MODELE GOSPODARSTWA JAKO ŹRÓDŁO DANYCH DO OPTYMALIZACJI PRODUKCJI ROŚLIN ENERGETYCZNYCH W GMINIE *



Podobne dokumenty
PROCEDURY INTERPOLACYJNE DO OKREŚLANIA PARAMETRÓW TECHNOLOGII UPRAWY WIERZBY ENERGETYCZNEJ * 1

WPŁYW TECHNICZNEGO UZBROJENIA PROCESU PRACY NA NADWYŻKĘ BEZPOŚREDNIĄ W GOSPODARSTWACH RODZINNYCH

ASPEKTY TECHNOLOGICZNO-ORGANIZACYJNE ŁĄCZENIA PRODUKCJI ROLNICZEJ NA CELE ŻYWNOŚCIOWE I ENERGIĘ *

METODA WARTOŚCIOWANIA PARAMETRÓW PROCESU PLANOWEGO OBSŁUGIWANIA TECHNICZNEGO MASZYN ROLNICZYCH

TECHNICZNE UZBROJENIE PROCESU PRACY W RÓŻNYCH TYPACH GOSPODARSTW ROLNICZYCH

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA

EFEKTYWNOŚĆ ENERGETYCZNA PRODUKCJI BIOMASY Z TRZYLETNIEJ WIERZBY

OCENA WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH

KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE ROLNICZYM

PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO

EFEKTYWNOŚĆ ENERGETYCZNA PRODUKCJI BIOMASY Z ROCZNEJ WIERZBY

POZIOM I DYNAMIKA ZMIAN WYPOSAśENIA I WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH

METODA OCENY OPŁACALNOŚCI WYKONANIA USŁUG NAWOŻENIA MINERALNEGO UPRAW ZBOŻOWYCH

TECHNIKA I TECHNOLOGIA TRANSPORTU A POSTĘP TECHNICZNY W PRODUKCJI ROLNICZEJ

Inżynieria Rolnicza 7(105)/2008

EKONOMICZNE I ENERGETYCZNE ASPEKTY PRODUKCJI SOI W WARUNKACH POLSKIEGO ROLNICTWA

IBA 2014 IV Międzynarodowa Konferencja

KOMBAJNY ZBOŻOWE W ROLNICTWIE POLSKIM W LATACH

PODAŻ CIĄGNIKÓW I KOMBAJNÓW ZBOŻOWYCH W POLSCE W LATACH

STRATY PLONU A PRÓG OPŁACALNOŚCI OCHRONY ZBÓŻ

PORÓWNANIE KOSZTÓW PRODUKCJI PSZENICY OZIMEJ W WYBRANYCH GOSPODARSTWACH UNII EUROPEJSKIEJ

WALIDACJA SYSTEMU WSPOMAGANIA DECYZJI ZEASOFT MODELE PLONÓW

WYKORZYSTANIE KOMPUTERÓW W WYBRANYCH GOSPODARSTWACH RODZINNYCH LUBELSZCZYZNY

Uprawa roślin na potrzeby energetyki

WYNIKI BADAŃ WARTOŚCIOWANIA PROCESU OBSŁUGI TECHNICZNEJ CIĄGNIKÓW ROLNICZYCH O RÓŻNYM POZIOMIE WYKORZYSTANIA

ZAŁOŻENIA NOWEJ METODY DOBORU MASZYN DO PRODUKCJI ROLNICZEJ

WPŁYW AKTUALIZACJI NIEKTÓRYCH WSKAŹNIKÓW EKSPLOATACYJNO-EKONOMICZNYCH NA KOSZTY EKSPLOATACJI CIĄGNIKÓW ROLNICZYCH NOWEJ GENERACJI

