Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych [Komunikat]

Podobne dokumenty
ZAŁĄCZNIK 1. Instrukcja do ćwiczenia. Badanie charakterystyk czasowo prądowych wyłączników

BADANIE CHARAKTERYSTYK CZASOWO-PRĄDOWYCH WYŁĄCZNIKÓW SILNIKOWYCH

Badanie transformatora

Poznanie budowy, sposobu włączania i zastosowania oraz sprawdzenie działania wyłącznika różnicowoprądowego i silnikowego.

Badanie transformatora

Badanie transformatora

BADANIE WYŁĄCZNIKA SILNIKOWEGO

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Stanowisko pomiarowe do wyznaczania ró nicowego pr¹du wy³¹czania wy³¹czników ró nicowo-pr¹dowych typu AC

Lekcja 69. Budowa przyrządów pomiarowych.

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

URZĄDZEŃ ROZDZIELCZYCH i ELEMENTÓW STACJI ELEKTROENERGETYCZNYCH

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.

Badanie czasów zamykania i otwierania styków łączników. Badania czasów niejednoczesności zamykania i otwierania styków. Badania odskoków styków

ĆWICZENIE NR 7. Badanie i pomiary transformatora

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Obwody sprzężone magnetycznie.

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

Narzędzia pomiarowe Wzorce Parametrami wzorca są:

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68

Zasady bezpiecznej obsługi urządzeń elektrycznych. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Pomiary podstawowych wielkości elektrycznych prądu stałego i przemiennego

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

PL B1. Wyłącznik próżniowy z napędem elektromagnesowym i kompensatorem elektrodynamicznym INSTYTUT TECHNIK INNOWACYJNYCH EMAG, KATOWICE, PL

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE

Oświadczenie. Literatura. Treść pracy. Streszczenie. Spis treści. Strona tytułowa ZAŁĄCZNIKI RYSUNKÓW SPIS LITERATURY, TABEL, RYSUNKÓW OŚWIADCZENIE

Wyłączniki główne selektywne S90 produkcji General Electric Power Controls (AEG) wytyczają nowe drogi w technice instalacji elektrycznych 1

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

ĆWICZENIE NR 3 BADANIE PRZEKAŹNIKÓW JEDNOWEJŚCIOWYCH - NADPRĄDOWYCH I PODNAPIĘCIOWYCH

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

Ćwiczenie 2. BADANIE DWÓJNIKÓW NIELINIOWYCH STANOWISKO I. Badanie dwójników nieliniowych prądu stałego

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

BADANIE AMPEROMIERZA

Ćwiczenie 2 Przekaźniki Czasowe

Pomiar indukcyjności.

LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D

Badanie właściwości łuku prądu stałego

Przekaźniki elektryczne. Budowa, zasada działania, sterowanie

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego

Budowa i zasada działania bezpieczników:

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Katalog Techniczny - Aparatura Modułowa Redline (uzupełnienie do drukowanej wersji Aparatura modułowa i rozdzielnice instalacyjne )

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

GALWANOMETR UNIWERSALNY V 5-99

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

11. WYŁĄCZNIKI NISKIEGO NAPIĘCIA

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

Opis techniczny. 1. Przepisy i normy. 2. Zakres opracowania. 3. Zasilanie.

R 1. Układy regulacji napięcia. Pomiar napięcia stałego.

4.8. Badania laboratoryjne

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1

Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.

SILNIK INDUKCYJNY KLATKOWY

Źródła zasilania i parametry przebiegu zmiennego

Wyłączniki silnikowe - Seria CTI 15

Laboratorium Podstaw Elektrotechniki i Elektroniki

WYŁĄCZNIKI RÓŻNICOWOPRĄDOWE SPECJALNE LIMAT Z WBUDOWANYM ZABEZPIECZENIEM NADPRĄDOWYM FIRMY ETI POLAM

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0

ĆWICZENIE NR 13. Zadanie egzaminacyjne udarowa znakowarka detali

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

KOOF Szczecin:

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Lekcja Zabezpieczenia przewodów i kabli

Miejscowość:... Data:...

