OBRÓBKA CIEPLNA opracował dr inż. Stanisław Rymkiewicz
Schemat wykresu układu równowagi fazowej żelazo-węgiel i żelazo-cementyt t, ºC Fe 6,67 Fe 3 C stężenie masowe, C [%] C żelazo cementyt (Fe - Fe 3 C)
UKŁAD RÓWNOWAGI FAZOWEJ Składniki układu: 1. Żelazo ŻELAZO - CEMENTYT 2. Cementyt - faza międzymetaliczna (międzywęzłowa) zawierająca 6,7% węgla, krystalizująca w temperaturze 1252ºC
Odmiany alotropowe żelaza: 1. α <912ºC, α(δ) 1394-1538ºC 2. γ 912-1394ºC RPC RSC
FAZY UKŁADU ŻELAZO CEMENTYT Roztwór ciekły L Ferryt (α) międzywęzłowy roztwór stały węgla w Feα o sieci RPC i maksymalnej zawartości węgla 0,022 % w temperaturze 727ºC Ferryt (δ) międzywęzłowy roztwór stały węgla w Feα o sieci RPC i maksymalnej zawartości węgla 0,09 % w temperaturze 1493ºC Austenit (γ) - międzywęzłowy roztwór stały węgla w Fe γ o sieci RSC i maksymalnej zawartości węgla 2,14 % w temperaturze 1147ºC Cementyt
Wykres układu równowagi fazowej Fe-Fe3C (opis strukturalny)
Składniki struktury stopów z układu żelazo-cementyt Roztwór ciekły L Ferryt α i δ Austenit γ Cementyt pierwszorzędowy (pierwotny), wydzielający się z roztworu ciekłego w wyniku zmniejszającej się rozpuszczalności węgla w roztworze, wzdłuż linii CD Cementyt drugorzędowy (wtórny), wydzielający się z austenitu w wyniku zmniejszającej się rozpuszczalności węgla w austenicie, wzdłuż linii ES Cementyt trzeciorzędowy, wydzielający się z ferrytu w wyniku zmniejszającej się rozpuszczalności węgla w ferrycie, wzdłuż linii PQ Perlit mieszanina eutektoidalna ferrytu i cementytu, zawierająca 0,76% C, powstająca w wyniku rozpadu austenitu w 727ºC Ledeburyt mieszanina eutektyczna austenitu i cementytu, zawierająca 4,3% C, powstająca w wyniku rozpadu L w 1147ºC Ledeburyt przemieniony mieszanina perlitu i cementytu, powstająca w wyniku rozpadu austenitu w ledeburycie na perlit w 727ºC
3. Przemiana eutektoidalna 727ºC γ 0,76 (α 0,022 + Fe 3 C 6,7 ) = perlit
STALE NIESTOPOWE (węglowe) Zawartość węgla i związana z tym struktura wywierają zasadniczy wpływ na właściwości mechaniczne stali niestopowych. Wpływ węgla na strukturę stali
% C Wpływ węgla na właściwości mechaniczne stali
PRZEMIANY PRZY NAGRZEWANIU I CHŁODZENIU A 3 A cm A 1 Nagrzewania stali eutektoidalnej (~0,8 % C) Po przekroczeniu temperatury A 1 =727ºC, następuje przemiana eutektoidalna dwufazowego perlitu P w austenit γ (austenityzowanie): P=(α+Fe 3 C) γ W temperaturze równowagi fazowej A 1 przemiana przebiega bardzo wolno; przy rzeczywistych szybkościach nagrzewania (przegrzanie stali), przemiana przebiega w wyższej temperaturze i w krótszym czasie
a) Ziarno perlitu = płytki ferrytu α + płytki cementytu Fe 3 C b) Utworzenie zarodków austenitu γ w płytkach ferrytu α c) - d) Rozrost zarodków austenitu i stopniowe rozpuszczanie cementytu w austenicie e) Drobne ziarno austenitu
Dalsze nagrzewanie powoduje rozrost ziaren austenitu. Stale mogą charakteryzować się w przybliżeniu liniowym wzrostem wielkości ziarna austenitu wraz z temperaturą (1) lub małą skłonnością do rozrostu ziarna (2). Ac 1 temperatura A 1 przy nagrzewaniu
Wielkość ziarna austenitu podczas austenityzacji decyduje o wielkości ziarna stali po ochłodzeniu, dlatego dąży się do zachowania drobnego ziarna austenitu, aby stal posiadała strukturę drobnoziarnistą. Materiał o takiej strukturze ma lepsze właściwości mechaniczne, szczególnie udarność i granicę plastyczności.