TYP ROLNICZY GOSPODARSTW A ZASOBY PRACY I WYPOSAŻENIE W ŚRODKI TECHNICZNE

EKONOMICZNA OCENA PRODUKCJI JABŁEK W WYBRANYM GOSPODARSTWIE SADOWNICZYM

OCENA KOSZTÓW I NAKŁADÓW ENERGETYCZNYCH W PRODUKCJI KUKURYDZY NA ZIARNO I KISZONKĘ

OKRESY UŻYTKOWANIA I WYKORZYSTANIE ŚRODKÓW ENERGETYCZNYCH W GOSPODARSTWACH RODZINNYCH

ZAŁOśENIA DO PROGRAMU WSPOMAGAJĄCEGO OBLICZANIE ZAPOTRZEBOWANIA NA BIOMASĘ DO CELÓW GRZEWCZYCH W GOSPODARSTWIE ROLNYM

Analiza inwestycji przesadzania chmielu przy użyciu GIS

Problemy Inżynierii Rolniczej Nr 4/2005

KOMPUTEROWE WSPOMAGANIE CHEMICZNEJ OCHRONY ROŚLIN PRZY POMOCY PROGRAMU HERBICYD-2

InŜynieria Rolnicza 14/2005. Streszczenie

EFEKTYWNOŚĆ PRODUKCJI SOI W POLSKICH WARUNKACH

ILOŚCIOWE I JAKOŚCIOWE ZMIANY W STANIE PARKU CIĄGNIKOWEGO

WPŁYW NAKŁADÓW MATERIAŁOWO- -ENERGETYCZNYCH NA EFEKT EKOLOGICZNY GOSPODAROWANIA W ROLNICTWIE

KOSZTY PRODUKCJI ROŚLINNEJ PRZY WYKONYWANIU PRAC CIĄGNIKIEM ZAKUPIONYM W RAMACH PROGRAMU SAPARD

WYKORZYSTANIE TECHNIK KOMPUTEROWYCH W GOSPODARSTWACH RODZINNYCH

ANALIZA WYPOSAŻENIA W CIĄGNIKI ROLNICZE WYBRANYCH GOSPODARSTW SPECJALIZUJĄCYCH SIĘ W CHOWIE BYDŁA MLECZNEGO

Model Agroklimatu Polski jako moduł ZSI RPP

Wykorzystanie przestrzennego modelu agroklimatu do określenia opłacalności uprawy kukurydzy na ziarno

WYKORZYSTANIE ŚRODKÓW POMOCOWYCH UE DO MODERNIZACJI GOSPODARSTW ROLNYCH

OPŁACALNOŚĆ PRODUKCJI BURAKA CUKROWEGO NA PRZYKŁADZIE WYBRANYCH GOSPODARSTW WOJEWÓDZTWA POMORSKIEGO

Gospodarcze i ekonomiczne skutki suszy w Polsce

ZAPOTRZEBOWANIE NA PROGRAMY KOMPUTEROWE W ROLNICTWIE NA PRZYKŁADZIE GOSPODARSTW WOJEWÓDZTWA MAŁOPOLSKIEGO

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

KOSZTY I OPŁACALNOŚĆ PRODUKCJI BIOMASY Z TRZYLETNIEJ WIERZBY ENERGETYCZNEJ

SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

Opłacalność uprawy zbóż w latach na podstawie badań w systemie Agrokoszty

WPŁYW WYBRANYCH CZYNNIKÓW NA KOSZTY WYKONANIA PRAC NA PLANTACJACH WIERZBY ENERGETYCZNEJ

ANALIZA WYPOSAŻENIA WYBRANYCH GOSPODARSTW EKOLOGICZNYCH W CIĄGNIKI ROLNICZE

Problemy Inżynierii Rolniczej nr 4/2007

Innowacyjność polskich gospodarstw rolnych w warunkach wygasania kryzysu

ANALIZA WYPOSAŻENIA GOSPODARSTW EKOLOGICZNYCH W CIĄGNIKI ROLNICZE

Gospodarstwa rolne z obszarów o szczególnie dużej cenności przyrodniczej na tle gospodarstw pozostałych

INTENSYWNOŚĆ PRODUKCJI A WYPOSAŻENIE I WYKORZYSTANIE WYBRANYCH TECHNICZNYCH ŚRODKÓW PRODUKCJI W GOSPODARSTWACH SADOWNICZYCH

MODEL SYSTEMU WYTWARZANIA I WYKORZYSTANIA ODNAWIALNYCH NO

Biomasa jednorocznych roślin energetycznych źródłem biogazu

INTERNETOWY MODUŁ ANALIZY KOSZTÓW OCHRONY PSZENICY OZIMEJ

SEMINARIUM UPRAWY ENERGETYCZNE W CENTRALNEJ I WSCHODNIEJ EUROPIE. Tytuł referatu Bioenergia w Polsce. Uprawy energetyczne w Polsce stan obecny

Skutki zmian klimatycznych dla rolnictwa w Polsce sposoby adaptacji

ANALIZA USŁUG MECHANIZACYJNYCH W GOSPODARSTWACH EKOLOGICZNYCH

OCENA POZIOMU PRODUKCYJNOŚCI I WYDAJNOŚCI W ROLNICTWIE NA PRZYKŁADZIE WYBRANYCH REGIONÓW POLSKI

P A M I Ę T N I K P U Ł A W S K I ZESZYT

REGIONALIZACJA POTENCJAŁU BIOMASY UBOCZNEJ Z PRODUKCJI ROŚLIN OLEISTYCH REGIONALISATION OF BIOMASS POTENTIAL FROM OILSEEDS PRODUCTION.

