IV. TRANZYSTOR POLOWY

Podobne dokumenty
Budowa. Metoda wytwarzania

6. TRANZYSTORY UNIPOLARNE

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Przyrządy półprzewodnikowe część 5 FET

Tranzystory polowe. Klasyfikacja tranzystorów polowych

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Tranzystory polowe FET(JFET), MOSFET

Tranzystor bipolarny wzmacniacz OE

III. TRANZYSTOR BIPOLARNY

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Ćwiczenie nr 7 Tranzystor polowy MOSFET

TRANZYSTORY MOCY. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi tranzystorami i ich charakterystykami.

Tranzystory polowe FET(JFET), MOSFET

Wykład VIII TRANZYSTOR BIPOLARNY

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ

(12) OPIS PATENTOWY (19) PL (11) (13) B1

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

10. Tranzystory polowe (unipolarne FET)

Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51

Tranzystory polowe JFET, MOSFET

Badanie charakterystyk elementów półprzewodnikowych

Wykład X TRANZYSTOR BIPOLARNY

Układy nieliniowe tranzystor bipolarny (n p n, p n p)

Diody, tranzystory, tyrystory. Materiały pomocnicze do zajęć.

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia

Przyrządy półprzewodnikowe część 4

Układy nieliniowe tranzystor bipolarny (n p n, p n p)

Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET

Tranzystory. bipolarne (NPN i PNP), polowe (MOSFET), fototranzystory

Tranzystory polowe. Podział. Tranzystor PNFET (JFET) Kanał N. Kanał P. Drain. Gate. Gate. Source. Tranzystor polowy (FET) Z izolowaną bramką (IGFET)

Materiały używane w elektronice

Tranzystory. 1. Tranzystory bipolarne 2. Tranzystory unipolarne. unipolarne. bipolarny

ELEMENTY UKŁADÓW ENERGOELEKTRONICZNYCH

Politechnika Białostocka

Tranzystory polowe MIS

Laboratorium elektroniki i miernictwa

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Politechnika Białostocka

Elementy elektroniczne Wykłady 7: Tranzystory polowe

Politechnika Białostocka

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe

Rozmaite dziwne i specjalne

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Urządzenia półprzewodnikowe

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Zasada działania tranzystora bipolarnego

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne

Elementy półprzewodnikowe. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

A-7. Tranzystor unipolarny JFET i jego zastosowania

Temat i cel wykładu. Tranzystory

Rozmaite dziwne i specjalne

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 19/09. MACIEJ KOKOT, Gdynia, PL WUP 03/14. rzecz. pat.

Opis ćwiczenia. Tranzystory polowe

W książce tej przedstawiono:

Pierwszy tranzystor. Zasadę budowy tranzystora przedstawiono na rysunku: E emiter B baza C kolektor

Instrukcja nr 5. Wzmacniacz różnicowy Stabilizator napięcia Tranzystor MOSFET

Elementy przełącznikowe

SYMBOLE GRAFICZNE. Tyrystory. Struktura Charakterystyka Opis

5. Tranzystor bipolarny

TECHNOLOGIA WYKONANIA PRZYRZĄDÓW PÓŁPRZEWOD- NIKOWYCH WYK. 16 SMK Na pdstw.: W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone,

TRANZYSTORY - PORÓWNANIE WYKŁAD 15 SMK

Ćwiczenie 22. Tranzystor i układy tranzystorowe

HISTORIA TRANZYSTORA POLOWEGO, POCZĄTKI I GENEZA POWSTANIA THE HISTORY OF FIELD EFFECT TRANSISTOR, BEGINNING AND ORIGINS

Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Właściwości tranzystora MOSFET jako przyrządu (klucza) mocy

3.4 Badanie charakterystyk tranzystora(e17)

Uniwersytet Pedagogiczny

Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych

Organiczne tranzystory polowe. cz. I. Poprzednio. Złącze

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Politechnika Białostocka

TRANZYSTORY BIPOLARNE ZŁĄCZOWE

Dioda półprzewodnikowa

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

ĆWICZENIE 4 CHARAKTERYSTYKI STATYCZNE TRANZYSTORA BIPOLARNEGO

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Wprowadzenie do techniki Cyfrowej i Mikroelektroniki

Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

PL B1. POLITECHNIKA OPOLSKA, Opole, PL BUP 11/18. JAROSŁAW ZYGARLICKI, Krzyżowice, PL WUP 01/19

Rys. 1. Oznaczenia tranzystorów bipolarnych pnp oraz npn

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

Prowadzący: Prof. PŁ, dr hab. Zbigniew Lisik. Program: wykład - 15h laboratorium - 15h wizyta w laboratorium technologicznym - 4h

TRANZYSTORY BIPOLARNE SMK WYKŁAD

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

TRANZYSTORY MIS WYKŁAD 14 SMK Na pdstw. W. Marciniak, WNT 1987: Przyrządy półprzewodnikowe i układy scalone

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Tranzystory bipolarne w układach CMOS

Elektryczne własności ciał stałych

Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój:

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA

Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)

ZŁĄCZOWE TRANZYSTORY POLOWE

Transkrypt:

