyjnego systemu prognozowania warunków hydrolo- gicznych w estuarium Odry

Revenue Maximization. Sept. 25, 2018

Tychy, plan miasta: Skala 1: (Polish Edition)

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

Allocation of elements in former farmland afforestation with birch of varying age

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

The Overview of Civilian Applications of Airborne SAR Systems

Pakiet Roboczy 1 Sztormy Historyczne

SPITSBERGEN HORNSUND

Zmienność stężenia gazowych zanieczyszczeń powietrza na obszarze pozamiejskim Niziny Szczecińskiej w zależności

Prices and Volumes on the Stock Market

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

AIP VFR POLAND AIRAC effective date GRANICE PIONOWE I KLASA PRZESTRZENI VERTICAL LIMITS AND AIRSPACE CLASSIFICATION.

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

METEOROLOGICAL CONDITIONS OF THE SCOTT RIVER OUTFLOW IN THE SUMMER 1990 (WESTERN SPITSBERGEN)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT NATIONAL RESEARCH INSTITUTE

ACTA UNIVERSITATIS LODZIENSIS. WIELOLETNIA ZMIENNOŚĆ WYSTĘPOWANIA BURZ W SZCZECINIE, ŁODZI, KRAKOWIE I NA KASPROWYM WIERCHU W LATAm

Transkrypt:

(5-13) 2000 Baltic Coastal Zone No. 4 Institute of Biology and Environmental Protection Pomeranian Pedagogical University Słupsk THE FLUCTUATIONS OF WATER LEVEL IN THE ODRA ESTUARY Bernard Wiśniewski, Tomasz Wolski, Halina Kowalewska-Kalkowska Physical Oceanography Laboratory, Institute of Marine Sciences, University of Szczecin, Wąska St. 13, 71-434 Szczecin, Poland Abstract The work presents the results of studies on hydrological and meteorological determination of water level fluctuations in the Odra Estuary. Firstly there has been found the evident continuous increase of average water level at the gauge Świnoujście from the beginning of observational series (1811) due to eustatic changes and gradual land decreasing. Next the study revealed that seasonal fluctuations of sea level are determined by the quantity of sea basin filling which is dependent on circulation conditions. Then examined storm surges (1993-1995) emphasised the important role of sea surface distortion caused by the dynamical movement of low-pressure system. Finally there was found that circulation conditions modify relations between water discharge of the Lower Odra River and water level differences data as measured at the coastal stations of the Szczecin Lagoon and the Świna Strait. Especially during the Odra flooding events there were found statistically significant relations between them. Key words: water level fluctuations, the Odra Estuary, circulation conditions, water discharge of the River Odra INTRODUCTION Water level fluctuations present an important geophysical, oceanographical and climatological problem. They have a significant impact on the changes of water depth and on the location of characteristic elements of coastal zone, which cause the erosion of seashore and the movement of coastline into the land. As a consequence the ecological changes, the disturbance of work in harbours and a danger of human existence can take place. Hence hydrological and meteorological determination of water level fluctuations is worth studying by all means. In the Pomeranian Bay a great variability of water level fluctuations is observed. It is a result of interactions between different types of periodical and nonperiodical fluctuations. Among periodical ones are long-term, annual, semi-annual oscillations as well as tides and seiches. Among non-periodical ones are storm surges and decreases of water level caused by wind and changes of atmospheric pressure as

