Szczegółowe wymagania edukacyjne z fizyki klasa trzecia gimnazjum

Podobne dokumenty
Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z FIZYKI KLASA III

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Szczegółowe wymagania edukacyjne z przedmiotu fizyka dla klasy III gimnazjum, rok szkolny 2017/2018

WYMAGANIA Z FIZYKI KLASA 3 GIMNAZJUM. 1. Drgania i fale R treści nadprogramowe

Przedmiotowy system oceniania z fizyki w klasie 3

Wymagania edukacyjne na dana ocenę z fizyki dla klasy III do serii Spotkania z fizyką wydawnictwa Nowa Era

Ocena. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

niepewności pomiarowej zapisuje dane w formie tabeli posługuje się pojęciami: amplituda drgań, okres, częstotliwość do opisu drgań, wskazuje

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE 3 GIMNAZJUM

FIZYKA WYMAGANIA EDUKACYJNE klasa III gimnazjum

1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry Uczeń: Uczeń:

KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY Z FIZYKI W KLASIE III

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI III GIMNAZJUM ROK SZKOLNY 2016/ Magnetyzm R treści nadprogramowe

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI III GIMNAZJUM ROK SZKOLNY 2012/ Magnetyzm R treści nadprogramowe

Przedmiotowy system oceniania z Fizyki w klasie 3 gimnazjum Rok szkolny 2017/2018

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

Wymagania na poszczególne oceny z fizyki w kasie trzeciej

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE

1. Drgania i fale Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Uczeń: Uczeń:

WYMAGANIA Z FIZYKI NA POSZCZEGÓLNE OCENY DLA KLASY TRZECIEJ GIMNAZJUM

Wymagania edukacyjne z fizyki

Plan wynikowy (propozycja)

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III a Gimnazjum Rok szkolny 2016/17

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III GIMNAZJUM

Rok szkolny 2017/2018; [MW] strona 1

Rok szkolny 2018/2019; [MW] strona 1

FIZYKA Gimnazjum klasa III wymagania edukacyjne

Przedmiotowy system oceniania Fizyka klasa III Gimnazjum

Wymagania programowe na poszczególne oceny z fizyki w klasie III

WYMAGANIA EDUKACYJNE KLASA III

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W GIMNAZJUM NR 28 im. Armii Krajowej w Gdańsku

2 Prąd elektryczny R treści nadprogramowe

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Przedmiotowy system oceniania z fizyki dla klas trzecich

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Ogólne wymagania na poszczególne stopnie:

Ocena. dopuszczająca dostateczna dobra bardzo dobra

Przedmiotowe zasady ocenianie z fizyki i astronomii klasa 3 gimnazjum. Szczegółowe wymagania na poszczególne stopnie ( oceny ).

Wymagania edukacyjne na poszczególne oceny z fizyki dla klasy trzeciej gimnazjum

1,5 godziny tygodniowo

Wymagania na poszczególne oceny z fizyki do klasy 3

Przedmiotowy system oceniania w klasie 3

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

Przedmiotowy system oceniania fizyka III gim

Wymagania programowe na poszczególne oceny z fizyki dla klasy 3 gimnazjum

Przedmiotowy System Oceniania fizyki w gimnazjum, SPOTKANIA Z FIZYKĄ

Szczegółowe wymagania na poszczególne oceny klasa III gimnazjum

Przedmiotowy system oceniania

OGÓLNE I SZCZEGÓŁOWE KRYTERIA OCENIANIA Z FIZYKI DLA KLASY VIII

SZCZEGÓŁOWE KRYTERIA OCENIANIA KLASA III

wyniku i na tej podstawie ocenia wartości obliczanych wielkości fizycznych

Przedmiotowy system oceniania

Wymagania edukacyjne z fizyki dla klasy III

R - treści nadprogramowe. Prąd elektryczny (13 godz. + 2 godziny (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) Wymagania

Przedmiotowy system oceniania

Dostosowanie programu nauczania,,spotkania z fizyką w gimnazjum dla uczniów z upośledzeniem umysłowym w stopniu lekkim