Ocena potencjału biomasy stałej z rolnictwa

NAKŁADY PRACY W GOSPODARSTWACH ROLNYCH O RÓŻNEJ WIELKOŚCI EKONOMICZNEJ

METODA AKTUALIZACJI WSKAŹNIKA KOSZTÓW NAPRAW MASZYN ROLNICZYCH NOWEJ GENERACJI

KOMBAJNY ZBOŻOWE W GOSPODARSTWACH RODZINNYCH LUBELSZCZYZNY

WYPOSAŻENIE TECHNICZNE WYBRANYCH GOSPODARSTW ROLNYCH KORZYSTAJĄCYCH Z FUNDUSZY UNII EUROPEJSKIEJ

Rolnictwo integrowane - zarys systemu. Produkcja zielarska. Integrowana produkcja ziół

BADANIA RZECZYWISTYCH KOSZTÓW OBSŁUGI TECHNICZNEJ NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH. Wstęp

ZMIANY W ZAKRESIE WYPOSAŻENIA ENERGETYCZNEGO W WYBRANYCH GOSPODARSTWACH RODZINNYCH

WYKORZYSTANIE ZASOBÓW PRACY UPRZEDMIOTOWIONEJ A PRACOCHŁONNOŚĆ PRODUKCJI W GOSPODARSTWACH ROLNYCH

CECHY TECHNICZNO-UŻYTKOWE A WARTOŚĆ WYBRANYCH TECHNICZNYCH ŚRODKÓW PRODUKCJI W ROLNICTWIE

roślin oleistych Wstęp

Tabela 1. Produkcja, koszty i dochody z uprawy buraków cukrowych w latach

EFEKTYWNOŚĆ MECHANIZACJI UPRAWY NA PLANTACJACH WIERZBY ENERGETYCZNEJ

NIEWIELKIE GOSPODARSTWA ROLNE: PROBLEM SPOŁECZNY CZY GOSPODARCZY. W. Józwiak, Jachranka

MODELOWANIE TECHNOLOGII PRODUKCJI KUKURYDZY NA ZIARNO W ASPEKCIE EFEKTYWNOŚCI EKONOMICZNEJ

RYNEK CIĄGNIKÓW I PRZYCZEP ROLNICZYCH W POLSCE W LATACH

INFORMACJE WPŁYWAJĄCE NA DECYZJĘ O ZAKUPIE ŚRODKÓW TECHNICZNYCH W GOSPODARSTWACH ROLNICZYCH MAŁOPOLSKI

KOSZTY PRZEWOZÓW ROLNICZYCH RÓŻNYMI ŚRODKAMI TRANSPORTOWYMI

EFEKTY MODERNIZACJI TECHNIKI NAWOŻENIA ORGANICZNEGO W GOSPODARSTWIE ROLNYM

ANALIZA WYKORZYSTANIA PRZEZ ROLNIKÓW PROGRAMÓW KOMPUTEROWYCH DO WSPOMAGANIA DECYZJI

WYPOSAŻENIE I WYKORZYSTANIE WYBRANYCH TECHNICZNYCH ŚRODKÓW PRODUKCJI W GOSPODARSTWACH WARZYWNICZYCH O RÓŻNEJ INTENSYWNOŚCI PRODUKCJI

Mikołajczak J. 1, Majtkowski W. 2,Topolińska P. 1, Marć- Pieńkowska J. 1

ANALIZA PORÓWNAWCZA WYNIKÓW EKONOMICZNYCH KUKURYDZY UPRAWIANEJ NA ZIARNO SUCHE I MOKRE

Kalkulacje rolnicze. Uprawy polowe

EFEKTYWNOŚĆ PRODUKCJI BURAKÓW CUKROWYCH W WYBRANYCH GOSPODARSTWACH NA PODKARPACIU

OCENA EFEKTYWNOŚCI EKONOMICZNEJ I ENERGETYCZNEJ PRODUKCJI PSZENICY OZIMEJ I RZEPAKU OZIMEGO WYKORZYSTANYCH DO PRODUKCJI BIOPALIW

KOSZTY I ENERGOCHŁONNOŚĆ PROCESÓW PRODUKCJI BURAKÓW CUKROWYCH

NARZĘDZIA INFORMATYCZNE W PRODUKCJI ROŚLINNEJ

TECHNICZNE ŚRODKI PRACY W GOSPODARSTWACH O RÓŻNYM POZIOMIE DOSTOSOWANIA DO WYMOGÓW ROLNOŚRODOWISKOWYCH

OPTYMALIZACJA PROCESU TECHNOLOGICZNEGO W ROLNICTWIE Z ZASTOSOWANIEM METODY GRAFÓW

WPŁYW UPRAWY MIĘDZYPLONU ŚCIERNISKOWEGO NA OPŁACALNOŚĆ PRODUKCJI JĘCZMIENIA JAREGO

ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ

Transkrypt:

I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 2012: Z. 2(137) T. 2 S. 347-355 ISSN 1429-7264 Polskie Towarzystwo Inżynierii Rolniczej http://www.ptir.org MODELE GOSPODARSTWA JAKO ŹRÓDŁO DANYCH DO OPTYMALIZACJI PRODUKCJI ROŚLIN ENERGETYCZNYCH W GMINIE * Andrzej S. Zaliwski, Jacek Hołaj Instytut Uprawy Nawożenia i Gleboznawstwa Państwowy Instytut Badawczy w Puławach Zakład Agrometeorologii i Zastosowań Informatyki Streszczenie. Sprostanie wymogom Dyrektywy UE 2009/28/EC wymagać będzie od Polski zwiększenia areału wieloletnich upraw energetycznych do ok. 1 mln. ha do roku 2020. Analizę następstw penetracji upraw energetycznych do przestrzeni rolniczej można prowadzić metodą symulacji, biorąc pod uwagę ich konkurencję z pozostałymi uprawami wyrażoną opłacalnością produkcji. Tak pomyślany model symulacyjny musiałby objąć zakresem gospodarstwa będące potencjalnymi producentami biomasy wraz z ich otoczeniem z całego uwzględnionego obszaru. Ze względu na trudność pozyskania szczegółowych danych empirycznych, zwłaszcza w przypadku większych obszarów, zaproponowano zastąpienie ich danymi generowanymi w modelach gospodarstw rolnych, które jako parametry wejściowe wykorzystywałyby ogólno dostępne dane statystyczne. Celem pracy było przedstawienie metody budowy modeli takich gospodarstw. Metoda ta zakłada, że model gospodarstwa można złożyć z modeli technologii produkcji, opisanych jako zbiór funkcji matematycznych określających parametry wyjściowe technologii. Przedstawiono sposób konstruowania funkcji określającej przebieg parametru nakłady robocizny modelu technologii produkcji wierzby energetycznej, z wykorzystaniem wyników obliczeń tego parametru na podstawie kart technologicznych dla trzech plantacji o powierzchniach: 1, 2,5 i 10 ha. Słowa kluczowe: model gospodarstwa, system "DSS bioenergia", uprawa energetyczna, wierzba, technologia uprawy, ekonomika produkcji Wprowadzenie Realizacja postulatów Dyrektywy UE 2009/28/EC [Dyrektywa Unijna 2009] i Polityki Energetycznej Polski [Polityka energetyczna Polski 2009] wymagać będzie od Polski w 2020 r. produkcji ok. 15% energii elektrycznej z odnawialnych źródeł energii. W znaczącym stopniu (ok. 90%) energia ta będzie pochodziła z biomasy stałej [Kuś i Faber, * Publikację opracowano w ramach zadania 4.1 programu wieloletniego IUNG-PIB Puławy.

Andrzej S. Zaliwski, Jacek Hołaj 2007]. W celu sprostania tym zamierzeniom nastąpić powinien wzrost powierzchni upraw energetycznych z obecnych ponad 10 tys. ha do ok. 1 miliona ha. Zwiększenie areału upraw na tak wielką skalę w dość krótkim czasie nie może odbywać się bez dogłębnej analizy problemu [Zaliwski i in. 2011]. Jednym z ważnych zagadnień jest niewątpliwie aspekt ekonomiczny przedsięwzięcia. W Instytucie Uprawy Nawożenia i Gleboznawstwa Państwowym Instytucie Badawczym w Puławach wychodząc naprzeciw potrzebom w tym zakresie planuje się uruchomienie systemu wspomagania decyzji "DSS bioenergia" [Rozakis 2010]. System ten został pozyskany z Uniwersytetu Rolniczego w Atenach. Pozwoli on na interaktywne modelowanie konkurencji upraw energetycznych z pozostałymi uprawami o udział w przestrzeni rolniczej wyrażonej opłacalnością produkcji [Stuczyński i in. 2008]. Ponieważ podstawowym poziomem obliczeń w systemie jest gospodarstwo, dlatego jest on przydatny zwłaszcza do analiz w dużej skali, np. skali gminy i skalach większych [Rozakis i Zaliwski 2011]. Celem niniejszej pracy było opracowanie abstrakcyjnego modelu gospodarstwa do optymalizacji produkcji roślin energetycznych w gminie. Ze względu na pilotażowy charakter prac zakres modelowania ograniczono do trzech technologii dla powierzchni 1 ha (dalej zwanej T1), 2,5 ha (dalej zwanej T2) i 10 ha (dalej zwanej T3) uprawy wierzby energetycznej. Model gospodarstwa opracowano metodą regresji przy użyciu arkusza kalkulacyjnego uwzględniając tylko wybrane parametry wyjściowe technologii T1-T3 (nakłady pracy i koszty bezpośrednie produkcji). Metodyka System "DSS bioenergia" wymaga wprowadzenia dość szczegółowych danych ekonomicznych dotyczących gospodarstwa i jego otoczenia, takich jak dotychczasowe uprawy, uprawa energetyczna, oszacowane plony, ceny, koszty produkcji, dopłaty bezpośrednie, itd. Niektóre z tych danych można pozyskać z analitycznych modeli, konstruowanych na podstawie wariantów technologicznych upraw [Zaliwski i Hołaj 2006]. Modelowanie technologii obejmuje opracowanie struktury technologii względem określonych warunków siedliskowych oraz stosowanej techniki, wprowadzenie danych i przeprowadzenie obliczeń. Pracochłonność przygotowania analitycznych modeli technologii, zwłaszcza w przypadku użycia systemu "DSS bioenergia" do analiz obejmujących dużą liczbę gospodarstw, może być istotnym utrudnieniem badań. Utrudnienie to wynika przede wszystkim z konieczności pozyskania obszernych zbiorów danych, ale także z ich ewentualnej aktualizacji [Zaliwski i Hołaj 2005; Zaliwski 2009]. Rozwiązaniem tego problemu może być użycie modeli matematycznych do określania parametrów technologii, skonstruowanych na podstawie mniejszej liczby modeli technologicznych. Proces konstrukcji tych modeli przedstawia rys. 1. Modele takie mogą posłużyć do generowania danych wejściowych systemu "DSS bioenergia" w celu optymalizacji produkcji roślin w sposób bardziej skuteczny niż modele technologiczne, ponieważ niezbędne dane zasilające system są interpolowane jako wartości pośrednie. Niniejsza metodyka dotyczy konstrukcji takich modeli. Zasadniczym kryterium przydatności upraw energetycznych do produkcji energii jest wysokość plonu biomasy w suchej masie i jej energetyczność, np. Podlaski i in. [2010]. Ważnymi kryteriami są ponadto wierność plonowania, technologia zbioru, wielokrotność 348

