Jezmar Jankowski. SPZP CORRPOL, Gdańsk, ul. Elbląska 133A

Podobne dokumenty
Rawa Mazowiecka Przedsiębiorstwo Zabezpieczeń Antykorozyjnych CORRSTOP Sp. z o.o.

XV Konferencja POLSKIEGO KOMITETU ELEKTROCHEMICZNEJ OCHRONY PRZED KOROZJĄ Stowarzyszenia Elektryków Polskich Pomiary korozyjne w ochronie

Szkolenie personelu ochrony katodowej. Sektor: konstrukcje podziemne i zanurzone

XV Krajowa Konferencja POMIARY KOROZYJNE W OCHRONIE ELEKTROCHEMICZNEJ. XV National Conference CORROSION MEASUREMENTS IN ELECTROCHEMICAL PROTECTION

Schemat ogniwa:... Równanie reakcji:...

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

LABORATORIUM KOROZJI MATERIAŁÓW PROTETYCZNYCH

Katedra Inżynierii Materiałowej

ODWIERT GAZOWY SŁUŻĄCY DO PODZIEMNEGO MAGAZYNOWANIA GAZU ZIEMNEGO OCHRONA KATODOWA ODWIERTU

ĆWICZENIE: Wpływ przewodnictwa elektrycznego roztworu na promień działania protektora

OCENA SKUTECZNOŚCI OCHRONY KATODOWEJ ZAKOPANYCH ZBIORNIKÓW STALOWYCH EFFECTIVENESS EVALUATION OF BURIED TANKS CATHODIC PROTECTION

Przetwarzanie energii: kondensatory

PODSTAWY KOROZJI ELEKTROCHEMICZNEJ

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

Elektrody symulujące jako narzędzie do badań skuteczności ochrony katodowej stalowych konstrukcji

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Przetwarzanie energii: kondensatory

SUD ISO 9001 MADE SMARTER. MADE FASTER. GSC Super Anody ANODY GALWANICZNE DO STALI W BETONIE. Prostota Niezawodność Efektywność.

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ

Elektrochemia elektroliza. Wykład z Chemii Fizycznej str. 4.3 / 1

KOROZYMETRIA JAKO WIARYGODNA TECHNIKA POMIARU SKUTECZNOŚCI OCHRONY KATODOWEJ

CIENKOŚCIENNE KONSTRUKCJE METALOWE

ZincTape AKTYWNE ZABEZPIECZENIA ANTYKOROZYJNE

Nauka przez obserwacje - Badanie wpływu różnych czynników na szybkość procesu. korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

NORMALIZACJA TECHNOLOGII OCHRONY KATODOWEJ CZAS NA NOWELIZACJĘ STANDARDISATION OF CATHODIC PROTECTION TECHNOLOGY TIME FOR A REVISION

Korozja kontaktowa depolaryzacja tlenowa

Korozja kontaktowa depolaryzacja wodorowa.

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014

OCENA PARAMETRÓW POLARYZACJI KATODOWEJ W SPOSÓB INSTRUMENTALNY INSTRUMENTAL ASSESSMENT OF CATHODIC POLARISATION PARAMETERS

ul. Grabska 15A, Niepołomice NIP Niepołomice, DOTYCZY: zakupu Elektrodializera pilotowego ED/EDR

KOROZYMETRIA REZYSTANCYJNA JAKO DOGODNY SPOSÓB OCENY SKUTECZNOŚCI OCHRONY KATODOWEJ

Degradacja korozyjna rurociągów. Paweł Domżalicki

Niekonwencjonalne sposoby zabezpieczenia i regeneracji zagrożonych korozją konstrukcji z betonu

ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ SZCZECIN 2007

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

Wrocław dn. 18 listopada 2005 roku

OCHRONA KATODOWA ORUROWAŃ ODWIERTÓW WYDOBYWCZYCH CATHODIC PROTECTION OF STEEL WELL CASINGS

Karta pracy III/1a Elektrochemia: ogniwa galwaniczne

KOROZJA MATERIAŁÓW KOROZJA KONTAKTOWA. Część II DEPOLARYZACJA TLENOWA. Ćw. 6

SONDA KOROZYJNA - STARA KONCEPCJA, NOWE WYKONANIA CORROSION PROBE AN OLD IDEA AND NEW WORKMANSHIP

KOROZJA. KOROZJA: Proces niszczenia materiałów spowodowany warunkami zewnętrznymi.