MECHANIZM PRZEMIANY AUSTENITU W PERLIT PRZY POWOLNYM CHŁODZENIU po przekroczeniu temperatury Ar 1 (temperatura A 1 ziaren austenitu powstają zarodki cementytu, przy chłodzeniu) na granicach zarodki cementytu rozrastają się w głąb ziaren austenitu, tworząc płytki prostopadłe do granic ziaren, austenit otaczający płytki cementytu ubożeje w węgiel i przemienia się w ferryt w postaci płytek po obu stronach cementytu, nadmiar węgla z powstającego ferrytu dyfunduje do otaczającego go austenitu, co umożliwia tworzenie się nowych zarodków cementytu. Z drobnych ziaren austenitu powstaje drobnoziarnisty perlit, a z austenitu gruboziarnistego powstaje gruboziarnisty perlit. Przy powolnym chłodzeniu powstający perlit składa się z płytek wyraźnie rozróżnialnych przy obserwacji na mikroskopie świetlnym perlit o małym stopniu dyspersji. Ze wzrostem szybkości chłodzenia obniża się temperatura przemiany, wzrasta ilość zarodków cementytu i perlit cechuje coraz większe rozdrobnienie dyspersja. Perlit drobnodyspersyjny ma wyższą twardość i wytrzymałość niż grubodyspersyjny.
WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A 3 A cm A 1 Zgodnie z wykresem Fe-Fe 3 C austenit przy bardzo powolnym chłodzeniu ulega w temperaturze Ar 1, bliskiej równowagowej A 1, przemianie w perlit. W stalach podeutektoidalnych przemiana perlityczna jest poprzedzona wydzielaniem się ferrytu od temperatury Ar 3, a w stalach nadeutektoidalnych cementytu wtórnego od temperatury Ar cm. Im większa szybkość chłodzenia, tym niższe są temperatury przemian. Przemiana perlityczna jest przemianą dyfuzyjną. Austenit przechłodzony poniżej około 550º, przy znacznie ograniczonej dyfuzji, ulega przemianie w bainit. Austenit przechłodzony poniżej temperatury Ms, bez udziału dyfuzji przemienia się w martenzyt.
MARTENZYT Istotą przemiany martenzytycznej jest przebudowa sieci austenitu (RSC) na tetragonalną przestrzennie centrowaną sieć martenzytu, bez udziału dyfuzji, co oznacza niewielkie przemieszczenie atomów rzędu ułamka odległości międzyatomowej.
Martenzyt zawiera tyle samo węgla co austenit, z którego powstał, czyli znacznie więcej niż może rozpuścić Feα (max.0,022%). Stąd martenzyt definiuje się jako przesycony roztwór stały węgla w Feα. Przyjęcie za podstawę definicji martenzytu sieci RPC Feα jest uzasadnione,gdyż komórka elementarna martenzytu jest prostopadłościanem o podstawie kwadratu, w którym stosunek wysokości do boku podstawy c/a ma wartość nieznacznie przekraczającą 1. Atomy węgla rozmieszczone międzywęzłowo na środkach dłuższych krawędzi zniekształcają sieć Feα, co wywołuje duże naprężenia oraz znaczną twardość i wytrzymałość.