6 Wiśniewski B., Wolski T., Kowalewska-Kalkowska H. well as fluctuations caused by irregular amount of river input during the year. Some water level fluctuations are the result of annual precipitation and evaporation distributions as well as water density (Dziadziuszko and Jednorał 1987, Kożuchowski and Boryczka 1997, Majewski 1974, Robakiewicz 1993, Wiśniewski 1978). In the Szczecin Lagoon variability of water level fluctuations is significantly smaller and is the result of water level fluctuations in the Pomeranian Bay as well as wind conditions over them. Water level increases in the Szczecin Lagoon caused by brackish and river water inputs amount to 50-80% of the increase of water level in the Pomeranian Bay and occur with a lag in relation to dynamic changes of water level in the Pomeranian Bay. In the Świna, Dziwna and Piana Straits water level fluctuations depend on water level fluctuations mainly in the Pomeranian Bay, to a lesser extent in the Szczecin Lagoon (Buchholz 1990, Buchholz at al. 1990, Majewski 1980, Robakiewicz 1993). The work presents the results of studies on hydrological and meteorological determination of water level fluctuations in the Odra Estuary. First long-term variability of water level fluctuations at the gauge Świnoujście was studied. The station is in possession of the longest series of water level elevation data in the Baltic area (since 1811). The statistical compilation was performed and trend analyses were applied. Then seasonal and short-term variability of water level fluctuations in the Odra Estuary were studied. Air circulation and wind conditions were taken into consideration in order to find meteorological determination of water level fluctuations at the gauge Świnoujście. Finally water discharge of the Lower Odra River at Gozdowice was taken into analysis in order to find hydrological influence on water level difference data as measured at Trzebież, Karsibór and Świnoujście gauges. As high water discharge of the Odra has an effect on water levels in the Odra Estuary the Odra flooding events in the years 1970-1982 were studied (Buchholz 1991). Crosscorrelation, simple and multiple regression analyses were performed. The data were taken from published sources and from Institute of Meteorology and Water Management in Gdynia. RESULTS AND DISCUSSION Long-term variability of water level There has been evident continuous increase of average water level at the gauge Świnoujście from the beginning of observational series due to eustatic changes (the general positive balance of world ocean waters) as well as to the gradual land decreasing. The computed trend came to 0.045 cm a year for the period 1811-1990 (Fig. 1). The value is a little different than that computed by Dziadziuszko and Jednorał (1987) which was 0.07 cm a year. In recent a few dozen years the tendency of sea level increase has intensified at Świnoujście. For the period 1949-1990 the computed trend rose up to 0.07 cm a year. For comparison for the period 1951-1985 the calculated trend by Dziadziuszko and Jednorał (1987) is 0.14 cm a year. Our analysis revealed also that the maximum water level values rose significantly (0.27 cm a year) and the minimum water level values deepened considerably as well (- 0.17 cm a year). It seems to certify clearly about the increase of fluctuations of sea level during

The fluctuations of water level in the Odra Estuary 7 the year as well as about the increase of the long-term variability of sea level (Fig. 2). Probably the great variability of sea level is caused by the increase of climatic variability in the recent semi-century. However it can t be excluded that the increase rate of sea level increase at the gauge Świnoujście, apart from the eustatic increase of the average ocean level, is the tendency of vertical motions of the earth s crust with negative sign. So the decrease of banks in the coastal zone was found. water level (cm) 520 510 500 490 480 y = 0.0447x + 492.08 1811 1821 1831 1841 1851 1861 1871 1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 years Fig. 1. The average trend of water level at the gauge Świnoujście (1811-1990) water level (cm) 580 560 540 520 500 480 460 440 y = 0.2684x + 538.67 y = 0.0654x + 497.5 y = -0.1721x + 460.3 1949 1954 1959 1964 1969 1974 1979 1984 1989 years Fig. 2. Maximum (A), average (B) and minimum (C) water level trends at the gauge Świnoujście (1949-1990) Seasonal variability of water level Seasonal changes of sea level can be defined as mean water level changes during the year. They cause filling of a reservoir. At the gauge Świnoujście the minimum of water level is observed between March to May, while the maximum - between July to September. The secondary minimum in November and secondary maximum in December are recorded as well. Such distribution of seasonal changes is caused originally by annual and semi-annual oscillations connected with radiation changes of the Sun as well as annual and semi-annual solar and lunar tide. The atmospheric

