Ochrona przeciwporażeniowa w instalacjach elektrycznych nn zasilanych z zespołu prądotwórczego Mgr inż. Julian Wiatr 1. Wprowadzenie Zespół prądotwórczy w stosunku do systemu elektroenergetycznego jest źródłem miękkim, w którym impedancja obwodu zwarciowego ulega szybkim zmianom w czasie zwarcia (przyjmuje się, że system elektroenergetyczny charakteryzuje się stałą impedancją obwodu zwarciowego z uwagi na dużą wartość mocy zwarciowej). W chwili wystąpienia zwarcia ulega zmianie rozpływ strumieni magnetycznych w generatorze zespołu prądotwórczego. Rozpływy strumieni w generatorze podczas zwarcia przedstawia rys.1. a) b) c) Rys. 1: Przebieg wypychanego poza wirnik strumienia stojana: b) stan podprzejściowy, b) stan przejściowy, c) stan ustalony W początkowej fazie zwarcia nazywanej stanem podprzejsciowym, w skutek działania klatki tłumiącej, strumień główny wytwarzany przez prądy płynące w uzwojeniu stojana jest wypychany poza wirnik (rys. 1). W stanie tym reaktancja generatora charakteryzuje się małą wartością, wynoszącą przeciętnie (10 15)% wartości reaktancji znamionowej generatora. tan ten trwa bardzo krótko ze względu na małą wartość elektromagnetycznej stałej czasowej T, wynoszącej dla generatorów nn, średnio 0,01 s. Działanie klatki tłumiącej ze względu na dużą wartość jej rezystancji szybko ustaje, co skutkuje powolnym wchodzeniem strumienia głównego w wirnik. tan ten nazywany stanem przejściowy charakteryzuje wzrost reaktancji generatora, która dla generatorów nn wynosi średnio (30-40)% wartości reaktancji znamionowej generatora. Generator w krótkim czasie przechodzi w stan ustalony zwarcia, co objawia się dalszym wzrostem reaktancji obwodu zwarciowego. W stanie ustalonym zwarcia strumień główny oraz strumień wzbudzenia zamykają się przez wirnik generatora. Ponieważ kierunki tych strumieni są przeciwne, strumień wypadkowy ulega silnemu zmniejszeniu. Zjawisko to prowadzi do szybkiego wzrostu reaktancji generatora, która dla generatorów nn wynosi (00 300)% wartości reaktancji znamionowej generatora. W zespołach prądotwórczych konstruowanych obecnie, instalowany jest regulator prądu wzbudzenia wyposażony w układ forsowania, który pozwala podczas zwarcia na utrzymanie określonej wartości reaktancji generatora. Wartość ta charakteryzowana jest krotnością prądu znamionowego generatora, utrzymywaną przez czas nie dłuższy niż 10 s. Ograniczenie czasowe utrzymywania określonej wartości re-
aktancji generatora podczas zwarcia wynika z warunku wytrzymałości izolacji uzwojeń generatora. Wydłużenie tego czasu może skutkować zniszczeniem izolacji uzwojeń generatora. Na rys. 1 przedstawiono uproszczone charakterystyki zmienności reaktancji zwarciowej w generatorze nowoczesnego zespołu prądotwórczego oraz zmienności prądu zwarciowego na jego zaciskach. Parametry obwodu zwarciowego ulegają szybkim zmianą, co powoduje trudności w uzyskaniu skutecznej ochrony przeciwporażeniowej w odległej instalacji odbiorczej. Problemy te uwypuklają się szczególnie