ON DELAMINATION THRESHOLD LOADS IN LOW VELOCITY IMPACT ON GLASS-CARBON/EPOXY COMPOSITES

Podobne dokumenty
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

ENVIRONMENTAL STRESS CRACKING IN E-GLASS AND ARAMID/GLASS EPOXY COMPOSITES

EFFECT OF TYPE OF REINFORCEMENT AND STACKING SEQUENCE ON LOW VELOCITY IMPACT DAMAGE TOLERANCE FOR HYBRID WOVEN CARBON, GLASS, KEVLAR-EPOXY LAMINATES

Porównanie zdolności pochłaniania energii kompozytów winyloestrowych z epoksydowymi

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES


WPŁYW ABSORPCJI WODY NA WŁAŚCIWOŚCI LAMINATÓW WINYLOESTROWYCH WZMOCNIONYCH WŁÓKNEM ARAMIDOWYM I SZKLANYM

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Tychy, plan miasta: Skala 1: (Polish Edition)

Badanie wpływu poprzecznych obciążeń udarowych na właściwości wytrzymałościowe materiałów kompozytowych stosowanych w lotnictwie

Akademia Morska w Szczecinie. Wydział Mechaniczny

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Prof. dr hab. Barbara Surowska

Lecture 18 Review for Exam 1

OpenPoland.net API Documentation

Wpływ uderzeń wielokrotnych na rozwój uszkodzenia kompozytów. polimerowych wzmacnianych włóknami

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Patients price acceptance SELECTED FINDINGS

STATIC EXPERIMENTAL TESTING OF U-TYPE COMPOSITE SEGMENTS ENERGY ABSORPTION

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Hard-Margin Support Vector Machines

WSTĘPNE MODELOWANIE ODDZIAŁYWANIA FALI CIŚNIENIA NA PÓŁSFERYCZNY ELEMENT KOMPOZYTOWY O ZMIENNEJ GRUBOŚCI

FIBRE METAL LAMINATES - SOME ASPECTS OF MANUFACTURING PROCESS, STRUCTURE AND SELECTED PROPERTIES

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

ROZPRAWY NR 128. Stanis³aw Mroziñski

A STUDY OF FAILURE ANALYSIS OF COMPOSITE PROFILE WITH OPEN CROSS-SECTION UNDER AXIAL COMPRESSION

CEE 111/211 Agenda Feb 17

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Helena Boguta, klasa 8W, rok szkolny 2018/2019

deep learning for NLP (5 lectures)

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

Cracow University of Economics Poland

Zagadnienie odwrotne w pracach zespołu AGH. Prof. Tadeusz Uhl Katedra Robotyki i Mechatroniki Wydział InŜynierii Mechanicznej i Robotyki

OCENA WYTRZYMAŁOŚCI RESZTKOWEJ ZSZYWANYCH LAMINATÓW ŻYWICA POLIESTROWA-WŁÓKNO SZKLANE

Streszczenie pracy doktorskiej pt. Analiza zniszczenia laminatów metalowo-włóknistych w wyniku obciążenia dynamicznego z niską prędkością

Knovel Math: Jakość produktu

DEGRADACJA WŁAŚCIWOŚCI WYTRZYMAŁOŚCIOWYCH KOMPOZYTÓW POLIMEROWYCH WZMACNIANYCH WŁÓKNAMI WĘGLOWYMI POD WPŁYWEM OBCIĄŻEŃ DYNAMICZNYCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Auditorium classes. Lectures

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Efekty cieplne w procesie dynamicznego niszczenia kompozytów polimerowych

Sargent Opens Sonairte Farmers' Market

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

BADANIE PRZEBIEGU ZNISZCZENIA ZSZYWANYCH KOMPOZYTÓW POLIMER-WŁÓKNO SZKLANE PRZY ZGINANIU ZA POMOCĄ REJESTRACJI SYGNAŁU EMISJI AKUSTYCZNEJ