8 Wiśniewski B., Wolski T., Kowalewska-Kalkowska H. circulation is under dominating influence of the Sun radiation. Hence the annual rhythm of sea level changes is also affected by the Sun radiation. The magnitude of semi-annual solar tide can be described according to the equation of I.W. Maksimov: H S = 53.2(1 3sin 2 φ)cos 2h where: H s is an amplitude of sea level fluctuations due to semi-annual solar tide wave in mm, h - the average Sun length, φ - the latitude. The maximum of H s is recorded in January and July and the minimum of H s is observed in April and October. Directly water level changes at Świnoujście are determined by the quantity of sea basin filling which is dependent on the kind and the direction of air circulation as well as wind systems. During the periods of the air circulation coming from west due to inflows from the North Sea the increase of water cubic volume of the Baltic Sea as well as sea level at Świnoujście were to be found. Such situations happen especially during periods of autumn winds with the strong western component. During the periods of the air circulation coming from east due to outflows from the Baltic Sea the decrease of sea level is observed. Such situations happen especially during periods of spring winds with the strong eastern and northeastern component. The results confirmed earlier studies by Dziadziuszko and Jednorał (1987) and Majewski (1974). Meteorological determination of short-term variability of water level Short-term changes of sea level can be defined as water level changes detected in the range of time between a dozen or so minutes to a few days. Intermediate oscillations between wind wavy motion and seasonal fluctuations belong to this group. Storm surges are the most important among them. A storm surge can be defined as a dynamic increase of water level, above the warning or alarm water level, caused by storm winds and low-pressure systems on a sea surface. Sometimes they can cause the flooding events. Storm surges, recorded in the years 1993-1995, confirmed their complicated nature and emphasised the important role of sea surface distortion caused by the dynamic movement of low-pressure system (Wiśniewski 1997). During the examined period of time there were recorded eight significant periods of storm surges. One kind of storm surges was observed on 14 th of January 1993. It surrendered clearly to the dynamic effect of low-pressure system and created by it so-called barotropic wave (Fig. 3). The active low-pressure system, so-called junior, with atmospheric fronts was moving over the North Sea, the Danish Straits and finally over the Baltic Sea. The minimum pressure reached 976 hpa. During the storm surge the sea surface distortion occurred due to the barotropic wave effect with its positive and negative phase. The speed of the low-pressure system (about 115 km an hour), that considerably affected the magnitude of wave dynamic component, was an important factor. The sudden increase and decrease of water level up to 70 cm an hour were the distinctive features of that storm surge (Fig. 4). The storm lasted only 5 hours but caused heavy financial losses along the Polish coast of the Baltic. It also caused the catastrophe of the ferry Jan Heweliusz.

The fluctuations of water level in the Odra Estuary 9 Fig. 3. The movement of storm low-pressure system over the Baltic Sea on 14th of January 1993 (from Dziadziuszko and Malicki 1993) Fig. 4. Sea level changes along Polish coast of the Baltic Sea for the period 13 th of January, six p.m. to 15 th of January, six a.m., 1993 (from Dziadziuszko and Malicki, 1993) Another kind of storm surges was recorded between 3 rd to 4 th of November 1995. The increase and the decrease of sea level at the gauge Świnoujście lasted for 34 hours. The storm surge was connected with an extensive wind field over all the Baltic Sea. The storm situation developed due to well-developed high-pressure system with the centre over the Norwegian Sea (pressure more than 1030 hpa) and two less-developed low-pressure systems (the minimum pressure of 990 hpa), which moved south of the Scandinavian Peninsula with the velocity of 45 km an hour. Due to one-dimensional stream of air masses coming from NE the southern and southwestern parts of the Baltic Sea were being filled up for a long time. Along the Polish coast of the Baltic an occluded front came. Hence changes of wind directions followed. Winds coming from NW, N and NE were recorded mainly at Świnoujście whereas winds coming from SE and then E were recorded at other coastal stations. When the wind direction over the Baltic Sea had generally changed from NE to ENE and the wind speed had increased rapidly the increase of sea level in the Pomeranian Bay took place. Further change of the wind direction to N caused the increase of sea level up to 689 cm, while the warning sea levels were hardly exceeded at the eastern Polish coast. It was the biggest storm surge in the period 1995-1996 and caused the

10 Wiśniewski B., Wolski T., Kowalewska-Kalkowska H. serious damage of the western Polish coast (2/3 of all the financial losses in that period). 75% of all the length of the coast was destroyed. The cliffs and sand dunes with the cubic volume of 871 775 m 3 were damaged. Dune berms were brought at Międzywodzie, Dziwnów, Niechorze and Mrzeżyno. The beaches were significantly narrowed and decreased, sometimes they disappeared entirely. The fishery landing stages were destroyed and foundations of the Amber Baltic Hotel at Międzyzdroje were unbalanced. Generally storm periods in the Baltic area cause increases as well as decreases of sea level. Rapid decreases of sea level are difficult in forecasting of water reserve under a keel of a ship during making port or putting out to sea. Hydrological determination of short-term variability During the Odra flooding events water discharge of the Lower Odra River has an effect on shaping free surface of water in the Szczecin Lagoon as well as in the Świna Strait. During three high water periods of the Odra in the winter 1974-75 (19 October 1974-8 March 1975), the summer 1977 (4 August - 25 October 1977) and the spring 1979 (27 February - 5 June 1979) statistically significant relations were found. During the Odra flooding events in the spring 1979 as well as in the winter 1974-75, when the air circulation from the south sector was prevailing, the synchronous relations between water discharge values and water level differences data were the closest. On the contrary during the high water period in the summer 1977, when the air circulation from the north sector was prevailing, the lag of maximum correlation coefficient was 1-8 days. For instance, during high water period in 1979 the highly statistically significant coefficient of correlation, r = 0.803, was obtained as a result of relating water discharge values of the Lower Odra to water level differences data as measured at Karsibór and Świnoujście. In that case the equation of polynomial regression explained almost 65% of all the cases (Fig. 5). DL(K_Ś) (cm) 30.0 25.0 20.0 15.0 10.0 5.0 0.0-5.0 DL(K_Ś) n = - 0.0152Q n 2 + 0.857Q n + 2.085 r = 0,803 DL(K_Ś) DL(K_Ś) = f(q) -10.0 79.16 79.19 79.21 79.24 79.27 79.30 79.32 79.35 79.38 79.41 t Fig. 5. The plot of water level differences as measured at Karsibór and Świnoujście (observed and calculated from the equation of polynomial regression) during the Odra flooding event in the spring 1979