NOWE NORMY EUROPEJSKIE Z ZAKRESU OCHRONY KATODOWEJ NEW EUROPEAN CATHODIC PROTECTION STANDARDS

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Zadanie 2. Przeprowadzono następujące doświadczenie: Wyjaśnij przebieg tego doświadczenia. Zadanie: 3. Zadanie: 4

Ć W I C Z E N I E 7 WPŁYW GĘSTOŚCI PRĄDU NA POSTAĆ OSADÓW KATODOWYCH MIEDZI

TEST INSTALLATION FOR INTERNAL CATHODIC PROTECTION OF DN 1000 COOLING WATER PIPELINE IN ARCELORMITTAL OSTRAVA

Elektrochemia - szereg elektrochemiczny metali. Zadania

Ć W I C Z E N I E 6. Nadnapięcie wydzielania wodoru na metalach

NAGRZEWANIE ELEKTRODOWE

KOLEKTOR I OCHRONA KATODOWA COLLECTOR AND CATHODIC PROTECTION

OCHRONA KATODOWA PODZIEMNYCH RUROCIĄGÓW POKRYTYCH POWŁOKAMI IZOLACYJNYMI O WYSOKIM POZIOMIE SZCZELNOŚCI PARAMETRY ELEKTRYCZNE I ASPEKTY EKONOMICZNE

KOROZJA ELEKTROCHEMICZNA i OCHRONA PRZED KOROZJĄ.

WYNIKI POMIARÓW SZYBKOŚCI KOROZJI ZIEMNEJ STALI W POBLIŻU KONSTRUKCJI CHRONIONYCH KATODOWO

OCHRONA PRZED KOROZJĄ

NIENISZCZĄCE BADANIA ZAGROŻENIA KOROZJĄ ZBROJENIA W KONSTRUKCJACH ŻELBETOWYCH

PRZEGLĄD TERMINOLOGII W OCHRONIE KATODOWEJ NORMY I PRAKTYKA REVIEW OF TERMS APPLIED TO CATHODIC PROTECTION STANDARDS AND COMMON PRACTICE

Pierwiastki bloku d. Zadanie 1.

WIELOSEKCYJNE ELEKTRYCZNE DRENAŻE POLARYZOWANE MULTISECTION ELECTRICAL POLARIZATION DRAINAGES

ALFABETYCZNY SKOROWIDZ TERMINÓW REDAKCJA III

Kierunek studiów: Mechanika i Budowa Maszyn semestr II, 2016/2017 Przedmiot: Podstawy Nauki o Materiałach II

Zastosowanie korozymetrii rezystancyjnej w odniesieniu do kryteriów ochrony katodowej gazociągów

Metale i niemetale. Krystyna Sitko

Cynkowanie ogniowe chroni stal przed korozją. Warunki elementu konstrukcji

SOLLICH 1203 CPM CATHODIC PROTECTION MICROSYSTEM

stali ochrona protektorowa

ZINTEGROWANY SYSTEM OCHRONY ANTYKOROZYJNEJ NARZĘDZIE DIAGNOSTYCZNE DO OCENY STANU TECHNICZNEGO KONSTRUKCJI METALOWYCH ZAKOPANYCH W GRUNCIE

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

Sem nr. 10. Elektrochemia układów równowagowych. Zastosowanie

Laboratorium Ochrony przed Korozją. GALWANOTECHNIKA Część I Ćw. 7: POWŁOKI NIKLOWE

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 35: Elektroliza

PRZEGLĄD SPECJALNYCH METOD POMIAROWYCH SELECTION OF SPECIAL MEASURING METHODES

RHODUNA Diamond Bright Rodowanie błyszcząco-białe

NORMALIZACJA W OCHRONIE KATODOWEJ ZOFIA UZIĘBŁO

WPŁYW KOROZJI WŻEROWEJ NA OCENĘ SKUTECZNOŚCI OCHRONY KATODOWEJ METODĄ KOROZYMETRII REZYSTANCYJNEJ

WYBRANE PRZYKŁADY Z PRAKTYKI POMIAROWEJ OCHRONY KATODOWEJ SOME EXAMPLES FROM THE PRACTICE OF MEASURING THE CATHODIC PROTECTION