1 IV. TRANZYSTOR POLOWY Cel ćwiczenia: Wyznaczenie charakterystyk statycznych tranzystora polowego złączowego. Zagadnienia: zasada działania tranzystora FET 1. Wprowadzenie Nazwa tranzystor pochodzi z języka angielskiego: transistor - transferring an electrical signal across a resistor (transfer sygnału elektrycznego przez rezystancję). Tranzystor bipolarny (BJT) jest zaworem, który jest sterowany prądowo: prąd bazy (I B ) steruje prądem kolektora (I C ). W tranzystorze tym w transporcie biorą udział elektrony i dziury. Tranzystor polowy (FET) jest zaworem, który jest sterowany napięciowo: napięcie bramka źródło (V ) steruje prądem drenu (I ). W tranzystorze tym w transporcie biorą udział nośniki jednego typu: jeśli jest to tranzystor z kanałem typu n to są to elektrony zaś dla tranzystora z kanałem typu p dziury. Jest to tranzystor unipolarny, FET (ang. Field Effect Transistor) - tranzystor, w którym sterowanie prądem odbywa się za pomocą pola elektrycznego. Zasadniczą częścią tranzystora polowego jest kryształ odpowiednio domieszkowanego półprzewodnika z dwiema elektrodami: źródłem (symbol S od angielskiej nazwy source) i drenem (, ang. drain). Pomiędzy nimi tworzy się tzw. kanał, którym płynie prąd. Wzdłuż kanału umieszczona jest trzecia elektroda, zwana bramką (G, ang. gate). Elektrody te spełniają podobne funkcje jak odpowiadające im elektrody w tranzystorze bipolarnym. Kolektorowi C odpowiada dren, emiterowi E odpowiada źródło S, a bazie B odpowiada bramka G. Różnica w stosunku do tranzystora bipolarnego polega na tym, że w tranzystorach FET przez bramkę nie płynie prąd, tak więc bramka jest izolowana od kanału źródło- dren. latego impedancja wejściowa tych tranzystorów jest bardzo duża (10 10 10 15 Ω). W tranzystorach epiplanarnych, jak również w przypadku układów scalonych, w których wytwarza się wiele tranzystorów na wspólnym krysztale, wykorzystuje się jeszcze czwartą elektrodę, tzw. podłoże (B, ang. bulk albo body), służącą do odpowiedniej polaryzacji podłoża. Zwykle występują następujące tranzystory polowe: na bazie złącza p-n, (JFET), na bazie złącza metal półprzewodnik (MESFET) oraz złącza metal-izolator-półprzewodnik (MOSFET). Różnica miedzy tymi rozwiązaniami polega na sposobie, w jaki wykonana jest elektroda bramki. W tranzystorach złączowych bramkę stanowi złącze p-n spolaryzowane w kierunku zaporowym. Tranzystory JFET pracują przy V = 0. W tranzystorach MESFET bramką jest metalowa elektroda, która jest tak dobrana, aby tworzyła z kanałem barierę Schottk yego. Wreszcie w tranzystorach MOSFET bramkę stanowi metalowa elektroda, odizolowana od kanału warstwą izolatora tlenku.

2 1.2.1 Tranzystor JFET Na rys. 6 przedstawiono oznaczenia tych tranzystorów zaś na rys. 7a-7d zasadę ich działania. Rys. 6. Oznaczenia tranzystorów polowych złączowych. Te z bramką pośrodku są symetryczne, natomiast te z bramka od dołu asymetryczne. Asymetria dotyczy rozmieszczenia źródła i drenu w strukturze. Rys 7a). Obszar półprzewodnika występujący między drenem i źródłem stanowi kanał, przez który płynie prąd i którego rezystancję można zmieniać przez zmianę przekroju kanału. Zmianę przekroju kanału uzyskuje się przez rozszerzenie lub zwężenie warstwy zaporowej złącza p-n, a więc przez zmianę napięcia U polaryzującego to złącze w kierunku zaporowym. Rys. 7b) Pod wpływem napięcia U polaryzującego zaporowo złącze p-n, warstwa zaporowa rozszerzy się, przekrój kanału zmniejszy się, a jego rezystancja wzrośnie. Łatwo można sobie wyobrazić, że dalsze zwiększanie napięcia U w kierunku zaporowym powoduje, że warstwy zaporowe połączą się i kanał zostanie zamknięty, a jego rezystancja będzie bardzo duża. Można powiedzieć, że tranzystor JFET jest swego rodzaju rezystorem sterowanym napięciowo. Rys. 7c). Gdy doprowadzone jest napięcie U S między dren i źródło, przy zachowaniu tego samego potencjału bramki i źródła, w pobliżu drenu warstwa zaporowa jest szersza niż w pobliżu źródła. Jest to spowodowane tym, że złącze p-n wzdłuż kanału jest polaryzowane różnymi napięciami. o Rys 7. Tranzystor JFET zasada działania