Przedmiotowy system oceniania

opisuje przepływ prądu w przewodnikach, jako ruch elektronów swobodnych posługuje się intuicyjnie pojęciem napięcia

klasy: 3A, 3B nauczyciel: Tadeusz Suszyło

Rozkład materiału dla klasy 8 szkoły podstawowej (2 godz. w cyklu nauczania) 2 I. Wymagania przekrojowe.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

PRZEDMIOTOWY SYSTEM OCENIANIA Fizyka klasa 3

WYMAGANIA EDUKACYJNE Z FIZYKI PODSTAWA PROGRAMOWA KSZTAŁCENIA OGÓLNEGO

Podstawa programowa III etap edukacyjny

Wymagania edukacyjne z fizyki na podstawie programu nauczania fizyki w gimnazjum Spotkania z fizyką autorstwa Grażyny Francuz-Ornat i Teresy Kulawik

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH OCEN KLASYFIKACYJNYCH Z FIZYKI W KLASIE 3A W ROKU SZKOLNYM 2014/2015:

PODSUMOWANIE SPRAWDZIANU

1. Przedmiotowy system oceniania wraz z wymaganiami na poszczególne oceny: Przedmiot: fizyka. I. Postanowienia ogólne

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI

Osiągnięcia ucznia R treści nadprogramowe

PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot. fizyka Klasa pierwsza... druga... trzecia... Rok szkolny Imię i nazwisko nauczyciela przedmiotu

Przedmiotowy system oceniania z fizyki

KRYTERIA OCENIANIA Z FIZYKI DLA UCZNIÓW VIII KLASY SZKOŁY PODSTAWOWEJ OPRACOWAŁA: GRAŻYNA BUDNIK TERMODYNAMIKA

Spełnienie wymagań poziomu oznacza, że uczeń ponadto:

SZCZEGÓŁOWE KRYTERIA OCENIANIA KLASA III

Szczegółowe wymagania na poszczególne stopnie (oceny) z fizyki dla klasy 8 -semestr II

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z fizyki dla klasy 3 gimnazjum

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń:

WYMAGANIA EDUKACYJNE Z FIZYKI KL.II I-półrocze

Przedmiotowy system oceniania

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym sem I

FIZYKA KLASA III GIMNAZJUM

Zasady oceniania. Ocena. dopuszczająca dostateczna dobra bardzo dobra

Wymagania programowe R - roz sze rza jąc e Kategorie celów poznawczych A. Zapamiętanie B. Rozumienie C. Stosowanie wiadomości w sytuacjach typowych

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA IIa Gimnazjum Rok szkolny 2016/17

DRGANIA I FALE (9 godz.)

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

Program merytoryczny Konkursu Fizycznego dla uczniów gimnazjów rok szkolny 2011/2012

Wymagania Edukacyjne z Fizyki w Roku Szkolnym 2018/2019 Klasy 7 Szkoły Podstawowej

Podstawa programowa z fizyki (III etap edukacyjny) Cele kształcenia wymagania ogólne. Treści nauczania wymagania szczegółowe

Oblicza natężenie prądu ze wzoru I=q/t. Oblicza opór przewodnika na podstawie wzoru R=U/I Oblicza opór korzystając z wykresu I(U)

PLAN WYNIKOWY Z FIZYKI DLA KLASY TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 Dział : Zjawiska magnetyczne 6 godzin

Plan wynikowy zajęcia edukacyjne z fizyki III etap edukacyjny klasa III

Plan wynikowy (propozycja)

Przedmiotowy System Oceniania Klasa 8

Transkrypt:

Szczegółowe wymagania edukacyjne z fizyki klasa trzecia gimnazjum Zasady ogólne 1.Na podstawowym poziomie wymagań uczeń powinien wykonać zadania obowiązkowe (łatwe - na stopień dostateczny, i bardzo łatwe - na stopień dopuszczający); niektóre czynności ucznia mogą być wspomagane przez nauczyciela (np. wykonywanie doświadczeń, rozwiązywanie problemów, przy czym na stopień dostateczny uczeń wykonuje je pod kierunkiem nauczyciela, na stopień dopuszczający - przy pomocy nauczyciela lub innych uczniów). 2.Czynności wymagane na poziomach wymagań wyższych niż poziom podstawowy uczeń powinien wykonać samodzielnie (na stopień dobry - niekiedy może jeszcze korzystać z niewielkiego wsparcia nauczyciela). 3.W przypadku wymagań na stopnie wyższe niż dostateczny uczeń wykonuje zadania dodatkowe (na stopień dobry - umiarkowanie trudne, na stopień bardzo dobry - trudne). 4.Wymagania umożliwiające uzyskanie stopnia celującego obejmują wymagania na stopień bardzo dobry, a ponadto uczeń jest twórczy, rozwiązuje zadania problemowe w sposób niekonwencjonalny, potrafi dokonać syntezy wiedzy i na tej podstawie sformułować hipotezy badawcze oraz zaproponować sposób ich weryfikacji, samodzielnie prowadzi badania o charakterze naukowym, z własnej inicjatywy pogłębia swoją wiedzę, korzystając z różnych źródeł, poszukuje zastosowań wiedzy w praktyce, dzieli się swoją wiedzą z innymi uczniami, osiąga sukcesy w konkursach fizycznych. Wymagania ogólne - uczeń: wykorzystuje wielkości fizyczne do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych, przeprowadza doświadczenia i wyciąga wnioski z otrzymanych wyników, wskazuje w otaczającej rzeczywistości przykłady zjawisk opisywanych za pomocą poznanych praw i zależności fizycznych, popularnonaukowych). Ponadto uczeń: wykorzystuje narzędzia matematyki oraz formułuje sądy oparte na rozumowaniu matematycznym, wykorzystuje wiedzę o charakterze naukowym do identyfikowania i rozwiązywania problemów, a także formułowania wniosków opartych na obserwacjach empirycznych dotyczących przyrody, wyszukuje, selekcjonuje i krytycznie analizuje informacje, potrafi pracować w zespole.

Szczegółowe wymagania na poszczególne stopnie (oceny) Dział 1. Drgania i fale R treści nadprogramowe wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek obrazujący układ doświadczalny stosuje do obliczeń związek okresu z częstotliwością drgań, rozróżnia wielkości dane i szukane, szacuje rząd wielkości spodziewanego wyniku, a na tej podstawie ocenia wartości obliczanych wielkości fizycznych, przelicza wielokrotności i podwielokrotności (przedrostki mikro-, mili-, centy-), przelicza jednostki czasu (sekunda, minuta, godzina), zapisuje wynik pomiaru lub obliczenia fizycznego jako przybliżony (z dokładnością do 2-3 cyfr znaczących) wyodrębnia ruch falowy (fale mechaniczne) z kontekstu, wskazuje czynniki istotne i nieistotne dla demonstruje wytwarzanie fal na sznurze i na powierzchni wody wyodrębnia fale dźwiękowe z kontekstu, odczytuje dane z tabeli (diagramu) rozpoznaje zależność rosnącą i malejącą na podstawie wykresu x(t) dla drgającego wyodrębnia ruch drgający z kontekstu, wyznacza okres i częstotliwość drgań ciężarka zawieszonego na sprężynie oraz okres i częstotliwość drgań wahadła matematycznego, mierzy: czas i długość zapisuje dane w formie tabeli * posługuje się pojęciami: amplituda drgań, okres, częstotliwość do opisu drgań, wskazuje położenie równowagi drgającego ciała wskazuje położenie równowagi oraz odczytuje amplitudę i okres z wykresu x(t) dla drgającego ciała opisuje mechanizm przekazywania drgań z jednego punktu ośrodka do drugiego w przypadku fal na napiętej linie z badaniem ruchu falowego posługuje się pojęciami: amplituda, okres i częstotliwość, prędkość i długość fali do opisu fal harmonicznych (mechanicznych) stosuje do obliczeń związki między okresem, częstotliwością, prędkością i długością fali, rozróżnia wielkości dane i szukane, szacuje rząd wielkości spodziewanego wyniku, a na tej podstawie z badaniem ruchu drgającego, w szczególności z wyznaczaniem okresu i częstotliwości drgań ciężarka zawieszonego na sprężynie oraz okresu i częstotliwości drgań wahadła matematycznego opisuje ruch ciężarka na sprężynie i ruch wahadła matematycznego analizuje przemiany energii w ruchu ciężarka na sprężynie i w ruchu wahadła matematycznego " odróżnia fale podłużne od fal poprzecznych, wskazując przykłady " demonstruje i opisuje zjawisko rezonansu mechanicznego wyszukuje i selekcjonuje informacje dotyczące fal mechanicznych, np. skutków działania fal na morzu lub oceanie lub "skutków rezonansu mechanicznego opisuje mechanizm przekazywania drgań z jednego punktu ośrodka do drugiego w przypadku fal dźwiękowych w powietrzu z badaniem cech fal dźwiękowych, w szczególności z badaniem zależności wysokości i głośności dźwięku od częstotliwości i amplitudy drgań źródła tego dźwięku popularnonaukowych i internetu) dotyczącymi pracy zegarów wahadłowych, w szczególności wykorzystania w nich zależności częstotliwości drgań od długości wahadła i zjawiska izochronizmu " opisuje mechanizm rozchodzenia się fal podłużnych i poprzecznych " demonstruje i opisuje zjawiska: odbicia, załamania, dyfrakcji i interferencji fal, podaje przykłady występowania tych zjawisk w przyrodzie " demonstruje i opisuje zjawisko rezonansu akustycznego, podaje przykłady skutków tego zjawiska "demonstruje drgania elektryczne " wyjaśnia wpływ fal elektromagnetycznych o bardzo dużej częstotliwości (np. promieniowania nadfioletowego i rentgenowskiego) na organizm człowieka " rozwiązuje złożone zadania obliczeniowe z zastosowaniem zależności i wzorów dotyczących drgań i fal