VIII Krajowa Konferencja POMIARY KOROZYJNE W OCHRONIE ELEKTROCHEMICZNEJ

dr inż. Marek Matulewski

POLITECHNIKA SZCZECIŃSKA INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

(54) (12) OPIS PATENTOWY (19) PL (11) (13) B1 PL B1 C23F 13/04 C23F 13/22 H02M 7/155

Zespół Szkół Samochodowych

Laboratorium Ochrony przed Korozją. Ćw. 4: KOROZJA KONTAKTOWA - DEPOLARYZACJA WODOROWA

Zestaw do doświadczeń z elektrochemii [ BAP_ doc ]

Protektor cynkowy służący do pośredniego montażu do prętów zbrojeniowych

KOROZJA. Ćwiczenie 1. Pomiar potencjału korozyjnego różnych metali

OCHRONA KATODOWA ZBIORNIKÓW WEDŁUG AKTUALNYCH POLSKICH PRZEPISÓW I PROPOZYCJE ICH ZMIAN W ŚWIETLE NORMY EN 13636


Problemy elektrochemii w inżynierii materiałowej

Elektroliza - rozkład wody, wydzielanie innych gazów. i pokrycia galwaniczne.

Badania mechaniczne PN-EN ISO : Wersja angielska Data publikacji: Zastępuje:

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

SYSTEM SCADA DO OCHRONY KATODOWEJ SCADA SYSTEM FOR CATHODIC PROTECTION

Spawanie w osłonie gazów obojętnych jest jednym z najważniejszych sposobów łączenia:

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

NIEKTÓRE ASPEKTY OCENY SKUTECZNOŚCI OCHRONY KATODOWEJ RUROCIĄGÓW

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA

LIGHTNING RISK ASSESSMENT FOR CATHODIC PROTECTION SYSTEMS OF GAS PIPELINES

NAFTA-GAZ grudzień 2009 ROK LXV

PL B1. Uniwersytet Śląski w Katowicach,Katowice,PL BUP 20/05. Andrzej Posmyk,Katowice,PL WUP 11/09 RZECZPOSPOLITA POLSKA

Transkrypt:

VIII Krajowa Konferencja POMIARY KOROZYJNE W OCHRONIE ELEKTROCHEMICZNEJ VIII National Conference CORROSION MEASUREMENTS IN ELECTROCHEMICAL PROTECTION 16-18. 06. 2004 Jurata, Poland NORMA EN 12499 - OCHRONA KATODOWA POWIERZCHNI WEWNĘTRZNYCH KONSTRUKCJI METALOWYCH STANDARD EN 12499 - INTERNAL CATHODIC PROTECTION OF METALLIC STRUCTURES Jezmar Jankowski SPZP CORRPOL, 80-718 Gdańsk, ul. Elbląska 133A Słowa kluczowe: ochrona katodowa powierzchni wewnętrznych Keywords: internal cathodic protection Streszczenie Norma określa konstrukcje, metale i powierzchnie, które mogą być chronione przed korozją poprzez zastosowanie ochrony katodowej od strony wewnętrznej. Podaje roztwory elektrolityczne i warunki niezbędne do zastosowania wewnętrznej ochrony katodowej. Zawiera również wskazówki dotyczące wykonania i eksploatacji efektywnych systemów tego rodzaju ochrony katodowej. Norma ma zastosowanie do wewnętrznej ochrony katodowej domowych podgrzewaczy wody, zbiorników ciepłej i zimnej wody, rurociągów w obiegach wodnych, kondensatorów, wymienników ciepła i ogólnie biorąc wszystkich konstrukcji zawierających roztwory elektrolitów, których ochrona katodowa jest technicznie możliwa. Norma obejmuje metalowe konstrukcje zawierające wodę magazynowaną lub cyrkulującą, która może być wymieniana lub nie wymieniana, zimna lub ciepła, pitna lub przemysłowa, a także stanowić zawiesinę wodną. Summary This standard specifies structures, metals and surfaces, which can be protected against corrosion by the application of internal cathodic protection. The electrolytic solutions and the conditions necessary for application of internal cathodic protection are given. Also the guidance on the application and operation of the effective systems for this kind of cathodic protection is included. This standard applies to internal cathodic protection of domestic water heaters, hot and cold water tanks, circulating water pipelines, condensers, heat exchangers and generally speaking, to every structure containing an electrolytic solution that is technically possible to cathodically protect. The standard applies to metallic structures which contain stored or circulating water, which can be stagnant or renewed, cold or hot, drinking water or industrial water and also aqueous suspensions. 157