w zespołach starego typu, sukcesywnie wycofywanych z eksploatacji w iłach Zbrojnych. kupowane przez ludność cywilną są wykorzystywane do zasilania gospodarstw rolnych itp. Dlatego ważne jest, aby ludzie zajmujący się instalowaniem tego typu zespołów prądotwórczych (np. wiejscy elektrycy) mieli świadomość zagrożenia, jakie może stwarzać zespół prądotwórczy. Rys. : normowane charakterystyki: a) zmienności reaktancji zwarciowej generatora * 100% f(tk ) ; b)zmienności prądu zwarciowego generatora, przy zwarciu na jego zaciskach * 100% f T - znamionowa reaktancja generatora (wartość w stanie statycznym), w [ ] - reaktancja generatora dla zwarć jednofazowych, [ ] - prąd znamionowy generatora, w [A] - prąd zwarcia jednofazowego dla zwarć na zaciskach generatora, w [A] T k czas trwania zwarcia, w [s] W nowoczesnych zespołach zespół prądotwórczych, producent zapewnia (wskutek działania układów automatyki) utrzymanie prądu zwarciowego na zaciskach generatora o wartości 3* n k
przez 10 s (dłuższe utrzymywanie takiego stanu grozi zniszczeniem izolacji uzwojeń). Dzięki czemu do obliczeń skuteczności samoczynnego wyłączenia można przyjmować wartość reaktancji zwarciowej generatora (na jego zaciskach ) wyliczoną ze wzoru: 0,33 0,33 (1) napięcie znamionowe generatora zespołu prądotwórczego, w [kv], moc znamionowa generatora zespołu prądotwórczego, w [MVA]. Wynika to z następującego rozumowania: 3 0 0, 3 3 3 zatem, jeżeli podczas zwarć na zaciskach generatora 0 1 k 3 0,33 3 3 waga: W ogólnym przypadku, przy założeniu dla zwarć jednofazowych jako: n k n można zapisać wzór na reaktancję generatora (gdzie n krotność prądu znamionowego utrzymywana podczas zwarć na zaciskach generatora, podawana przez producenta ZP w DTR). Częstym błędem popełnianym przez mniej doświadczonych projektantów jest przyjmowanie impedancji zwarciowej generatora na podstawie impedancji transformatora o mocy równej mocy generatora zespołu prądotwórczego. Dla porównania tych wartości w tabeli 1 zostały przedstawione impedancje wybranych transformatorów oraz generatorów. Tabela 1: Zestawienie impedancji transformatora i generatora o tej samej mocy Moc transformatora lub generatora Zespołu prądotwórczego, w [kva] 100 160 50 400 500 mpedancja transformatora na jego zaciskach, w [ ] 0,07 0,045 0,08 0,018 0,014 Reaktancja generatora na jego zaciskach przyjmowana dla obliczania skuteczności samoczynnego wyłączenia (rezystancja uzwojeń stanowi zaledwie 0,03* i może zostać pominięta w obliczeniach praktycznych), w [ ] 0,58 0,330 0,11 0,13 0,106 Porównując dane przedstawione w tabeli 1 widać jak duże rozbieżności występują w wartościach impedancji zwarciowych obydwu źródeł ( Z / ZkT 7, 33 ).. Odmienność warunków zasilania z zespołu prądotwórczego w odniesieniu do ystemu Elektroenergetycznego ystem Elektroenergetyczny (EE) jest zasilany przez kilkadziesiąt generatorów przyłączonych za pośrednictwem transformatorów blokowych do sieci elektroenergetycznych WN pracujących w systemie zamkniętym.