ciała i wykresów różnych fal dźwiękowych, wskazuje wielkość maksymalną i minimalną nazywa rodzaje fal elektromagnetycznych ocenia wartości obliczanych wielkości fizycznych, zapisuje wynik obliczenia fizycznego jako przybliżony (z dokładnością do 2-3 cyfr znaczących) opisuje mechanizm wytwarzania dźwięku w instrumentach muzycznych, głośnikach itp. * posługuje się pojęciami: amplituda, okres i częstotliwość, prędkość i długość fali do opisu fal dźwiękowych wytwarza dźwięk o większej i mniejszej częstotliwości niż częstotliwość danego dźwięku za pomocą dowolnego drgającego przedmiotu lub instrumentu muzycznego posługuje się pojęciami: wysokość i głośność dźwięku, podaje wielkości fizyczne, od których zależą wysokość i głośność dźwięku wykazuje na przykładach, że w życiu człowieka dźwięki spełniają różne role i mają różnoraki charakter rozróżnia dźwięki, infradźwięki i ultradźwięki, posługuje się pojęciami infradźwięki i ultradźwięki, wskazuje zagrożenia ze strony infradźwięków oraz przykłady wykorzystania ultradźwięków porównuje (wymienia cechy wspólne i różnice) mechanizmy rozchodzenia się fal mechanicznych i elektromagnetycznych podaje i opisuje przykłady zastosowania fal elektromagnetycznych (np. w telekomunikacji) przedstawia skutki oddziaływania hałasu i drgań na organizm człowieka oraz sposoby ich łagodzenia R rozróżnia zjawiska echa i pogłosu opisuje zjawisko powstawania fal elektromagnetycznych popularnonaukowych), m.in. dotyczących dźwięków, infradźwięków i ultradźwięków oraz wykorzystywania fal elektromagnetycznych w różnych dziedzinach życia, a także zagrożeń dla człowieka stwarzanych przez niektóre fale elektromagnetyczne