Wprowadzenie Niedawno Komitet Techniczny CEN/TC 219 zatwierdził nową normę z zakresu ochrony katodowej EN 12499:2003 zatytułowaną Internal cathodic protection of metallic structures, która powinna uzyskać w Polsce status normy krajowej. Dokument ten wypełnia istotną lukę w krajowych normach z zakresu ochrony przed korozją powierzchni wewnętrznych urządzeń i instalacji wodnych, bowiem tematyka ta nie podlegała dotychczas normalizacji. Poniżej przedstawiono propozycję tytułu w języku polskim dla wprowadzanej normy w zestawieniu z zatwierdzonymi już sformułowaniami w języku angielskim, francuskim i niemieckim. Internal cathodic protection of metallic structures Protection cathodique interne des structures metalliques Kathodischer Korrosionsschutz für die Innenflächen von metallischen Anlagen Ochrona katodowa powierzchni wewnętrznych konstrukcji metalowych Wydaje się, że najbardziej precyzyjny zapis został sformułowany w języku niemieckim i wobec tego zaproponowana przez autora referatu wersja polska jest jej najbliższa. Zakres normy Nowa norma jest stosunkowo obszerna. Wskazuje na to przedstawiony poniżej spis treści. Zawartość normy EN 12499:2003 Foreword 1. Scope 2. Normative references 3. Symbols, terms and definitions 4. Principle and criteria for internal cathodic protection 5. Factors affecting design and application 6. Design and application of internal cathodic protection 7. Measurements 8. Commissioning 9. Operation and maintenance 10. Cathodic protection of domestic water heater 11. Cathodic protection of appliances for heating and storage of hot water 12. Cathodic protection of structures with variable level feed tanks condensates and similar appliances 158

13. Cathodic protection of filtering tanks 14. Internal cathodic protection of wells 15. Internal cathodic protection of pipes 16. Cathodic protection of tubular heat exchangers Annex A (normative) Test of the electrode potential of galvanic anodes Annex B (informative) Protection potential ranges for low alloy steel compared with Ag/AgCl electrodes in different types of water Bibliography Pierwsza część (punkty 1-3) jest dość typowa i powtarzalna, podobnie jak w większości norm tego rodzaju. Obejmuje przedmowę, zakres normy, odsyłacze normatywne oraz objaśnienia symboli, terminów i definicji użytych w normie. W drugiej, zasadniczej części normy (punkty 4-9) przedstawione zostały zasady i kryteria ochrony katodowej powierzchni wewnętrznych oraz informacje dotyczące projektowania i aplikacji ochrony katodowej, wykonywania pomiarów, odbioru, eksploatacji i konserwacji. W końcowej części normy (punkty 10-16) przedstawione są specyficzne wymagania dotyczące wewnętrznej ochrony katodowej różnych obiektów, jak domowe podgrzewacze wody, urządzenia przemysłowe do podgrzewania i magazynowania wody, urządzenia o zmiennym poziomie napełnienia (skraplacze), zbiorniki filtracyjne, studnie, rurociągi i rurowe wymienniki ciepła. Norma zawiera ponadto dwa aneksy A i B. Aneks A ma charakter normatywny i podaje sposób sprawdzania potencjału anod galwanicznych. Aneks B, o charakterze informacyjnym, określa zakresy potencjału ochrony katodowej stali niskostopowej względem elektrod chrosrosrebrnych w różnych typach wód. Normę kończy wykaz pozycji bibliograficznych (8 pozycji). Biorąc pod uwagę zakres stosowania, norma specyfikuje obiekty, czyli konstrukcje, metale i środowiska wodne, jakie należy rozpatrywać przy ochronie katodowej powierzchni wewnętrznych. Środowiskiem korozyjnym może być woda różnego typu (cyrkulująca, nieruchoma, zimna lub gorąca). Warunkiem podstawowym jest, aby jej przewodnictwo elektrolityczne było wyższe od 1 ms/m. Norma obejmuje nie tylko ochronę katodową konstrukcji stalowych, ale również wykonanych z innych metali: miedzi i jej stopów, ołowiu, cyny, cynku, aluminium, zarówno stosowanych pojedynczo, jak i w zestawieniach z różnymi metalami. Kryteria ochrony katodowej Następny punkt normy dotyczy kryteriów ochrony katodowej. Zwraca się w nim uwagę, że potencjał ochrony jest wielkością zmienną, zależną od wielu czynników, jakie wpływają na granicę faz metal-elektrolit. Dużą uwagę przywiązuje się w nowej normie do doświadczeń praktycznych, które powinny być decydujące w tym względzie. Bardzo trafne jest sformułowanie, że jedynym kryterium, które nie podlega wątpliwości jest brak korozji stwierdzony przez inspekcję. A więc, jeśli udaje się niepodważalnie 159