Laboratorium: ELEMENTY WYKONAWCZE AUTOMATYKI

Zaznacz właściwą odpowiedź

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

Katedra Energetyki. Laboratorium Elektrotechniki OCHRONA PRZECIWPORAŻENIOWA. Temat ćwiczenia: I ZABEZPIECZENIA URZĄDZEŃ ELEKTRYCZNYCH

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

(12) OPIS PATENTOWY (19) PL (11) (13) B1

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

MGR Prądy zmienne.

str. 1 Temat: Wyłączniki różnicowo-prądowe.

PL B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

BADANIE WŁAŚCIWOŚCI I UKŁADÓW PRACY ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Wyzwalacz napięciowy DA (wzrostowy) wyłączników nadprądowych ETIMAT 11

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

Laboratorium Podstaw Elektrotechniki i Elektroniki

Transkrypt:

ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH Nr 1(3)/2007, s. 147-151 ISSN-1895-3794 Andrzej Kidawa Wyższa Szkoła Zarządzania Ochroną Pracy w Katowicach Andrzej Zieliński Wyższa Szkoła Zarządzania Ochroną Pracy w Katowicach Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych [Komunikat] Wyłącznik nadprądowy jest w chwili obecnej najpowszechniej stosowanym urządzeniem zabezpieczającym elektryczne instalacje odbiorcze przed zniszczeniem wskutek przeciążenia lub zwarcia. Jest jednocześnie środkiem ochrony przeciwporażeniowej, który poprzez automatyczne wyłączanie zasilania (w odpowiednio krótkim czasie) w przypadku zwarcia w instalacji odbiorczej, powoduje wyłączenie zasilania, zabezpieczając w ten sposób przed porażeniem prądem np.: wskutek dotyku pośredniego. Z tych względów celowe stało się zbudowanie prostego stanowiska pomiarowego dla laboratorium WSZOP, pozwalającego studentom na zapoznanie się z działaniem tego wyłącznika poprzez doświadczalne wyznaczenie jego charakterystyki czasowo-prądowej [1]. Charakterystyka czasowo-prądowa wyłącznika to zależność czasu (upływającego od chwili pojawienia się zakłócenia w sieci, w postaci przeciążenia lub zwarcia) od wartości natężenia prądu charakteryzującego to zakłócenie. Rys. 1. Budowa wyłącznika nadprądowego A) przekrój B) schemat [2] 147

Andrzej Kidawa, Andrzej Zieliński Wyłącznik nadprądowy zbudowany jest z dwóch szeregowo połączonych ze sobą wyłączników: bimetalicznego (ozn. 1 na rys. 1) i elektromagnetycznego (ozn. 2 na rys. 1). Wyłącznik bimetaliczny wyłącza prądy przeciążeniowe, tj. prądy o natężeniu większym od natężenia prądu nominalnego, na który wykonano wyłącznik. Jego działanie wykorzystuje zjawisko różnej rozszerzalności dwóch zgrzanych pasków metalu (bimetalu). Wraz ze wzrostem natężenia prądu każdy metal ulega rozgrzaniu (wskutek wydzielania się ciepła Joule a), co powoduje zwiększenie jego długości (rozszerzalność liniowa), a w przypadku bimetalu (każdy z metali wydłuża się w innym stopniu) powoduje to wykrzywienie paska bimetalu. Wykrzywiony pasek bimetaliczny pociąga za sobą (na rys. 1 w dół) klamrę, która zwalnia mimośrodowo zablokowany zamek z ruchomym stykiem. Wskutek tego styk ruchomy zostaje oddalony od styku nieruchomego i obwód prądu zostaje przerwany. Z uwagi na to, przerwaniu obwodu towarzyszy zawsze zjawisko powstawania łuku elektrycznego, styki wyłącznika umieszczone są w tzw. komorze gaszeniowej, której budowa i kształt tłumi powstający przy rozłączaniu łuk elektryczny. Wyłącznik elektromagnetyczny (ozn. 2 na rys. 1) działa podobnie jak ustrój pomiarowy analogowego miernika elektromagnetycznego. W cewce (ozn. 2 na rys. 1) zmienny prąd indukuje zmienne pole magnetyczne proporcjonalne do szybkości zmian natężenia prądu. Im szybsza zmiana natężenia prądu, tym większe jest natężenie pola magnetycznego wytworzonego przez cewkę. Wewnątrz cewki znajdują się dwa metalowe rdzenie z materiału ferromagnetycznego np.: umieszczone współśrodkowo, które jednocześnie zostają namagnesowane jednoimiennie (tzn. każdy z nich ma biegun N z tej samej strony), co Rys. 2. Schemat stanowiska pomiarowego 148

Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych. Komunikat powoduje wzajemne odepchnięcie się od siebie obydwu rdzeni w momencie wyindukowania w cewce pola magnetycznego. Jeden z rdzeni (zewnętrzny) jest przymocowany na stałe do wnętrza cewki, a drugi jest ruchomy (zamocowany jedynie przy pomocy sprężyny, która powoduje po wyłączeniu pola powrót rdzenia do położenia równowagi). W momencie, gdy w cewce nagle nastąpi silna zmiana natężenia płynącego przez niego prądu, wyindukuje się pole magnetyczne i namagnesowane jednoimiennie rdzenie gwałtownie się odepchną. Rdzeń ruchomy zostaje wówczas wypchnięty z cewki i uderzając w blokadę zamka (na rys. 1 w dół), zwalnia ją powodując rozłączenie. Wyłącznik ten, reagując na szybkie zmiany natężenia prądu, rozłącza pojawiające się nagle prądy zwarciowe. Rys. 2 przedstawia schemat stanowiska pomiarowego, zbudowanego w celu wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych w zakresie działania wyłącznika bimetalicznego. Do budowy stanowiska zastosowano wyłączniki nadprądowe o najniższych wartościach natężenia nominalnego, jakie są obecnie dostępne na rynku. Wyłączniki takie o wartościach prądu nominalnego In =0,6A i charakterystykach: B, C i D produkuje czeska firma OEZ i zostały one przekazane przez producenta dla wykonania niniejszej pracy nieodpłatnie. Dzięki niskiej wartości natę- Charakterystyka czasowo-prądowa wyłączników nadprądowych tśr=f(i) tśr[s] 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 3,1 3,3 I [A] B C D Rys. 3. Wyniki pomiarów 3 wyłączników nadprądowych o charakterystykach B, C i D. [1] 149