The fluctuations of water level in the Odra Estuary 11 CONCLUSIONS 1. There has been found the evident continuous increase of average water level at the gauge Świnoujście from the beginning of observational series (1811). For the period 1811-1990 the computed trend came to 0.045 cm a year. For the period 1949-1990 the computed trend rose up to 0.07 cm a year. Probably the great variability of sea level is caused by the increase of climatic variability in the recent semi-century. 2. Seasonal fluctuations of sea level are determined by the quantity of sea basin filling which is dependent on circulation conditions. During the periods of the air circulation coming from west (especially during periods of autumn winds) the increase of sea level at Świnoujście were to be found. During the periods of the air circulation coming from east the decrease of sea level is observed (especially during periods of spring winds). 3. Storm surges in the years 1993-1995 emphasised the important role of sea surface distortion caused by the dynamical movement of low-pressure system. They caused heavy financial losses along the Polish coast of the Baltic Sea and were dangerous on sea. Rapid changes of sea level cause problems in maritime navigation. 4. Circulation conditions modify relations between water discharge of the Lower Odra River and water level differences data as measured at the coastal stations of the Szczecin Lagoon and the Świna Strait, especially during periods of high water of the Lower Odra River. The closest synchronous relations between them were found during the Odra flooding events with prevailing air circulation from the south sector. On the contrary when the air circulation from the north sector was prevailing, the lag of maximum correlation coefficient was 1-8 days. REFERENCES Buchholz, W. (Ed.) 1990. Materiały do monografii dolnej Odry. Warunki hydrologiczno-hydrodynamiczne [Materials to the monograph of the Lower Odra River. Hydrological and hydrodynamic conditions]. Pr. Inst. Bud. Wod., Gdańsk, 22. Buchholz, W. (Ed.) 1991. Monografia dolnej Odry. Hydrologia i hydrodynamika [The monograph of the Lower Odra River. Hydrology and Hydrodynamics]. Pr. Inst. Bud. Wod., Gdańsk, 25. Buchholz, W., Dereń, P., Jóźwiak, K., Kałuża, W. 1990. Dynamika i wielkość zmian stanów wody w ujściu Odry do Bałtyku [Dynamics and the amount of water level changes in the mouth of the Odra River into the Baltic Sea]. In: Robakiewicz W. (Ed.) Wyniki ekspedycyjnych badań rejonu ujścia Odry Zalew Szczeciński 83 [The results of expedition research of the Odra mouth region The Szczecin Lagoon 83 ], 89-114, Pr. Inst. Bud. Wod., Gdańsk. Dziadziuszko, Z., Jednorał, T. 1987. Wahania poziomów morza na polskim wybrzeżu Bałtyku [Sea level fluctuations at the Polish coast of the Baltic Sea].