Moc zwarciowa EE w uproszczeniu jest określana jako nieskończona. Wartość jej w różnych punktach sieci przyłączonych do EE posiada wartości skończone ale wartości ich są dość duże. Przeciętnie wartość mocy zwarciowej odniesiona do sieci N kształtuje się na poziomie (150 50) MVA. Zespół prądotwórczy po przejęciu zasilania stanowi jedyne źródło zasilania odbiorników objętych systemem zasilania awaryjnego. Dysponowana przez jego generator moc zwarciowa zależy od mocy generatora i posiada wartość skończoną. Dla przykładu dla wybranych generatorów niskiego napięcia, moc zwarciowa została przedstawiona w tabeli. Tabela : Moc zwarciowa na zaciskach wybranych generatorów Moc zespołu prądotwórczego [kva] 100 00 500 1000 000 6000 Moc zwarciowa na zaciskach generatora [MVA] 1,0,0 5,0 10,0 0,0 60,0 Wartość mocy zwarciowej rośnie wraz z mocą zespołu prądotwórczego, ale maleje wraz z odległością miejsca powstania zwarcia od zacisków generatora. Dla powszechnie stosowanych zespołów prądotwórczych moc zwarciowa na zaciskach generatora nie przekracza 5,0 MVA, podczas gdy na zaciskach transformatora N/nN moc zwarciowa w zależności od lokalnych warunków wynosi średnio (150 50) MVA. Moc zwarciowa ystemu Elektroenergetycznego (EE) jednoznacznie odzwierciedla impedancję źródła widzianą z miejsca przyłączenia do EE np. transformatora N/nN. Od strony dolnych uzwojeń transformatora można ja wyznaczyć z poniższego wzoru: Z c () max n1 nt ( ) nt1 Dla przykładu przy mocy zwarciowej obwodu zwarciowego: 50MVA, wnosi ona następującą impedancję do Z cmax n 1 nt 1,1 15000 40 ( ) ( ) 0, 000776 6 50 10 15000 nt1 Jest to wartość pomijanie mała, którą w obliczeniach praktycznych można pominąć. Z chwilą przejęcia zasilania przez generator zespołu prądotwórczego moc zwarciowa znacząco maleje co w konsekwencji skutkuje znacznie większymi wartościami impedancji źródła zasilającego, której nie można pominąć w obliczeniach chociażby dlatego, że prądy zwarciowe zamykają się przez to źródło. Parametry zwarciowe transformatora oraz przewodów zasilających ulegają nieznacznej zmianie. Zmienność rezystancji przewodów oraz impedancji transformatora spowodowana jest w głównej mierze przepływem prądu zwarciowego. Zmiany te są nieznaczne i mogą w oblicze-
niach praktycznych zostać pominięte (droga strumienia w transformatorze podczas zwarcia w przeciwieństwie do generatora zespołu prądotwórczego nie ulega zmianie). Graficznie porównanie mocy zwarciowych EE oraz generatora zespołu prądotwórczego przedstawia rys. 3. Rys. 3: Porównanie wydajności EE oraz generatora zespołu prądotwórczego W przypadku równoległej pracy dwóch lub więcej zespołów prądotwórczych, moc zwarciowa źródła zasilającego wzrasta i jest sumą algebraiczną mocy zwarciowych pojedynczych generatorów. Wzrost ten jednak nie jest aż ta duży by uzyskać wartości porównywalne z warunkami panującymi w EE. 3. Zasady projektowania ochrony przeciwporażeniowej przy zasilaniu z zespołu prądotwórczego Z pośród trzech układów sieci: TT, T i TN (TN-C; TN-C- i TN-), przy zasilaniu obiektów budowlanych najbardziej nadaje się układ TN- lub TN-C-. kład T może być stosowany tylko w ograniczonym zakresie po spełnieniu określonych warunków, natomiast układ zasilania TT nie powinien być stosowany ze względu na jego specyfikę (ochrona jest realizowana przez uziemienie, które skutkuje dużymi wartościami impedancji obwodu zwarcia). Warunek samoczynnego wyłączenia w sieci TN, należy uznać za spełniony jeżeli: o (3) Z Z ( L ) (R kg RL ) a (4)