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

IMPACT DAMAGE IN POLYESTER-MATRIX GLASS FIBRE-REINFORCED COMPOSITES. PART I. IMPACT DAMAGE EXTENT

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

NUMERICAL SIMULATION OF CRACKING PROCESS OF POLYMER COMPOSITES ON EXAMPLE OF SENB SAMPLE

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Zarządzanie sieciami telekomunikacyjnymi

LOAD BEARING CAPACITY OF WOODEN BEAMS REINFORCED WITH COMPOSITE SHEETS

MICHAŁ BAKALARZ PAWEŁ KOSSAKOWSKI Kielce University of Technology

Andrzej Katunin. Lista publikacji z dnia 31 października 2012

Krytyczne czynniki sukcesu w zarządzaniu projektami

Few-fermion thermometry

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions


BARIERA ANTYKONDENSACYJNA

WPŁYW SORPCJI I DESORPCJI NA WŁASNOŚCI CIEPLNE I MECHANICZNE LAMINATÓW

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

NAPRĘŻENIA W HYBRYDOWYCH KOMPOZYTACH WARSTWOWYCH TYPU FML SPOWODOWANE ZMIANĄ TEMPERATURY

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

IDENTYFIKACJA PARAMETRÓW CHARAKTERYZUJĄCYCH OBCIĄŻENIE SEKCJI OBUDOWY ZMECHANIZOWANEJ SPOWODOWANE DYNAMICZNYM ODDZIAŁYWANIEM GÓROTWORU

USZKODZENIA UDAROWE W LAMINACIE WZMOCNIONYM TKANINĄ SZKLANĄ

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

PORÓWNANIE WYBRANYCH MODELI DELAMINACJI W KOMPOZYTACH WARSTWOWYCH

ANALIZA NUMERYCZNA DEFORMACJI WALCOWEJ PRÓBKI W ZDERZENIOWYM TEŚCIE TAYLORA

WPŁYW OBCIĄŻEŃ ZMĘCZENIOWYCH NA WYSTĘPOWANIE ODMIAN POLIMORFICZNYCH PA6 Z WŁÓKNEM SZKLANYM

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

OdPORNOść LAmiNATU WęgLOWO-EPOkSYdOWEgO NA zmęczeniowy ROzWój ROzWARSTWiEń W WARUNkACh isp

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Konsorcjum Śląskich Uczelni Publicznych

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

INFLUENCE OF SELECTED METHOD TO ESTIMATE COMPOSITE MATERIAL ELASTICITY PROPERTIES ON RESULTS OF FINITE ELEMENT ANALYSIS

Radiologiczna ocena progresji zmian próchnicowych po zastosowaniu infiltracji. żywicą o niskiej lepkości (Icon). Badania in vivo.


Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

STATISTICAL METHODS IN BIOLOGY

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Arch. Min. Sci., Vol. 57 (2012), No 4, p

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Analiza parametrów mechaniki pękania w warunkach I modelu obciążenia betonu

Transkrypt:

KOMPOZYTY (COMPOSITES) 5(25)1 Krystyna Imielińska 1 Politechnika Gdańska, Wydział Mechaniczny, Katedra Inżynierii Materiałowej, ul. Narutowicza 11/12, 8-952 Gdańsk Rafał Wojtyra 2 Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa, Katedra Technik Głębinowych, ul. Narutowicza 11/12, 8-952 Gdańsk Marek Kozłowski 3 Politechnika Wrocławska, Instytut Inżynierii Ochrony Środowiska, Wybrzeże Wyspiańskiego 27, 5-37 Wrocław ON DELAMINATION THRESHOLD LOADS IN LOW VELOCITY IMPACT ON GLASS-CARBON/EPOXY COMPOSITES When a structure is accidentally impacted by an object, (e.g. by dropping a tool) it may be important to know if the impact is likely to cause serious damage in the structure. The easiest way to solve this is to compare the impact energy with the threshold impact energy of the structure. Thus, it is necessary to find the threshold impact energy of the structure which depends on the properties of the material and boundary conditions. In the present work the problem of delamination threshold load assessment was studied for epoxy laminates reinforced with woven glass-carbon laminates. The behaviour of symmetrical and unsymmetrical glass E/carbon C laminate was studied (E/C/E/C/E and E/E/C/E/C). Instrumented impact and static indentation tests were used. The rebound impact tests were conducted on the 1 mm square specimens in standard instrumented dropping weight tower Ceast Dartester. Indentation tests were performed using the same samples and supports geometry as in impact tests. The acoustic signal was used to assess the load and deflection corresponding to the first damage in the laminate. Damaged samples were examined using SEM. The approximate projected maximum delamination area was assessed and plotted against impact energy and maximum load (Fig. 6). The experimental results obtained in this work show (Figs 5, 6) that, similar to quasi-isotropic fibre reinforcement, for woven glass/carbon/epoxy laminates there exists a threshold impact load corresponding to a sudden jump of the area of delaminations from zero to a certain value (1 mm 2 ). The threshold impact energy was found 1.5 J independent of the glass fibre stacking sequence. The near-thethreshold damage in woven glass-carbon/epoxy laminates consists of delaminations and fibre/matrix debonding. Good correlation of the projected damage area obtained in this work for static (indentation) and impact measurements confirm that prediction of the threshold impact damage by quasi static tests instead of instrumented impact test is practical and useful. Key words: laminates, impact resistance, polymer composites BADANIA WARUNKÓW POWSTAWANIA DELAMINACJI W KOMPOZYTACH EPOKSYDOWYCH WZMOCNIONYCH WŁÓKNAMI SZKLANYMI I WĘGLOWYMI POD WPŁYWEM NISKOENERGETYCZNEGO UDARU Przedstawiono badania charakteru i rozmiaru zniszczeń w laminatach epoksydowych wzmocnionych włóknami węglowymi oraz szklanymi i węglowymi wywołanych przez udary o małej energii. Na podstawie dynamicznych charakterystyk obciążeń w funkcji czasu i odkształcenia płytek określano zależność pola delaminacji w funkcji obciążenia wywołującego te zniszczenia. Ze względu na konieczność posiadania młota spadowego z oprzyrządowaniem do prób dynamicznych badania takie są kłopotliwe. Jednak wyniki prób prowadzonych w zaawansowanych laboratoriach kompozytowych w Wlk. Brytanii i USA wskazują na możliwość wykorzystania badań przy obciążeniach quasi-statycznych o analogicznym układzie podpór i geometrii próbki do oceny progowych obciążeń wywołujących inicjację delaminacji w laminacie. Korzystając z takiej możliwości, porównano zniszczenia powstałe przy obciążeniach quasi-statycznych i udarowych (określonych przez maksymalne obciążenie P max). Posiadane dane z pomiarów dynamicznych o energii udaru wyższej od progowej umożliwiły identyfikację obciążenia wywołującego skokową inicjację delaminacji w laminacie epoksydowym o wzmocnieniu szklano-węglowym. Badania stanowią wprowadzenie do prognozowania obciążeń i energii wywołujących inicjację delaminacji w kompozytach warstwowych. Słowa kluczowe: laminaty, odporność udarowa, kompozyty polimerowe INTRODUCTION Impact induced damage, which may be undetectable by visual inspection, can have a significant effect on the strength, durability and stability of the structure. Much attention has been directed towards understanding the causes and failure mechanisms of delamination and towards developing techniques to improve the issue of delamination and impact damage. Numerous analytical and numerical methods have been proposed to predict 1 dr inż., 2 mgr inż., 3 prof. dr hab.