Dział 2. Optyka wymienia i klasyfikuje źródła światła, podaje przykłady odczytuje dane z tabeli (prędkość światła w danym ośrodku) wskazuje w otaczającej rzeczywistości przykłady prostoliniowego rozchodzenia się światła demonstruje doświadczalnie zjawisko rozproszenia światła opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek obrazujący układ doświadczalny wymienia i rozróżnia rodzaje zwierciadeł, wskazuje w otoczeniu przykłady różnych rodzajów zwierciadeł * bada doświadczalnie skupianie równoległej wiązki światła za pomocą zwierciadła kulistego wklęsłego demonstruje zjawisko załamania światła (zmiany kąta załamania przy zmianie kąta podania - jakościowo) opisuje (jakościowo) bieg promieni przy przejściu światła z ośrodka rzadszego do ośrodka gęstszego optycznie i odwrotnie, posługując się pojęciem kąta załamania wymienia i rozróżnia rodzaje soczewek porównuje (wymienia cechy wspólne i różnice) mechanizmy rozchodzenia się fal mechanicznych i elektromagnetycznych podaje przybliżoną wartość prędkości światła w próżni, wskazuje prędkość światła jako maksymalną prędkość przepływu informacji * bada doświadczalnie rozchodzenie się światła opisuje właściwości światła, posługuje się pojęciami: promień świetlny, ośrodek optyczny, ośrodek optycznie jednorodny stosuje do obliczeń związek między długością i częstotliwością fali: rozróżnia wielkości dane i szuane, szacuje rząd wielkości spodziewanego wyniku i ocenia na tej podstawie wartości obliczanych wielkości fizycznych, przelicza wielokrotności i podwielokrotności (przedrostki mikro-, mili-, centy-); przelicza jednostki czasu (sekunda, minuta, godzina), zapisuje wynik pomiaru lub obliczenia fizycznego jako przybliżony (z dokładnością do 2-3 cyfr znaczących) demonstruje zjawiska cienia i półcienia, wyodrębnia zjawiska z kontekstu formułuje prawo odbicia, posługując się pojęciami: kąt padania, kąt odbicia * opisuje zjawiska: odbicia i rozproszenia światła, podaje przykłady ich występowania i wykorzystania wyjaśnia powstawanie obrazu pozornego w zwierciadle płaskim, wykorzystując prawo odbicia rysuje konstrukcyjnie obrazy wytworzone przez zwierciadła wklęsłe określa cechy obrazów wytworzone przez zwierciadła wklęsłe, posługuje się pojęciem z badaniem rozchodzenia się światła wyjaśnia powstawanie obszarów cienia i półcienia za pomocą prostoliniowego rozchodzenia się światła w ośrodku jednorodnym opisuje zjawisko zaćmienia Słońca i zaćmienia Księżyca R bada zjawiska dyfrakcji i interferencji światła, wyodrębnia je z kontekstu, R wyszukuje i selekcjonuje informacje dotyczące występowania zjawisk dyfrakcji i interferencji światła w przyrodzie i życiu codziennym, a także ewolucji poglądów na temat natury światła opisuje skupianie promieni w zwierciadle kulistym wklęsłym, posługując się pojęciami ogniska i ogniskowej oraz wzorem opisującym zależność między ogniskową a promieniem krzywizny zwierciadła kulistego "demonstruje rozproszenie równoległej wiązki światła na zwierciadle kulistym wypukłym, posługuje się pojęciem ogniska pozornego popularnonaukowych, z internetu) dotyczącymi zjawisk odbicia i rozproszenia światła, m.in. wskazuje przykłady wykorzystania zwierciadeł w różnych dziedzinach życia " formułuje prawo załamania światła "opisuje zjawisko całkowitego wewnętrznego odbicia, podaje przykłady jego zastosowania " opisuje zjawiska dyfrakcji i interferencji światła, wskazuje w otaczającej rzeczywistości przykłady występowania tych zjawisk " rysuje konstrukcyjnie obrazy wytworzone przez zwierciadła wklęsłe popularnonaukowych, z internetu) dotyczącymi źródeł i właściwości światła, zasad ochrony narządu wzroku, wykorzystania światłowodów, laserów i pryzmatów, powstawania tęczy " rozwiązuje zadania, korzystając z wzorów na powiększenie i zdolność skupiającą oraz rysując konstrukcyjnie obraz wytworzony przez soczewkę " wymienia i opisuje różne przyrządy optyczne (mikroskop, lupa, luneta itd.) "rozwiązuje zadania rachunkowe z zastosowaniem wzoru na zdolność skupiającą układu soczewek, np. szkieł okularowych i oka