wykazać, że proces korozji został zahamowany, to jest to najbardziej przekonująca informacja (żadne wyniki pomiarów potencjału tak naprawdę tego nie dowodzą). I jeszcze jedno ważne sformułowanie (na co zwraca się obecnie coraz większą uwagę) wszystkie wyniki pomiarów potencjału powinny być pozbawione składowej IR. W tabeli 1 zestawione są zalecane wartości potencjału ochrony i granicznego potencjału krytycznego (którego nie powinno się przekraczać) dla różnych metali w wodach. Tab. 1. Zalecane wartości potencjału ochrony względem standardowej elektrody wodorowej Metal Żelazo i stal niskostopowa Stal niskostopowa połączona ze stalą odporną na korozję Roztwór elektrolitu Potencjał ochrony, E H Woda zimna obojętna -0,55 Woda gorąca -0,65 Woda kwaśna lub zawierająca bakterie V -0,65 Graniczny potencjał krytyczny Woda zimna lub gorąca -0,55 Patrz przypis a) Stal odporna na korozję Woda zimna lub gorąca -0,1 Patrz przypis b) Miedź i stopy miedzi Woda zimna lub gorąca -0,20 Cyna Woda zimna lub gorąca -0,35-1,0 Cynk Woda zimna lub gorąca -0,90-1,0 b) Ołów Woda zimna obojętna -0,33-0,65 Glin i jego stopy z magnezem Woda zimna lub gorąca -0,45-0,80 b) i manganem Woda morska -0,55-0,80 b) Stopy glinu z cynkiem Woda zimna lub gorąca -0,60-0,80 Woda morska -0,70-0,90 Tytan Woda morska -0,75 a) Potencjały ochrony, jak również graniczne potencjały krytyczne dla stali ferrytycznych i martenzytycznych będą każdorazowo określane na podstawie testu. Nie istnieje graniczny potencjał krytyczny dla stali austenitycznej. b) Glin i cynk nie mogą być polaryzowane do tak ujemnego potencjału, że szybkość reakcji anodowej staje się pomijalna. Metale te podlegają samorzutnej ochronie przez produkty ich utlenienia. Polaryzacja katodowa może uporządkować to początkowe utlenianie. W pierwszych wierszach tabeli zawarto dane na temat żelaza i stali. Potencjał podany został względem SEW. Dalsze dane dotyczą potencjałów ochrony metali nieżelaznych (miedzi, cyny, cynku, ołowiu...) w różnych wodach. W uwagach autorzy normy przypominają, że niektóre metale amfoteryczne (cynk, glin) nie powinny być zbyt silnie polaryzowane katodowo, gdyż jest to dla nich niebezpieczne. Za ochronę odpowiedzialne są w tych przypadkach głównie tworzone na ich powierzchni warstwy produktów korozji. 160