7 K. Imielińska, R. Wojtyra, M. Kozłowski damage development [1-4]. However, due to the complexity of the stress state in the vicinity of impact a general approach for predicting the initiation and propagation of damage during an impact event is absent. The load history for an impact event can yield important information concerning damage initiation and growth. It has been documented by several investigators that damage initiation is manifested in the load-time history as a sudden load drop due to loss of stiffness from unstable damage development [5, 6]. Subsequently, damage growth will arrest, the composite laminate will reload and a cycle of damage propagation and arrest occurs until the impactor begins to rebound and the laminate is unloaded. Several investigators [4, 6, 7] used load-displacement histories to compare structural responses from impact tests and incremental static test with equal maximum load. They found that although the dynamic load-displacement curves contain oscillations, both the dynamic and static responses had corresponding load drops due to failures in the laminates. Although the limits of the equivalence regime between static and impact tests remain to be determined [8] the loaddisplacement curves for static loading have been used to represent low velocity impact loading [5, 7, 9-11]. For a composite structure in engineering it is important to know what impact energy the structure can sustain without resulting in significant damage. On the other hand, when a structure is accidentally impacted by an object, e.g. by dropping a tool it may be important to know if the impact is likely to cause serious damage in the structure. The easiest way to solve this is to compare the impact energy with the threshold impact energy of the structure. Thus, it is necessary to find the threshold impact energy of the structure which depends on the properties of the material and boundary conditions. In research, in order to study the post-impact behaviour of a composite specimen at different levels of impact energy, the threshold impact energy for the onset of delaminations needs to be known [8, 12-14]. In the present work the problem of assessment of the threshold impact damage energy and load was studied for epoxy laminates reinforced with woven glass-carbon laminates using dynamic and static tests. suppliers. Laminates consisted of 5 plies of fabric impregnated with epoxy resin by hand lay-up. The resin was Epidian 52 (Organica-Sarzyna), typical Diglycidyl Ether of Bisphenol - A (DGEBA) cured with amine hardener ET (2 wt.%). The approximate fibre volume fraction was V f = 5%. The thickness was t = 2,3 2,9 mm. The following reinforcement architecture was used: 1) symmetrical - glass E/carbon C: E/C/E/C/E, 2) unsymmetrical E/E/C/E/C. The rebound impact tests were conducted on the 1 mm square specimens in standard instrumented dropping weight tower Ceast Dartester at three energy levels: 2.7, 5 and 9 J. The square laminate samples were clamped horizontally between the two plates with an inner diameter of 38 mm. The impactor tip was hemispherical type with a 12 mm diameter. The three specimens were tested for each material and impact energy. The load-time and load-displacement traces were recorded [15]. Alternatively, static indentation tests were performed using the same samples and supports geometry as in impact test. The acoustic signal was used to estimate the load and deflection corresponding to the first damage in the laminate. In order to estimate the impact damage size, in the absence of the instruments for non-destructive techniques (demonstrated by the authors in ref [18]), the simple (though time consuming) technique of microscopic examination of sample sections was used. Damaged samples were sectioned throughout the contact zone, polished and examined using SEM. The size of the most extensive delamination was assessed. Since the damage zone was circular the area of projected damage was estimated [16-18]. Figure 1 illustrates typical load-time plot for carbon/ epoxy laminate at impact energy 9 J showing change in the laminate stiffness (inflexion of the curve) due to the onset of impact damage. Arrow points to the load 35 N corresponding to the first crack (acoustic signal) found in the static indentation test (Fig. 2). However, no indentation or damage was observed on front or back face of the plate (Fig. 3a). 7 6 EXPERIMENTS AND RESULTS Materials used in this study were epoxy laminates reinforced with simple carbon and hybrid interlayer glass/carbon fibres. Laminates were fabricated from woven orthogonal balanced fibre fabrics: carbon (RC66T), E glass (STR 66-11). Carbon fibre fabric was supplied by SP Systems (UK) and glass fibre fabric - by Krosno, Poland. Standard pro-adhesive treatment of the fibres for use with epoxy resins was provided by the Load, N 5 4 3 2 1 35N,,5 1, 1,5 2, 2,5 3, Time, ms Fig. 1. Load-time plot for woven carbon/epoxy laminate