Modele gospodarstwa... zbioru biomasy w czasie wegetacji, trwałość plantacji, itd. Spośród roślin energetycznych uprawianych w Polsce wysokim plonem suchej masy, dużą wiernością plonowania i niską zawartością wody odznacza się wierzba [Podlaski i in. 2010]. Z tego powodu tę roślinę wybrano do prac pilotażowych. Ceny materiałów, ciągników, maszyn itd. System "DSS bioenergia" Baza cen Procesy technologiczne Dane eksploatacyjne ciągników, maszyn itd. Model technologii Baza procesów technologicznych Baza danych eksploatacyjnych Wyniki kalkulacji z modelu Modele do określania parametrów technologii Źródło: opracowanie własne Rys. 1. Fig. 1. Schemat wyprowadzania modeli matematycznych do określania parametrów technologii dla systemu DSS bioenergia Diagram of deriving mathematical models for technology parameter determination for the system DSS bioenergy Uprawę wierzby energetycznej w cyklu 3-letnim modelowano na areale: 1 ha, 2,5 ha i 10 ha. W tym celu opracowano karty technologiczne w arkuszu kalkulacyjnym. Uwzględniono w nich takie dane jak zabiegi agrotechniczne, maszyny, ciągniki, czas ich pracy, ilość zastosowanych materiałów (nawozów sztucznych, środków ochrony roślin, itd.), ilość nakładów pracy ludzkiej, usługi, itd. Wszystkie te dane są konieczne do przeprowadzenia obliczeń parametrów wejściowych systemu "DSS bioenergia. Pozyskano je m.in. z wyników badań przeprowadzonych w IUNG-PIB w Puławach, np. Matyka i in. [2009]. Metodyka obliczeń była zgodna w metodyką opracowaną dla potrzeb programu Agroefekt [Zaliwski i in. 1995]. Wersje technologii T1-T3 różniły się przede wszystkim typami maszyn i ciągników, dopasowanych wydajnością do areału. Różnice te są istotne z punktu widzenia metodycz- 349