powiększenia obrazu, rozróżnia obrazy rzeczywiste i pozorne oraz odwrócone i proste z zastosowaniem wzoru na powiększenie obrazu, zapisuje wielkości dane i szukane wskazuje w otaczającej rzeczywistości przykłady załamania światła, wyodrębnia zjawisko załamania światła z kontekstu, z badaniem przejścia światła z ośrodka rzadszego do ośrodka gęstszego optycznie i odwrotnie demonstruje i opisuje zjawisko rozszczepienia światła za pomocą pryzmatu rozwiązuje zadania rachunkowe opisuje światło białe jako mieszaninę barw, a światło lasera - jako światło jednobarwne opisuje bieg promieni przechodzących przez soczewkę skupiającą (biegnących równolegle do osi optycznej), posługując się pojęciami ogniska, ogniskowej i zdolności skupiającej soczewki wytwarza za pomocą soczewki skupiającej ostry obraz przedmiotu na ekranie, dobierając doświadczalnie położenie soczewki i przedmiotu opisuje powstawanie obrazów w oku ludzkim, wyjaśnia pojęcia krótkowzroczności i dalekowzroczności oraz opisuje rolę soczewek w ich korygowaniu * odczytuje dane z tabeli i zapisuje dane w formie tabeli, posługuje się pojęciem niepewności pomiarowej, zapisuje wynik pomiaru lub obliczenia fizycznego jako przybliżony (z dokładnością do 2-3 cyfr znaczących) R rozwiązuje zadania rachunkowe z zastosowaniem prawa załamania światła * planuje i demonstruje doświadczenie związane z badaniem biegu promieni przechodzących przez soczewkę skupiającą i wyznaczaniem jej ogniskowej z wytwarzaniem za pomocą soczewki skupiającej ostrego obrazu przedmiotu na ekranie rysuje konstrukcyjnie obrazy wytworzone przez soczewki, rozróżnia obrazy rzeczywiste, pozorne, proste, odwrócone, powiększone, pomniejszone popularnonaukowych, z internetu), m.in. dotyczącymi narządu wzroku i korygowania zaburzeń widzenia " opisuje przykłady zjawisk optycznych w przyrodzie " posługuje się informacjami pochodzącymi popularnonaukowych, z internetu), m.in. opisuje przykłady wykorzystania przyrządów optycznych w różnych dziedzinach życia