On delamination threshold loads in low velocity impact on glass-carbon/epoxy composites 71 Rys. 1. Wykres obciążenie-czas dla laminatu epoksydowego wzmocnionego tkaniną węglową load, N 8 6 4 acoustic signal (cracking) impact 9JJ Similar tests were performed for two 5-ply glasse/ carbonc/epoxy laminates: symmetrical E/C/E/C/E and unsymmetrical E/E/C/E/C. Figures 4 and 5 show the dynamic and quasi static load-deflection plots corresponding to the impact 2.5 J for symmetrical laminate and 9 or 2.5 J (unsymmetrical laminate). Figures 4 and 5 show that, similar to carbon fibre composite (Fig. 2), the acoustic signal corresponding to the first laminate damage (arrow) points to the load at inflection in impact load deflection plot. 2 quasi-static 1 2 3 4 deflection,mm Fig. 2. Load-deflection plots for impact and quasi static indentation tests on woven carbon fibre/epoxy laminate Rys. 2. Wykres obciążenie-odkształcenie dla laminatu epoksydowego wzmocnionego tkaniną węglową - obciążenie udarowe i quasi- -statyczne a) b) Load, N 55 5 45 4 35 3 25 2 15 1 5 inflexion (damage onset) impact 9J indentation 2 4 Deflection, mm acoustic signal (cracking) Point of impact Point of impact Fig. 5. Load-deflection plots for dynamic and quasi static tests on unsymmetrical (E/E/C/E/C carbon-glass fibre/epoxy laminate Rys. 5. Wykres obciążenie-odkształcenie dla laminatu epoksydowego wzmocnionego tkaniną szklaną i węglową (układ niesymetryczny E/E/C/E/C), pomiar dynamiczny i quasi-statyczny Fig. 3. Front face of the carbon (a), glass/carbon/epoxy (b) plates, impact energy 2,5 J Rys. 3. Płaszczyzna uderzenia laminatu epoksydowego wzmocnionego tkaniną węglową (a), szklaną i węglową (b). Energia udaru 2,5 J Load, N 35 3 25 2 15 1 5 carbon C/glass E E/C/E/C/E -1 1 2 Deflection, mm acoustic signal(cracking) static Fig. 4. Load-deflection plots for dynamic and quasi static tests on symmetrical (E/C/E/C/E carbon-glass fibre/epoxy laminate. The plot is shifted to the left, due to delay in data acquisition Rys. 4. Wykres obciążenie-odkształcenie dla laminatu epoksydowego wzmocnionego tkaniną szklaną i węglową (układ symetryczny E/C/E/C/E), pomiar dynamiczny i quasi-statyczny. Wykres jest przesunięty w lewo na skutek opóźnienia w zapisie danych a) b) Impact damage area, mm 2 Projected impact damage area, mm2 7 6 5 4 3 2 1 threshold damage 1mm 2 1,5J 1 2 3 4 5 6 7 8 9 1 6 impact damage indentation damage 5 4 3 2 1 carbon C/glass E E/C/E/C/E Impact energy, J glass Threshold damage area 1mm 2 P threshold no perforation 1 2 3 4 5 Maximum impact load, Pmax. N perforation