12 Wiśniewski B., Wolski T., Kowalewska-Kalkowska H. SIMO, 52, Dynamika morza, 6, Kom. Bad. Morza PAN, Ossolineum, Wrocław, 215-237. Dziadziuszko, Z., Malicki, J. 1993. Wahania poziomów morza rejonu Półwyspu Helskiego na tle ogólnej sytuacji meteorologicznej i hydrologicznej [Sea level fluctuations of the Hel Peninsula region against a background of the general meteorological and hydrological situation]. Inż. Mor. Geotech., 4, 153-159. Kożuchowski, K., Boryczka, J. 1997. Cykliczne wahania i trendy zmian poziomu morza w Świnoujściu (1811-1990) [Periodical fluctuations and trends of sea level changes at Świnoujście (1811-1990)]. Przegl. Geofiz., 42, 31-47. Majewski, A. 1974. Charakterystyka hydrologiczna Zatoki Pomorskiej [Hydrological characteristic of the Pomeranian Bay]. Wyd. Komun. Łączn., Warszawa. Majewski, A. 1980. Zalew Szczeciński [The Szczecin Lagoon]. Wyd. Komun. Łączn., Warszawa. Robakiewicz, W. (Ed.) 1993. Warunki hydrodynamiczne Zalewu Szczecińskiego i Cieśnin łączących Zalew z Zatoką Pomorską [Hydrodynamic conditions of the Szczecin Lagoon and the Straits between the Lagoon and the Pomeranian Bay]. Wyd. Inst. Bud. Wod. PAN, Gdańsk. Wiśniewski, B. 1978. Sezonowe i wieloletnie wahania wód Morza Bałtyckiego [Seasonal and long-term fluctuations of sea level in the Baltic Sea]. Wyd. Wyż. Szk. Mor., Szczecin. Wiśniewski, B. 1997. Zmienność zapasu wody pod stępką statku w czasie wezbrań sztormowych [The variability of water reserve under a keel of ship during storm surges]. Inż. Mor. Geotech., 5, 325-327. ZMIENNOŚĆ STANÓW WODY W ESTUARIUM ODRY Streszczenie Praca przedstawia wyniki badań nad hydrologicznymi i meteorologicznymi uwarunkowaniami zmienności stanów wody w estuarium Odry. W Świnoujściu od początku serii obserwacyjnej (1811) zaznacza się stały wzrost średniego poziomu morza. Wyznaczony trend za okres 1811-1990 ma wartość 0,045 cm rok 1. W ostatnich kilkudziesięciu latach w Świnoujściu wyraźnie nasiliły się tendencje podniesienia poziomu morza. Trend wyznaczony dla okresu 1949-90 osiąga wartość 0,07 cm rok -1. Jednocześnie zauważa się wyraźny wzrost wahań rocznych. W Świnoujściu minimalne roczne stany wody występują wiosną - od marca do maja, maksymalne zaś w miesiącach lipiec - wrzesień. Również zauważane są ekstrema drugorzędne. Pierwotną przyczyną takiego rozkładu zmian sezonowych poziomu morza jest charakterystyka rocznej i półrocznej oscylacji związanej ze zmianą radiacji Słońca oraz rocznym i półrocznym pływem słonecznym. Bezpośrednio na kształtowanie się poziomu morza w Świnoujściu ma wpływ wielkość wypełnienia przez wodę basenu morskiego zależna przede wszystkim od rodzajów cyrkulacji atmosferycznej i wygenerowanych przez nie systemów wiatrów.

The fluctuations of water level in the Odra Estuary 13 Zmiany wywołane warunkami sztormowymi podczas wezbrań sztormowych należą do najważniejszych zmian krótkookresowych. Rejestracja wezbrań w okresie 1993-95 potwierdza ich złożoną naturę oraz podkreśla ważną rolę zniekształcenia powierzchni morza przez dynamicznie przemieszczający się układ obniżonego ciśnienia atmosferycznego. Okresy sztormowe powodują zarówno wezbrania poziomu morza jak i jego obniżenia powodując ogromne straty na wybrzeżu i na morzu. Bardzo szybki spadek poziomu wód może spowodować brak rezerwy pod stępką statku. Wielkość przepływu wody w Odrze jak i warunki cyrkulacyjne mają istotny wpływ na układ zwierciadła wody w Zalewie Szczecińskim. Zwłaszcza w okresach wysokich przepływów wody w Odrze wielkość przepływu determinuje układ zwierciadła wody w Zalewie Szczecińskim, co potwierdziły istotne statystycznie związki. W czasie wezbrań Odry w 1979 i na przełomie 1974-75, o przewadze cyrkulacji południowej, najsilniejsze okazały się związki synchroniczne. W okresie wezbrania letniego w 1977, o przewadze cyrkulacji północnej, przesunięcie czasowe współczynnika maksymalnej korelacji wynosiło 1-8 dni.