Andrzej S. Zaliwski, Jacek Hołaj nego dla generowania modeli do określania parametrów technologii. Technologię T1 np. można zastosować także na innym areale niż 1 ha, ale wtedy zmieniają się generowane wyniki, takie jak nakłady czasu pracy, kosztów, itd. Areał stosowalności technologii nie jest dowolny, istnieją bowiem ograniczenia takie jak możliwość wykonania zabiegów agrotechnicznych w określonym czasie, dostępne zasoby pracy, itd. Stąd wynika najmniejsza liczba modeli technologicznych niezbędna do opracowania modelu do określania parametrów technologii dla jednej rośliny, tak aby zachować ciągłość areału w całym zakresie wymaganym przez system "DSS bioenergia", który jest większy niż zakres jednego wariantu technologii. Przykładowo, dla podanych wersji technologii, ciągłość ta będzie zachowana, jeżeli technologia T1 może być stosowana na areale 0-2 ha (T1 Z = {0-2}), T2 na areale 2-5 ha (T2 Z = {2-5}, a technologia T3 na areale 5-15 ha (T3 Z = {5-15}). Zakresy stosowalności poszczególnych wersji technologii T1-T3 dodane do siebie tworzą obszerniejszy zakres, który musi być ciągły. Zakres areału modelu do określania parametrów technologii (M Z ) jest sumą zakresów modeli technologii użytych do jego utworzenia, co można wyrazić zależnością (1): gdzie: Z M Z M = T1 Z + T2 Z + TN Z (1) zakres stosowalności modelu do określania parametrów technologii względem areału [ha], T1 Z TN Z zakresy stosowalności technologii T1-TN względem areału [ha], N najmniejsza liczba technologii uprawy danej rośliny pozwalająca skonstruować ciągły zakres Z M dla wszystkich gospodarstw analizowanych w systemie "DSS bioenergia". Model gospodarstwa można zapisać jako zbiór modeli do określania parametrów technologii zależnością (2): G = { M 1D, M 2D, M 3D } + { M 1E, M 2E, M 3E } (2) gdzie: G model gospodarstwa będący źródłem danych do optymalizacji produkcji roślin energetycznych, M 1D, M 2D, itd. modele do określania parametrów technologii uprawy roślin dotychczasowych, M 1E, M 2E, itd. modele do określania parametrów technologii uprawy roślin energetycznych. Pojęcie "parametry technologii" zastosowano np. w systemie ZeaSoft [Zaliwski 2009], ale w niniejszej pracy wymaga ono dodatkowego wyjaśnienia. Mówiąc o parametrach technologii należy przede wszystkim rozróżnić parametry wejściowe i wyjściowe. Parametrami wejściowymi jest np. areał (powierzchnia uprawy danej rośliny), natomiast parametrem wyjściowym jest koszt bezpośredni produkcji, możliwy do obliczenia w modelu do określania parametrów technologii tej rośliny po wprowadzeniu parametru wejściowego, jakim jest areał. Pojęcie "model gospodarstwa" można rozpatrywać w sensie konkretnym, jako model konkretnego gospodarstwa (zbiór informacji opisujących dane gospodarstwo) 350

Modele gospodarstwa... i w sensie abstrakcyjnym, jako model pozwalający generować dowolne modele konkretnych gospodarstw (po wprowadzeniu odpowiednich parametrów wejściowych). Omówienie wyników badań W pracy niniejszej przedstawione zostaną i omówione tylko wybrane wyniki obliczeń z modeli technologii T1-T3. Jednym z ważniejszych parametrów wyjściowych technologii są nakłady pracy ludzkiej i umaszynowionej. W tabelach 1 i 2 przedstawiono nakłady pracy [h ha -1 ] w przeliczeniu na jeden rok (średnia z trzyletniego cyklu uprawy wierzby energetycznej). Tabela 1. Nakłady pracy ludzkiej (Rbh), ciągników (Cnh) i maszyn (Mnh) w przeliczeniu na jeden rok w cyklu trzyletnim uprawy wierzby energetycznej [h ha -1 ]. Table 1. Labour input (Rbh [man-hour]) and the workload of tractors (Cnh) and machinery (Mnh) per one year of the three-year production cycle of energetic willow cultivation. Nakłady pracy [h ha -1 ] Technologia Powierzchnia uprawy [ha] Rbh Cnh Mnh Usługi T1 1,00 19,73 4,69 13,40 0,00 T2 2,50 16,38 2,93 11,37 0,00 T3 10,00 2,33 0,50 0,78 0,90 Źródło: obliczenia własne Tabela 2. Nadwyżka bezpośrednia w przeliczeniu na jeden rok w cyklu trzyletnim uprawy wierzby energetycznej [h ha -1 ] Table 2. Direct surplus from energy willow cultivation per one year of the three-year production cycle Technologia Powierzchnia uprawy [ha] Wyszczególnienie [zł ha -1 ] Przychód [PLN] Koszty bezpośrednie [PLN] Nadwyżka bezpośrednia [PLN] T1 1,00 2150,00 951,93 1198,07 T2 2,50 2150,00 793,87 1356,13 T3 10,00 2150,00 586,56 1563,44 Źródło: obliczenia własne Nakłady pracy w technologii T1 i T2 w przeliczeniu na jeden rok (tabela 1) są wyraźnie większe niż w technologii T3. Natomiast nadwyżka bezpośrednia w przeliczeniu na jeden rok (tabela 2) zwiększa się wraz ze wzrostem powierzchni uprawy. 351