Projektowanie ochrony katodowej W następnych punktach normy sprecyzowane zostały wymagania odnośnie projektowania wewnętrznej ochrony katodowej. Podkreślana jest znana prawda, że projektowanie musi być podejmowane przez kompetentny personel mający dostateczną wiedzę i doświadczenie. Zalecane jest dokładne rozważenie, czy stosowanie ochrony katodowej będzie miało wpływ na funkcjonowanie chronionej konstrukcji. Istotny jest również dobór odpowiedniej powłoki ochronnej współpracującej z ochroną katodową. Norma określa główne czynniki warunkujące projektowanie i stosowanie ochrony katodowej, takie jak obecność różnych metali, konduktywność elektrolitu, ciągłość elektryczna konstrukcji, rozkład i gęstość prądu, właściwości powłoki ochronnej. Dużą wagę przywiązuje się w normie do eliminowania lub minimalizowania niepożądanych efektów ubocznych, takich jak wydzielanie gazowego wodoru lub chloru oraz produktów korozji. Ważnym czynnikiem przy projektowaniu jest założony czas życia konstrukcji, w którym ochrona katodowa musi działać skutecznie i niezawodnie. Projektując wewnętrzną OK należy uwzględnić cały szereg wymienionych w normie czynników. Należy uwzględnić w szczególności obecność różnych metali i tak dobrać parametry pracy, aby objąć ochroną metale najbardziej elektroujemne. Jeśli jest to niemożliwe, to trzeba rozdzielić elektrycznie części konstrukcji. Przy stosowaniu złącz izolujących należy minimalizować zagrożenie wywołane korozją elektrolityczną. Starannego doboru wymagają anody, zarówno galwaniczne, jak i zasilane z zewnętrznego źródła prądu. Norma określa również wymagania odnośnie źródeł prądu polaryzującego i lokalizacji elektrod odniesienia. Ściśle sprecyzowane zostały warunki, w których dozwolone jest opróżnianie i otwieranie konstrukcji chronionych katodowo oraz środki zaradcze stosowane przy ich niestabilnej pracy. Pomiary skuteczności ochrony Norma uwzględnia również pomiary skuteczności działania systemu ochrony katodowej. Podaje sposoby oceny jakości odizolowania anod od katod i złącz izolujących określając wymagane wartości rezystancji (dla złącz powyżej 100 Ohm przy obecności elektrolitu i powyżej 500 Ohm bez elektrolitu). Norma opisuje sposób pomiaru prądu stałego zwracając uwagę na możliwe do popełnienia błędy związane z rezystancją wewnętrzną amperomierza. Opisana została procedura pomiaru rezystancji powłoki oraz istotne elementy pomiarów potencjału konstrukcji z uwzględnieniem poprawki na obecność spadku napięcia IR. 161

W dalszej części norma precyzuje warunki odbioru instalacji ochrony katodowej. Dopuszczalne są różnice potencjału między poszczególnymi elektrodami odniesienia w zakresie ± 50 mv. Podana została wymagana częstość dokonywania pomiaru potencjału (2 miesiące po uruchomieniu systemu ochrony katodowej ). Mogą być czasowo akceptowane wartości potencjału mniej ujemne niż wymagane w projekcie. Należy również sprawdzić, czy system zapewnia wystarczający prąd do utrzymania ochrony katodowej w najgorszych warunkach. Prąd wyjściowy anod galwanicznych powinien być szczególnie kontrolowany w warunkach, gdy konstrukcja jest niepokryta powłoką lub posiada powłokę o niskiej rezystancji. Nowa norma precyzuje dość dokładnie wymagania odnośnie eksploatacji i konserwacji systemów wewnętrznej ochrony katodowej. W uwagach ogólnych stwierdza się, że skuteczność ochrony może być oceniana na trzy sposoby: poprzez tradycyjny pomiar potencjału, inspekcję wizualną powierzchni i monitorowanie procesów korozyjnych, a w szczególności użycie kuponów korozyjnych lub czujników rezystancyjnych. Wypada tu zaznaczyć, że właśnie takie podejście wprowadzone zostało z powodzeniem od wielu lat w SPZP CORRPOL. Norma zaleca określoną częstość dokonywania kontroli różnych urządzeń, i tak stanu technicznego zasilaczy co najmniej raz na rok, parametrów OK w odstępach podyktowanych doświadczeniem, początkowo raz na miesiąc, zaś anod galwanicznych co najmniej raz na rok. Na koniec warto dodać parę słów na temat aneksu A dotyczącego kontroli potencjału elektrodowego anod galwanicznych. W załączniku opisana została dokładnie procedura takiego testu. Pomiary dokonuje się na odpowiednich próbkach stopu protektorowego, które eksponuje się przez 1 dobę w gorącym roztworze wodnym chlorku sodu (temperatura 60 C, stężenie 0,001 M). Potencjał mierzy się w warunkach polaryzacji anodowej prądem o gęstości 50 µa/cm 2. Za pozytywny uznaje się wynik, jeśli potencjał jest bardziej ujemny niż 0,9 V względem SEW. Podsumowanie Należy stwierdzić dużą przydatność nowej normy w warunkach krajowych. W Polsce brak było dotychczas odpowiednich norm z zakresu ochrony katodowej obiektów metalowych od strony wewnętrznej. Norma EN 12499 została starannie opracowana i porządkuje cały szereg zagadnień związanych z projektowaniem ochrony katodowej, jej aplikacją, odbiorem, eksploatacją i konserwacją łącznie z oceną skuteczności działania. 162