72 K. Imielińska, R. Wojtyra, M. Kozłowski Fig. 6. Projected damage area as a function of impact energy (a), maximum impact load (b) in carbon/glass/epoxy laminate Rys. 6. Wykres pola powierzchni zniszczeń w funkcji energii udaru (a), największego obciążenia (b) (próba dynamiczna i statyczna) w laminacie epoksydowym wzmocnionym włóknami szklanymi i węglowymi In static tests the machine was stopped and the sample removed when the first acoustic signal (corresponding to sample cracking) was registered. Damaged samples were sectioned at two perpendicular directions throughout the contact zone, polished and examined using SEM, similar to the impacted specimens. The approximate projected maximum delamination area was assessed [16-18]. The extension of the damage zone was measured and the projected damage area was plotted against impact energy (Fig. 6a). showing the extent of delamination formed under very low and high indentation load. It is evident that both the results of static and dynamic tests correlate well. Based on the experiments obtained in this work and of other investigators it may be concluded that static indentation tests may be the source of information about the threshold impact damage load. The morphology of the damaged sample was examined for impacted and statically loaded samples. Figure 7 shows typical features of undamaged and impact damaged (9 J) samples. For near-the-threshold impact loads the prevailing failure modes were the same: delaminations and matrix/fibre debonding (Fig. 8a). At higher impact (Figs 7b, 8b) energy delaminations were more extensive and numerous fibre breakage and ply cracks were observed. b) Carbon plies a) Transverse cracks delamination Glass plies Fig. 7. SEM images of undamaged (a), impact damaged (b) (9 J) carbon/ glass/epoxy sample Rys. 7. Obrazy SEM próbek laminatu epoksydowego o wzmocnieniu szklano-węglowym w stanie: nieuszkodzonym (a), po udarze o energii 9 J (b) Extensive delaminations a) 2,5J, P=23N Transverse cracks 9J, 5N Fibre fracture b) delaminations Fig. 8. Schematic of impact damage zone in carbon-glass/epoxy sample following impact 2.5 J (a), 9 J (b) Rys. 8. Schemat strefy zniszczeń udarowych w laminacie epoksydowym wzmocnionym tkaniną szklaną i węglową Figure 6b shows the relationship of impact damage and the peak impact load (found from dynamic load-time or deflection curves) which caused such a damage. In parallel the results of static (indentation) tests are plotted DISCUSSION The experimental results obtained in this work show (Fig. 6) that in woven glass/carbon/epoxy laminates

On delamination threshold loads in low velocity impact on glass-carbon/epoxy composites 73 studied under impact loading, there exists a threshold impact load 8 N (corresponding to the threshold impact energy 1,5 J). When the impact energy is above the threshold level, the delamination takes place instantaneously. This is by a sudden jump of the area of delaminations from zero to a certain value. When the impact energy is above the threshold level, the delamination area seems to increase continuously with the increase in the impact energy. However, the subsequent increase in delamination size with the increase in the impact energy is relatively slow. At high impact energies the considerable jump in damage area is observed. The same has been observed in glass and aramid- -glass/epoxy laminates subjected to impact [19]. Since the plates were transparent in the backlighting the internal delaminations were easily identified. Similar results were found in [9, 2]. For example for simply supported 125 mmx75 mm 2 mm quasi-isotropic laminate [1] the delamination size jumps to about 125 mm 2 at the threshold impact energy, whereas when the energy increases to twice the threshold level the damage area is about 175 mm 2. Jang-Kyo Kim [21] studied woven carbon fibre/epoxy laminates and found that the effect of threshold impact energy is also found in woven fibre reinforced laminate. These experiments demonstrated that the initial delamination corresponding to the threshold impact energy plays a vital role in the impact--induced damage an thus the threshold impact energy is an important parameter determining the resistance of a composite structure to impact [8]. The quasi static analysis gives a very accurate prediction of the maximum impact force for the considered laminates under low velocity impacts [8]. Based on this observation, for a given laboratory specimen of composite laminate or part made of a composite laminate in a real structure, the threshold impact energy for the onset of delamination can be predicted using a force driven, semi-empirical model proposed by Davies and Zhang [9, 12]. The model uses the Mode II strain energy release rate G IIC. The authors manufactured the ENF samples with artificial crack for glass and aramidglass fibre/epoxy laminates and assessed the G IIC [22] The prediction of the critical load for the onset of delamination based on these results and Davies s model is currently studied. CONCLUSIONS 1. The experimental results obtained in this work show that, similar to quasi-isotropic fibre reinforcement [1], for woven glass/carbon/epoxy laminates studied under impact loading there exists a threshold impact load (8 N) corresponding to a sudden jump of the area of delaminations from zero to a certain value (85 mm 2 ). 2. The threshold impact energy was found 1.5 J independent of the glass/carbon fibre stacking sequence. 3. The near-the-threshold damage in woven glass- -carbon/epoxy laminates consists of delaminations and fibre/matrix debonding. 4. The good correlation of the projected damage area obtained in this work for static (indentation) and impact measurements confirm that the prediction of the threshold impact damage by quasi static tests instead of instrumented impact is practical and useful. REFERENCES [1] Abrate S., Impact on laminated composite materials, Applied Mechanics Reviews 1991, 44, 4, 155-19. [2] Abrate S., Impact on laminated composites: recent advances, Applied Mechanics Reviews 1994, 47(11), 155-19. [3] Abrate S., Impact on composite structures, Cambridge University Press, Cambridge 1998. [4] Dear J.P., Brown S.A., Impact damage processes in reinforced polymeric materials, Composites: Part A 23, 34, 411-42. [5] Lee S.M., Zahuta P., Instrumented impact and static indentation of composites, Journal of Composite Materials 1991, 25(2), 24. [6] Schoeppner G.A., Abrate S., Delamination threshold loads for low velocity impact on composite materials, Composites 2, 31, 9. [7] Kwon Y.S., Sankar B.V., Indentation-flexure and low velocity impact damage in graphite/epoxy laminates, Journal of Composites Technology and Research 1993, 15(2), 11-111. [8] Davies G.A.O., Hitchings D., Wang J., Prediction of threshold impact energy for onset of delamination in quasiisotropic carbon/epoxy composite laminates under lowvelocity impact, Composites Science and Technology 2, 6, 1-7. [9] Davies G.A.O., Zhang X., Impact damage prediction in carbon composite structures, International Journal of Impact Engineering 1995, 16(1), 149-17. [1] Wardle B.L., Lagace P.A., On the use of quasi-static test to asses impact damage resistance of composite shell structures, Mechanics of Composite Materials and Structures 1998, 5(1), 13-121. [11] Legace P.A., Williamson J.E., Tsang P.H.W., Wolf E., Thomas S., A preliminary proposition for a test method to measure (impact)damage resistance, Journal of Reinforced Plastics and Composites 1993, 12(5), 584-61. [12] Davies G.A.O., Zhang X., Zhou G., Watson S., Numerical modeling of impact damage, Composites 1994, 25(5), 342-35. [13] Pavier M.J., Clarke M.P., Experimental techniques for the investigation of the effects of impact damage on carbonfibre composites, Composites Science and Technology 1995, 55(1), 57-69. [14] Soutis C., Curtis P.T., Prediction of the post-impact compressive strength of CFRP laminated composites, Composites Science and Technology 1996, 56, 677-684.