Andrzej S. Zaliwski, Jacek Hołaj Źródło: obliczenia własne Rys. 2. Fig. 2. Model do określania parametru nakłady pracy ludzkiej technologii uprawy roślin energetycznych przedstawiony w postaci funkcji kwadratowej opracowanej na podstawie trzech modeli technologii uprawy wierzby T1-T3 (1 ha, 2,5 ha i 10 ha) Model for the calculation of the technology parameter labour input in the energetic willow cultivation technology represented by the quadratic function derived from the three models of technology T1-T3 (1 ha, 2.5 ha and 10 ha) Na podstawie danych z tabeli 1 wykonano model do obliczania parametru "nakłady pracy ludzkiej" na podstawie trzech technologii uprawy roślin energetycznych (rys. 2). Model ten wyraża zależność (3): RBH = 0,04A 2-2,3733A + 22,063 (3) gdzie: RBH nakłady pracy ludzkiej [rbh ha -1 ], A areał uprawy wierzby w gospodarstwie (pojedyncze pole) [ha]. Model przedstawiony na rys. 2 ma postać funkcji kwadratowej umożliwiającej interpolację wartości nakładów pracy ludzkiej dla dowolnego punktu pomiędzy wartościami ustalonymi na podstawie obliczeń. Sposób jego konstrukcji jest analogiczny jak w przypadku modeli empirycznych opracowywanych na podstawie danych doświadczalnych, np. Giordano i in. [2003]. Zasadniczą różnicą jest to, że dane do jego konstrukcji nie pochodzą z doświadczeń, ale z analitycznych modeli technologii. W przypadku dużych błędów interpolacji wynikających z niedokładnego dopasowania jednej funkcji do całego zbioru wartości obliczonych w analitycznych modelach technolo- 352

Modele gospodarstwa... gii, zbiór taki powinien być podzielony na niezbędną liczbę podzbiorów. Do każdego z nich należy dobrać funkcję o wystarczająco dokładnym dopasowaniu. Zbiór funkcji uzyskanych w ten sposób dla każdego parametru technologii należy zespolić w jedną procedurę interpolacyjną (w postaci algorytmu komputerowego) użyteczną w całym zakresie danych wejściowych. Podsumowanie i wnioski Przeprowadzone prace miały charakter pilotażowy, stąd ich niewielki zakres. Mimo jednak ograniczonego charakteru przeprowadzone badania dostarczyły informacje pozwalające na zdefiniowanie następujących wniosków: 1. Danymi wejściowymi modelu gospodarstwa są następujące parametry: uprawa, areał i wersja technologii. Wynika stąd, że ilość danych do przygotowania modeli gospodarstw dla określonego obszaru zwiększa się wraz z rosnącym asortymentem upraw i zróżnicowaniem stosowanych technologii na tym obszarze. 2. Założenie i prowadzenie plantacji energetycznej stanowi inwestycję o określonych kosztach, która zwrócić się może tylko w przypadku dostatecznie dużego areału. Dlatego przed rozpoczęciem budowy modeli gospodarstw zaleca się wykonać wstępne analizy opłacalności upraw występujących na danym obszarze w celu ustalenia dolnego zakresu areału dla kart technologicznych. 3. Wadą zastosowania modeli do określania parametrów technologii jest mniejsza dokładność obliczeń (wartości interpolowane charakteryzują się z reguły większym błędem niż uzyskane z modeli analitycznych). Należy jednak zauważyć, że w związku z trudnością pozyskania dokładnych danych o gospodarstwach nawet dla obszarów o dużej skali (gmina) stanowi to raczej konieczność niż arbitralny wybór. Przeprowadzenie symulacji odnośnie penetracji uprawy roślin energetycznych do istniejących systemów rolniczych przy pomocy "DSS bioenergia" wymagać będzie, oprócz budowy modeli gospodarstw, pozyskania wielu danych o gospodarstwach funkcjonujących w analizowanej gminie. Dane te mogą być pozyskane m.in. z takich źródeł jak GUS i FADN. Należy się spodziewać, że niemożliwe będzie dotarcie do informacji o wszystkich gospodarstwach, które należałoby wziąć pod uwagę w analizach. W tej sytuacji modele gospodarstw mogą okazać się bardzo przydatne, ze względu na łatwiejsze stosowanie w przypadku posiadania tylko szacunkowych danych o gospodarstwach w gminie, takich jak rodzaj produkcji, liczba, średnie powierzchnie upraw, itd. Bibliografia Giordano F.R., Weir M.D., Fox W.P. (2003): A First Course in Mathematical Modeling. 3rd ed. Brooks/Cole-Thomson Learning, Pacific Grove, CA, USA, ISBN 0-534-38428-5. Kuś, J., Faber, A. (2007): Alternatywne kierunki produkcji rolniczej. Studia i raporty IUNG-PIB, 7, 139-149. Kuś J., Matyka M. (2010): Uprawa roślin na cele energetyczne. Instrukcja upowszechnieniowa. Wydawnictwo IUNG-PIB, Puławy, 176, ISBN-978-83-7562-072-6. 353