3 stałego napięcia U dodaje się spadek napięcia występujący między danym punktem kanału a źródłem S. Rys. 7d). alszy wzrost napięcia U S powoduje dalsze rozszerzanie warstwy zaporowej aż do zamknięcia kanału, co powoduje stan nasycenia. W takiej sytuacji dalszy wzrost napięcia U S nie będzie powodował praktycznie dalszego wzrostu prądu drenu I, gdyż warstwa zaporowa będzie się rozszerzała w kierunku drenu, a spadek napięcia w kanale pozostanie praktycznie stały. Rys. 8 przedstawia przykładowe charakterystyki statyczne tranzystora JFET. Rys. 8. Przykładowe charakterystyki statyczne tranzystora JFET. Gdy V = 0, I = I SS i gdy V = V P, I = 0 ma, gdzie I SS i V P są stałe i V jest ustawiane. a) Obszary pracy tranzystora JFET: -obszar odcięcia: Tranzystor jest wyłączony. Nie ma przepływu prądu (I = 0) przez kanał. zieje się to gdy napięcie źródło - dren spełnia warunek : V > V P -obszar aktywny, lub nasycenia: Tranzystor jest włączony. Prąd drenu jest kontrolowany przez V, niezależny od V S. W tym obszarze tranzystor może pracować jako wzmacniacz: 2 V I 1 (8) ISS VP -obszar omowy: tranzystor jest włączony ale pracuje jak rezystor o oporności kontrolowanej napięciem. zieje się to wówczas, gdy napięcie V S jest mniejsze niż w obszarze aktywnym. Prąd drenu jest proporcjonalny do napięcia V S i jest kontrolowany prze napięcie bramki V. b) Parametry tranzystora JFET I SS prąd drenu w obszarze aktywnym przy V = 0. (źródło zwarte z bramką) V P napięcie docięcia; minimalna wartość V przy której przestaje płynąć prąd drenu (I = 0). V P jest ujemne dla kanału n i dodatnie dla kanału p. g m transkonduktancja; zmiana I ze względu na V przy stałej wartości V S. g I m (9) UVS VS

4 g S - konduktancja wyjściowa; zmiana I ze względu na V S przy stałej wartości V g I S (10) U S V 1.2.2 Tranzystor MOSFET Rys. 9a) Polaryzacja drenu i bramki jest zerowa czyli U S =0 i U =0. W takim przypadku struktura złożona z obszarów półprzewodnika typu n+ (dren i źródło) rozdzielonych półprzewodnikiem typu p (podłoże) zachowuje się tak jak dwie diody połączone ze sobą szeregowo przeciwstawnie (anodami do siebie). Rys. 9b) Gdy bramka jest spolaryzowana napięciem U >0, dodatni ładunek spolaryzowanej bramki indukuje pod jej powierzchnią ładunek przestrzenny, który składa się z elektronów swobodnych o dużej koncentracji powierzchniowej (tzw. warstwa inwersyjna) i głębiej położonej warstwy ładunku przestrzennego jonów akceptorowych, z której wypchnięte zostały dziury. W takiej sytuacji zostaje utworzone połączenia elektryczne między drenem i źródłem w postaci kanału (warstwa inwersyjna). Przewodność tego połączenia zależy od koncentracji elektronów w indukowanym kanale, a więc od napięcia U. Rys. 9c). Jeżeli teraz zostanie podwyższony potencjał drenu U S >0 to popłynie prąd drenu I tym większy im większe będzie napięcie U S. Zależność prądu drenu I od napięcia drenu U S nie jest jednak liniowa. Jest to spowodowane tym, że napięcie wzdłużne U S zmienia stan polaryzacji bramki. Im bliżej drenu tym różnica potencjałów między bramką i podłożem jest mniejsza, a kanał płytszy. Rys. 9d). Ze wzrostem U S całkowita rezystancja kanału rośnie i wzrost prądu jest więc mniejszy niż proporcjonalny. Przy U S =U kanał w pobliżu drenu przestaje istnieć i prąd drenu ulegnie nasyceniu. alszy wzrost napięcia drenu U S będzie powodował tylko nieznaczne zmiany prądu drenu I. Rys.9. Zasada działania tranzystora MOSFET *W technologii MOSFET tranzystory są produkowane w formie trzech warstw. olna warstwa to płytka wycięta z monokryształu krzemu lub krzemu domieszkowanego germanem. Na płytkę tę napyla się bardzo cienką warstwę krzemionki lub innego tlenku metalu lub

5 półmetalu, która pełni funkcję izolatora. Warstwa ta musi być ciągła (bez dziur), ale jak najcieńsza. Obecnie w najbardziej zaawansowanych technologicznie procesorach warstwa ta ma grubość równą pięciu cząsteczek tlenku. Na warstwę tlenku napyla się z kolei bardzo cienką warstwę dobrze przewodzącego metalu (np. złota). Na rys. 10 przedstawiono przykładowe charakterystyki prądowo-napięciowe dla tranzystora polowego typu MOSFET. Rys.10.Charakterystyki I f ( U ) oraz I f ( U ) S dla tranzystora polowego MOSFET. 1.2.3 Tranzystor MESFET Struktura tranzystora MESFET: Rys.11.Charakterystyki I f ( U ) oraz I f ( U ) S dla tranzystora polowego MESFET.