74 K. Imielińska, R. Wojtyra, M. Kozłowski [15] Imielińska K., Wojtyra R., Advanced laminate composites of improved impact tolerance, Kompozyty (Composites) 24, 4, 9, 61-67. [16] Imielińska K, Wojtyra R., Udarowe pękanie hybrydowych kompozytów epoksydowych zbrojonych włóknami szklanymi, węglowymi i aramidowymi, Inżynieria Materiałowa 23, 3(134), 127-134. [17] Bełzowski A., Degradacja mechaniczna kompozytów polimerowych metody oceny wytrzymałości długotrwałej i stopnia uszkodzenia, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 22. [18] Imielińska K., Castaings M., Wojtyra R., Haras J., Le Clezio E., Hosten B., Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar / epoxy composites, Journal of Materials Processing Technology 24, 157-158, 513-522. [19] Imielińska K., Guillaumat L., The effect of water immersion ageing on low-velocity impact behaviour of woven aramid- -glass fibre/epoxy composites, Composites Science and Technology 24, 64, 2271-2278. [2] Choi H.Y., Chang R-K., A model for predicting damage in graphite/epoxy laminated composites resulting from lowvelocity impact, Journal of Composite Materials 1992, 26, 2143-2169. [21] Jang-Kyo Kim, Yiu-Wing Mai, High strength, high fracture toughness fibre composites with interface control - a review, Composites Science and Technology 1991, 41 333-378. [22] Imielińska K., Badania energii oporu pękania interlaminarnego G IIC kompozytów polimerowych zbrojonych włóknem szklanym i aramidowym, Materiały i Technologie, Roczniki Naukowe Pomorskiego Oddzialu PTM 23, Nr 1(1), 61-65. Recenzent Marian Klasztorny