W praktyce korzysta się z innej postaci wzoru (3), w którym jest uwzględniony wzrost rezystancji obwodu zwarciowego powodowany przepływem prądu zwarciowego: 0,8 0 (5) k1 Z Z s impedancja pętli zwarciowej obejmującej źródło zasilania, przewód roboczy, aż do punktu zwarcia i przewód ochronny miedzy punktem zwarcia a źródłem, w [ ], a prąd powodujący samoczynne zadziałanie urządzenia wyłączającego, w czasie zależnym od napięcia znamionowego o, R kg - rezystancja uzwojeń generatora ( RkG 0,03 ), w [ ] reaktancja generatora dla zwarć jednofazowych, w [ ], R L rezystancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [ ], L reaktancja kabla zasilającego oraz przewodów instalacji odbiorczej, w [ ], o napięcie pomiędzy przewodem fazowym a uziemionym przewodem ochronnym (PE) lub ochronnoneutralnym (PEN), w [V]. W przypadku, gdy spełnienie warunku samoczynnego wyłączenia w instalacji zasilanej z zespołu prądotwórczego jest niemożliwe, należy przeprowadzi ocenę skuteczności ochrony przeciwporażeniowej przy uszkodzeniu (przed dotykiem pośrednim) przez sprawdzenie, czy w czasie zwarcia doziemnego o prądzie zwarciowym równym a wystąpiłoby na częściach przewodzących dostępnych napięcie dotykowe o wartości nie przekraczającej napięcia dotykowego, dopuszczalnego długotrwale w danych warunkach środowiskowych ( L ). prawdzenie to można wykonać przez obliczenie spodziewanych wartości napięć dotykowych, jakie wystąpią na objętych ochroną częściach przewodzących dostępnych. Największa spodziewana wartość napięcia dotykowego T będzie równa: T Z (6) a PE Zależność określona wzorem (31) wynika bezpośrednio z rys. 4. Rys. 4: Napięcie dotykowe na obudowie uszkodzonego odbiornika przy zwarciu jednofazowym z ziemią ( k prąd zwarciowy; R kg rezystancja uzwojenia generatora; reaktancja generatora przyjmowana do obliczania zwarć jednofazowych; R p rezystancja przewodów zasilających odbiornik; p - reaktancja przewodów zasilających odbiornik; R PE rezystancja przewodu ochronnego; PE reaktancja przewodu ochronnego; F zabezpieczenie;
G główna szyna uziemiająca; R B rezystancja uziemienia generatora zespołu prądotwórczego). Zgodnie z wymaganiami określonymi w PN HD 60364-4-41: 009 nstalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym, ochronę przeciwporażeniową należy uznać za skuteczną, jeżeli napięcie dotykowe T jest mniejsze od dopuszczalnego długotrwale w danych warunkach środowiskowych, czyli: T a ZPE L a prąd wyłączający głównego urządzenia zabezpieczającego w zespole prądotwórczym,, w [A], Z PE wartość impedancji przewodu ochronnego PE między rozpatrywaną częścią przewodzącą dostępną a głównym połączeniem wyrównawczym, w [ ], L dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V]. (7) Jeżeli określony wzorem (7) warunek nie może zostać spełniony, to należy wykonać połączenie wyrównawcze dodatkowe (miejscowe), łączące części przewodzące jednocześnie dostępne. kuteczność wykonanego połączenia wyrównawczego dodatkowego sprawdza się przez obliczenie spodziewanej wartości napięcia dotykowego zgodnie ze wzorem: T R (8) a PE L a prąd wyłączający urządzenia zabezpieczającego (w obwodzie zasilania zespołu prądotwórczego lub urządzenia odbiorczego) w czasie wymaganych przepisów, w [A], R PE wartość rezystancji przewodu połączenia wyrównawczego miejscowego PE pomiędzy częściami przewodzącymi dostępnymi jednocześnie, w [ ], L dopuszczalna długotrwale w danych warunkach środowiskowych wartość napięcia dotykowego, w [V]. Wartość rezystancji R PE należy ustalić na drodze obliczeniowej zgodnie ze wzorem: L (9) R L długość przewodu wyrównawczego, w [m], γ przewodność elektryczna materiału żyły przewodu wyrównawczego, w [ m/( mm ) ], przekrój żyły przewodu wyrównawczego, w [mm ]. Prowadzi to przy znanych odległościach części przewodzących jednocześnie dostępnych do określenia następującego warunku dotyczącego minimalnego przekroju przewodu wyrównawczego, przy określonej wartości napięcia dopuszczalnego długotrwale ( L ): a L L (10)
Literatura: 1. PN-HD 60364-4-41:009 nstalacje elektryczne niskiego napięcia. Część 4-41. Ochrona dla zapewnienia bezpieczeństwa. Ochrona przed porażeniem elektrycznym.. Wiatr J.: Ochrona przeciwporażeniowa urządzeń elektrycznych, których funkcjonowanie jest niezbędne w czasie pożaru. Biuletyn Techniczny Oddziału Krakowskiego EP nr 6, str. 15-3.