Andrzej S. Zaliwski, Jacek Hołaj Matyka M., Kopiński J., Madej A. (2009): Opracowanie koncepcji założenia plantacji wierzby energetycznej oraz określenie jej funkcji produkcyjnych i edukacyjnych. IUNG-PIB Puławy [online], [dostęp 20.02.2012], Dostępny w Internecie: http://pkpplewiatan.pl/upload/file/2010 _02/biznesplanklimat.pdf Podlaski S., Chołuj D., Wiśniewski G. (2010): Produkcja biomasy z roślin energetycznych. Postępy Nauk Rolniczych, 2(2010), 163 174. Rozakis, S. (2010): A Web-based Spatial DSS for estimating biomass-to-energy supply in Thessaly. Decision Support Systems in Agriculture, Food and the Environment: Trends, Applications and Advances. New York, Hershey, ISBN 978-1-61520-881-4. Rozakis S., Zaliwski A.S. (2011): Web DSS for Bio-Energy Projects Evaluation. (In:) Lorencowicz E., Uziak J., Huyghebaert B. (eds.). Conf. Proc., V International Scientific Symposium: "Farm Machinery and Process Management in Sustainable Agriculture", University of Life Science, Lublin, 23-24 Nov. 2011, 127-130. Stuczyński T., Łopatka A., Faber A., Czaban P., Kowalik M., Koza P., Korzeniowska- Pucułek R., Siebielec G. (2008): Prognoza wykorzystania przestrzeni rolniczej dla produkcji roślin na cele energetyczne. Studia i raporty IUNG-PIB, 11, 25-42. Zaliwski A.S. (2009): System wspomagania decyzji w wyborze odmiany kukurydzy (ZeaSoft). Studia i Raporty IUNG-PIB, 16, 83-96. Zaliwski A.S, Faber A., Pudełko R., Biberacher M., Gadocha S., Borzecka-Walker M. (2011): Biomass supply for co-firing in main-network power stations in Poland (unpublished results). Zaliwski A.S., Hołaj J. (2005): ZEASOFT System wspomagania decyzji w uprawie kukurydzy. Inżynieria Rolnicza, 14(74), 385 393. Zaliwski A., Hołaj J. (2006): Modelowanie technologii produkcji kukurydzy na ziarno w aspekcie efektywności ekonomicznej. Inżynieria Rolnicza, 6(81), 407-414. Zaliwski A., Zaorski T., Hołaj J. (1995): Program Agroefekt. [Dyskietka 1.44]. Wersja 3.0, Puławy, IUNG. Dyrektywa Unijna (2009): Directive 2009/28/EC. Official Journal L 140/16-62. Polityka energetyczna Polski do 2030 roku (2009). Ministerstwo Gospodarki, Warszawa, [on-line], [dostęp 21.06.2012], Dostępny w Internecie: http://www.mg.gov.pl/bezpieczenstwo+ gospodarcze/energetyka/polityka+energetyczna 354

Modele gospodarstwa... FARM MODELS AS DATA SOURCE FOR THE OPTIMIZATION OF ENERGY CROP PRODUCTION IN THE COMMUNE Abstract. In order to meet the requirements of the EU Directive 2009/28/EC the acreage of perennial energy crops in Poland will have to increase to approximately 1 mln ha in 2020. An analysis of penetration of energy crops into the agricultural space can be conducted by the method of simulation, considering their competition with other crops expressed in terms of profitability of production. The scope of such a simulation would have to take into account all the potential biomass producers from the focus area. Because of the problem of obtaining the detailed empirical data, especially in case of large focus areas, it was suggested that they should be replaced with the data generated by agricultural farm models, which as input parameters would use available statistical data. The objective of the paper was to present a method of building such farm models. This method assumes that a farm model can be assembled from production technology models, described as a collection of mathematical functions determining the output parameters of technologies. A way of constructing the function determining the course of the "labour input" parameter of the production technology model of energetic willow was presented applying the results of the calculation of this parameter based on operation sheets for three plantations of the area of 1, 2.5 and 10 ha. Key words: farm model, "DSS bioenergy" system, scale of the commune, energy crop, willow, cultivation technology, economics of production Adres do korespondencji: Andrzej Zaliwski; e-mail: andrzej.zaliwski@iung.pulawy.pl Zakład Agrometeorologii i Zastosowań Informatyki Instytut Uprawy Nawożenia i Gleboznawstwa - Państwowy Instytut Badawczy ul. Czartoryskich 8 24-100 Puławy 355