Andrzej Kidawa, Andrzej Zieliński żenia prądu nominalnego wyłączników pomiary można wykonywać przy niskich wartościach natężenia prądu, co ma duże znaczenie dla zapewnienia bezpieczeństwa studentom wykonującym ćwiczenie. Dla stłumienia impulsów napięciowych powstających przy załączaniu układu zastosowano dławik 45A. Płynną regulację natężenia prądu (w zakresie od 0 do 13A) płynącego przez układ umożliwia zastosowany w układzie autotransformator ALT13A firmy Merazet. Jeśli wartości natężenia prądu punktów pomiarowych mają stanowić wartości zadane, to należy przed dokonaniem pomiarów przeskalować układ bez wyłączników nadprądowych, poprzez wyznaczenie jego charakterystyki prądowo-napięciowej, tj. zależności natężenia prądu płynącego przez odbiornik omowy o mocy 0,96kW (zestaw 16 żarówek o mocy 60W każda) w funkcji napięcia ustawionego na autotransformatorze. Skalowanie takie pozwala na przypisanie poszczególnym działkom autotransformatora wartości natężenia prądu płynącego w obwodzie pomiarowym. Pomimo takiego wstępnego wyskalowania autotransformatora w wartościach natężenia prądu, dla zachowania należytej dokładności należy każdorazowo przy dokonywaniu pomiarów odczytywać wartość natężenia prądu wskazywaną przez amperomierz. Niepewność pomiarowa odczytów wartości natężenia prądu będzie wówczas jedynie funkcją klasy zastosowanego amperomierza. Czas od momentu załączenia zasilania do samoczynnego wyłączenia mierzono stoperem. Dokładność pomiarowa uzyskiwana przy pomocy stopera pozwala jedynie na badanie charakterystyk czasowo-prądowych w zakresie działania wyłącznika bimetalicznego (przeciążeniowego). Rozszerzenie zakresu pomiarowego na obszar działania wyłącznika elektromagnetycznego (zwarciowego) wymaga zastosowania automatycznego elektronicznego układu pomiaru czasu sprzężonego z badanym obwodem. Istotnym warunkiem zapewniającym uzyskanie właściwych wyników pomiarowych jest zachowanie odpowiednich odstępów czasu pomiędzy kolejnymi pomiarami tego samego wyłącznika. Odstępy te powinny być na tyle duże, aby nagrzany w trakcie pomiaru wyłącznik bimetaliczny zdążył całkowicie ostygnąć przed kolejnym pomiarem. Czas potrzebny na ostygnięcie wyłącznika można wyznaczyć doświadczalnie, wykonując kolejne pomiary czasu wyłączania wyłącznika w funkcji czasu upływającego pomiędzy pomiarami dla zadanej wartości natężenia prądu. Odstęp czasu pomiędzy pomiarami począwszy, od którego czas wyłączania wyłącznika stabilizuje się stanowi minimalny niezbędny dla uzyskania prawidłowych wyników czas międzypomiarowy. Z uwagi na fakt, że wyłączenie jest spowodowane odkształceniem bimetalu, które jest funkcją temperatury, należy przyjąć, że każdorazowe wyłączenie (niezależnie od natężenia prądu, które je spowodowało) jest spowodowane rozgrzaniem wyłącznika do tej samej temperatury. Zatem raz wyznaczony czas stygnięcia zmierzony przy dowolnym natężeniu 150

Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych. Komunikat Rys. 4. Wyniki pomiarów naniesione na charakterystyki wyzwalania wg norm DIN VDE 0641 część 11 dla B i C oraz IEC 947-2 dla D [1], [3]. prądu można zastosować dla wszystkich pomiarów dla danego wyłącznika. Należy ponadto zwrócić uwagę, aby temperatura otoczenia w trakcie pomiarów (mająca wpływ na czas schładzania wyłącznika) pozostawała stała. Wyniki pomiarów przedstawiono na rys. 3 i rys. 4. Punkty pomiarowe charakterystyk czasowo-prądowych pokazane na rys. 3 zostały wpisane w charakterystyki wyzwalania przewidziane normami DIN VDE 0641 część 11 dla B i C oraz IEC 947-2 dla D i pokazane na rys. 4. Pomiary przedstawione na rys. 3 przeprowadzone zostały w temperaturze otoczenia 20 o C. Czasy międzypomiarowe wynosiły ok. 5 min. Pomiary potwierdziły, że wszystkie charakterystyki wyłączników typu B, C oraz D w zakresie działania wyłącznika bimetalicznego mieszczą się w wymaganym normami przedziale wartości pomiędzy krzywą niezadziałania (krzywa dolna) i krzywą zadziałania (krzywa górna). Autorzy pragną podziękować producentowi wyłączników, firmie OEZ, za bezpłatne przekazanie wyłączników do budowy stanowiska. LITERATURA [1] A. Zieliński: Praca dyplomowa, WSZOP w Katowicach, wrzesień 2007. [2] A. Kidawa: Zagrożenia elektryczne w środowisku pracy, Wydawnictwo WSZOP, luty 2007. [3] Katalog wyrobów HAGER Elektro Sp. z o.o. 2002 2003 r. 151