Krystalografia przemiany martenzytycznej
Krzywe CTPi i CTPc
Mechanizm przemiany martenzytycznej Przemiana alotropowa Feγ Feα, polegająca na nieznacznych przesunięciach płaszczyzn sieciowych, bez udziału dyfuzji. Zarodkowanie ziaren martenzytu w mikroobszarach fazy macierzystej, odznaczających się nadmiarem energii swobodnej, tj. koncentracją naprężeń wywołanych szybkim chłodzeniem i skupieniem dyslokacji i/lub błędów ułożenia. Wzrost zarodków z szybkością rzędu 10 7 m/s i utworzenie martenzytu listwowego, płytkowego i szeregu typów pośrednich (martenzyt listwowy ma kształt listwy o szerokości rzędu 0,1-1 µm, proporcjach 1:7:30, martenzyt płytkowy ma kształt soczewki). Płytki martenzytu obserwowane w mikroskopie świetlnym mają postać igieł, dlatego stosuje się też określenie igły martenzytu. Wzrost kryształu martenzytu hamują sąsiednie kryształy i granice ziaren austenitu, a przemiana kontynuowana jest przez tworzenie nowych kryształów, co wymaga coraz niższej temperatury. Dlatego przemiana zachodzi podczas ciągłego chłodzenia w zakresie temperatur M s M f. Z drobnoziarnistego austenitu powstaje drobnoiglasty martenzyt, z gruboziarnistego austenitu gruboiglasty martenzyt. W każdym ziarnie płytki ułożone są względem siebie pod kątem 60º i 120º, co wynika z orientacji sieci krystalicznych martenzytu i austenitu.
Martenzyt ma większą objętość właściwą o około 1,5% niż austenit, dlatego w miarę postępu przemiany pozostały austenit podlega coraz większym naprężeniom ściskającym hamującym przemianę, aż do jej ustania. Jest to jedną z przyczyn obecności, obok martenzytu, pozostałości austenitu, tzw. austenitu szczątkowego.drugą z przyczyn występowania austenitu szczątkowego jest obniżenie temperatur M s i M f wraz ze wzrostem zawartości węgla w stali i nie osiągnięcie końca przemiany w stalach o wyższej zawartości węgla, po ich ochłodzeniu do temperatury pokojowej. Temperatury M s i M f w zależności od zawartości węgla w austenicie
Odpuszczanie Niskie: 150-200 C do narzędzi, sprężyn, sprawdzianów w celu usunięcia naprężeń hartowniczych z zachowaniem dużej twardości, wytrzymałości i odporności na ścieranie Średnie: 250-500 C do sprężyn, resorów, matryc, prowadzi do niewielkiego spadku twardości przy zachowaniu dużej wytrzymałości i sprężystości Wysokie: 500-650 C, ma na celu osiągnięcie wysokiego stosunku Re do Rm
Przemiany podczas odpuszczania zahartowanej na martenzyt stali węglowej 80-200 C: rozkład martenzytu i wydzielanie węglika ε-fe2c o strukturze heksagonalnej, sprzężonego z osnową, spadek stężenia węgla w martenzycie, zmniejszenie tetragonalności martenzytu i tworzenie martenzytu o sieci regularnej (martenzytu odpuszczonego) 200-300 C: przemiana austenitu szczątkowego w martenzyt odpuszczony 300-400 C: rozpuszczanie się węglika ε w osnowie i niezależne wydzielanie się cementytu 400-600 C: koagulacja cząstek cementytu, sferoidyzacja, powstawanie martenzytu wysoko odpuszczonego sorbitu, tj. bardzo drobnych cząstek kulistych cementytu w osnowie ferrytycznej >600 C: koagulacja cementytu, zdrowienie, rekrystalizacja osnowy powstanie sferoidytu, tj. cementytu kulkowego w osnowie ferrytu o niskiej twardości
SKUTEK HARTOWANIA I ODPUSZCZANIA Hartowanie i niskie odpuszczanie UTWARDZANIE CIEPLNE Hartowanie i wysokie odpuszczanie ULEPSZANIE CIEPLNE Miara skuteczności ulepszania cieplnego stosunek Re/Rm