Dział 3. Magnetyzm dopuszczająca dostateczna dobra bardzo dobra podaje nazwy biegunów magnetycznych demonstruje oddziaływanie biegunów z badaniem wyjaśnia, na czym polega magnesowanie magnesu trwałego i Ziemi magnetycznych oddziaływania między biegunami ferromagnetyka, posługując się pojęciem opisuje charakter oddziaływania między opisuje zasadę działania kompasu magnetycznymi magnesów sztabkowych domen magnetycznych biegunami magnetycznymi magnesów opisuje oddziaływanie magnesów na żelazo, R posługuje się pojęciem pola R bada doświadczalnie kształt linii pola opisuje zachowanie igły magnetycznej podaje przykłady wykorzystania tego magnetycznego R przedstawia kształt linii pola magnetycznego magnesów sztabkowego w obecności magnesu oddziaływania magnetycznego magnesów sztabkowego i podkowiastego i podkowiastego opisuje działanie przewodnika z prądem na wyjaśnia, czym charakteryzują się substancje z badaniem R formułuje definicję 1 A igłę magnetyczną ferromagnetyczne, wskazuje przykłady działania prądu płynącego w przewodzie na R demonstruje i określa kształt i zwrot linii buduje prosty elektromagnes ferromagnetyków igłę magnetyczną pola magnetycznego za pomocą reguły wskazuje w otaczającej rzeczywistości demonstruje działanie prądu płynącego określa biegunowość magnetyczną prawej dłoni przykłady wykorzystania elektromagnesu w przewodzie na igłę magnetyczną (zmiany przewodnika kołowego, przez który płynie R posługuje się wzorem na wartość siły posługuje się pojęciem siły kierunku wychylenia przy zmianie kierunku prąd elektryczny elektrodynamicznej elektrodynamicznej przepływu prądu, zależność wychylenia igły R opisuje pole magnetyczne wokół bada doświadczalnie zachowanie się przedstawia przykłady zastosowania silnika od pierwotnego jej ułożenia względem i wewnątrz zwojnicy, przez którą płynie prąd zwojnicy, przez którą płynie prąd elektryczny, elektrycznego prądu stałego przewodu), opisuje przebieg i wynik elektryczny w polu magnetycznym doświadczenia, wyjaśnia rolę użytych R planuje doświadczenie związane z przyrządów i wykonuje schematyczny z demonstracją działania elektromagnesu badaniem zjawiska indukcji elektromagnetycznej rysunek obrazujący układ doświadczalny R opisuje działanie prądnicy prądu opisuje (jakościowo) wzajemne przemiennego i wskazuje przykłady jej oddziaływanie przewodników, przez które popularnonaukowych), wyszukuje, wykorzystania, charakteryzuje prąd płynie prąd elektryczny selekcjonuje i krytycznie analizuje informacje przemienny R zauważa, że wokół przewodnika, przez na temat wykorzystania elektromagnesu R opisuje budowę i działanie transformatora, który płynie prąd elektryczny, istnieje pole demonstruje wzajemne oddziaływanie podaje przykłady zastosowania magnetyczne magnesów z elektromagnesami transformatora opisuje działanie elektromagnesu i rolę wyznacza kierunek i zwrot siły elektro- R demonstruje działanie transformatora, bada rdzenia w elektromagnesie dynamicznej za pomocą reguły lewej dłoni doświadczalnie, od czego zależy iloraz demonstruje działanie elektromagnesu i rolę demonstruje działanie silnika elektrycznego napięcia na uzwojeniu wtórnym i napięcia rdzenia w elektromagnesie, opisuje przebieg prądu stałego na uzwojeniu pierwotnym; bada i wynik doświadczenia, wyjaśnia rolę użytych R opisuje zjawisko indukcji doświadczalnie związek pomiędzy tym przyrządów i wykonuje schematyczny elektromagnetycznej ilorazem a ilorazem natężenia prądu rysunek obrazujący układ doświadczalny, R określa kierunek prądu indukcyjnego w uzwojeniu pierwotnym i natężenia prądu R wyjaśnia, na czym polega wytwarzanie w uzwojeniu wtórnym i przesyłanie energii elektrycznej R posługuje się informacjami pochodzącymi opisuje przebieg doświadczenia związanego R wykorzystuje zależność między ilorazem z wzajemnym oddziaływaniem magnesów napięcia na uzwojeniu wtórnym i napięcia popularnonaukowych) dotyczących odkrycia z elektromagnesami, wyjaśnia rolę użytych na uzwojeniu pierwotnym a ilorazem zjawiska indukcji elektromagnetycznej, przyrządów, wykonuje schematyczny natężenia prądu w uzwojeniu pierwotnym wyszukuje, selekcjonuje i krytycznie analizuje rysunek obrazujący układ doświadczalny i natężenia prądu w uzwojeniu wtórnym informacje na temat wytwarzania i formułuje wnioski (od czego zależy wartość do rozwiązywania prostych zadań i przesyłania energii elektrycznej siły elektrodynamicznej) obliczeniowych

dopuszczająca dostateczna dobra bardzo dobra opisuje wzajemne oddziaływanie magnesów z elektromagnesami wyjaśnia działanie silnika elektrycznego prądu stałego R demonstruje wzbudzanie prądu indukcyjnego R posługuje się pojęciem prądu indukcyjnego Kobylin, dn, 12.09.2016