MATERIAŁY CERAMICZNE

Podobne dokumenty
Materiały ceramiczne. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MATERIAŁY CERAMICZNE

MATERIAŁY SUPERTWARDE

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

MATERIAŁY SPIEKANE (SPIEKI)

FRIALIT -DEGUSSIT Ceramika Tlenkowa. Materiały, zastosowanie i właściwości

FRIALIT -DEGUSSIT Ceramika Tlenkowa

FRIALIT -DEGUSSIT Ceramika Tlenkowa. Materiały, zastosowanie i właściwości

FRIALIT -DEGUSSIT Ceramika Tlenkowa. Materiały, zastosowanie i właściwości

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Wybrane przykłady zastosowania materiałów ceramicznych Prof. dr hab. Krzysztof Szamałek Sekretarz naukowy ICiMB

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

MATERIAŁY SPIEKANE I CERAMICZNE

dr hab. inż. Agnieszka Gubernat tel ;

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe)

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Właściwości kryształów

LABORATORIUM NAUKI O MATERIAŁACH

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

IV Ogólnopolska Konferencja Naukowo-Techniczna Problematyka funkcjonowania i rozwoju branży metalowej w Polsce

FRIATEC AG. Ceramics Division FRIDURIT FRIALIT-DEGUSSIT

Drewno. Zalety: Wady:

Polikryształy Polikryształy. Polikryształy podział

Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.

30/01/2018. Wykład V: Polikryształy II. Treść wykładu (część II): Krystalizacja ze stopu. Podstawowe metody otrzymywania polikryształów

Wykład V: Polikryształy II. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

σ c wytrzymałość mechaniczna, tzn. krytyczna wartość naprężenia, zapoczątkowująca pękanie

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Na co zwrócić uwagę przy zakupie płytek ceramicznych?

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Kompozyty Ceramiczne. Materiały Kompozytowe. kompozyty. ziarniste. strukturalne. z włóknami

Analiza strukturalna materiałów Ćwiczenie 4

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Collection Perla. Sprawdź aktualny stan magazynu. Więcej informacji o Spiekach Kwarcowych na stronie

Peter Schramm pracuje w dziale technicznym FRIATEC AG, oddział ceramiki technicznej.

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 20/10

Continental Trade Sp. z o.o

PODSTAWY INŻYNIERII MATERIAŁOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

Metale nieżelazne - miedź i jej stopy

KLIWOŚCI WYZNACZANIE NASIĄKLIWO. eu dział laboratoria. Więcej na: Robert Gabor, Krzysztof Klepacz

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 687

Nowoczesne materiały konstrukcyjne : wybrane zagadnienia / Wojciech Kucharczyk, Andrzej Mazurkiewicz, Wojciech śurowski. wyd. 3. Radom, cop.

MATERIAŁY KOMPOZYTOWE

dr inż. Anna Zielińska-Jurek Katedra Technologii Chemicznej pok. 026 Ch.A., tel

Definicja CERAMIKA BUDOWLANA. Właściwości materiałów ceramicznych. Rys historyczny

CERAMIKA, POLIMERY, KOMPOZYTY

RZECZPOSPOLITAPOLSKA (12)OPIS PATENTOWY (19)PL (11) (13) B1

Samopropagująca synteza spaleniowa

Skład chemiczny wybranych stopów niklu do obróbki plastycznej

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali

Czym się różni ciecz od ciała stałego?

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów

Towaroznawstwo artykułów przemysłowych

CERAMIKA. Historia Metody wytwarzania Właściwości ceramiki Rodzaje ceramiki: przykłady i zastosowania. Co to właściwie jest ceramika?

Poliamid (Ertalon, Tarnamid)

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Narzędzia precyzyjne i półprzewodnikowe. Producent światowej klasy narzędzi diamentowych i CBN

PRELIMINARY BROCHURE CORRAX. A stainless precipitation hardening steel

Pracownia Technologiczna - Wydział Zarządzania PW

Spis treści. Właściwości fizyczne. Wodorki berylowców. Berylowce

ANNEX ZAŁĄCZNIK. decyzji delegowanej Komisji

Stale niestopowe jakościowe Stale niestopowe specjalne

PIERWIASTKI STOPOWE W STALACH

Niemetaliczne materiały konstrukcyjne pochodzenia mineralnego

LASEROWA OBRÓBKA MATERIAŁÓW

Schemat obróbki nożami tokarskimi. Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost. ISO 2 NNZc-d Nóż wygięty ISO 243 ISO 514.

Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel

MATERIAŁY KONSTRUKCYJNE

Technologie Materiałów Budowlanych Wykład 8. Szkło budowlane

INNOWACYJNE KIERUNKI ROZWOJU PRZEMYSŁU CERAMICZNEGO. Prof. dr hab. inż. Jerzy Lis Prorektor Akademii Górniczo Hutniczej im. St. Staszica w Krakowie

Opracowała: mgr inż. Ewelina Nowak

Możliwości zastosowania fluidalnych popiołów lotnych do produkcji ABK

SZKLIWA, SZKLIWIENIE

III Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 23 czerwiec 2014

Frialit -Degussit Ceramika tlenkowa Wałki kruszące

iglidur J Na najwyższych i na najniższych obrotach

KONSTRUKCYJNE MATERIAŁY KOMPOZYTOWE PRZEZNACZONE DO WYSOKOOBCIĄŻONYCH WĘZŁÓW TARCIA

Ćwiczenie nr 4. Metalurgia proszków. Pod pojęciem materiały spiekane rozumie się materiały, które wytwarza się metodami metalurgii proszków.

9.CERAMIKA, SZKŁO. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)

Technologie Ceramicznych. Technologia porcelany (kamionki) Technologia porcelany. Technologia Materiałów Ceramicznych Wykład VI

BADANIA WYTRZYMAŁOŚCIOWE CERAMIKA A STOPY DENTYSTYCZNE W KONTEKŚCIE WYBRANYCH RODZAJÓW STOPÓW PROTETYCZNYCH

MIKA I MIKANIT. Właściwości i produkty

Transkrypt:

MATERIAŁY CERAMICZNE

Materiały ceramiczne (ceramika) - to nieograniczone związki metali z tlenem, azotem, węglem, borem i innymi pierwiastkami, w których atomy połączone są wiązaniem jonowym i kowalencyjnym. Pierwszym materiałem ceramicznym użytym przez człowieka był kamień, który mógł spełniać szereg funkcji z uwagi na takie właściwości jak duża twardość i wytrzymałość, łatwość formowania wyrobów, odporność na działanie temperatury i czynników chemicznych. Obecnie, przemysł ceramiczny wytwarza wiele wyrobów o zróżnicowanych właściwościach i zastosowaniu, z uwagi na liczne możliwości chemicznych połączeń metali z niemetalami.

Struktura ceramik Sieć przestrzenna kryształów bardziej złożona niż metali Kryształy lub ciała niekrystaliczne Wiązania od czysto jonowych do czysto kowalencyjnych Komórka elementarna sieci Al 2 O 3 Schemat rozmieszczenia jonów w szkle sodowo-krzemianowym

Klasyczny proces produkcji wyrobów ceramicznych polega na dokładnym wymieszaniu odpowiednich surowców, formowaniu, wysuszeniu i wypaleniu (jednokrotnym lub wielokrotnym). Proces wypalania odbywa się w piecach, w temperaturze od około 1200 C (ceramika tradycyjna) do 2000 C (ceramika inżynierska). W wysokich temperaturach zachodzi zjawisko spiekania, w wyniku którego otrzymuje się czerep o pożądanej gęstości, znacznie mniejszej od gęstości surowca, ze względu na usunięcie wody podczas obróbki termicznej. Niektóre wyroby ceramiczne po wypaleniu pokrywa się szkliwem.

Cechy charakterystyczne materiałów ceramicznych: wysoka temperatura topnienia niski ciężar właściwy wysoka twardość duża kruchość wysoka wytrzymałość na ściskanie niska wytrzymałość na rozciąganie niska rozszerzalność cieplna niska przewodność ciepła i elektryczności dobra żaroodporność i żarowytrzymałość dobra odporność na korozję

Klasyfikacja współczesnej ceramiki w zależności od przeznaczenia i składu

Ceramika tradycyjna -materiały uformowane z drobnych ziaren mineralnych i wypalone w wysokiej temperaturze (~1250 1450 C), w której zachodzą nieodwracalne reakcje. Surowce są pozyskiwane z natury i łatwo dostępne: glinka iłowa, kaolin, glina zwykła i garncarska, margiel ilasty, łupek ilasty, kwarc, mika itd. Formuje się je w stanie plastycznym (mokrym), a następnie suszy i spieka. Ceramika inżynierska (specjalna) materiały wytworzone w wyniku spiekania w wysokiej temperaturze (~ 1500 2100 C) bardzo czystych, syntetycznych, drobnoziarnistych proszków (wielkość ziaren poniżej 1µm), bez udziału fazy ciekłej, z takich związków jak: tlenki, węgliki, azotki, borki, fosforki i złożone związki na ich osnowie.

Charakterystyka wyrobów ceramiki tradycyjnej Wyroby garncarskie, dachówki, cegły budowlane i żaroodporne są wykonywane z gliny (uwodnionego krzemianu glinu), która jest formowana w stanie plastycznym (na mokro), a następnie suszona i spiekana. Po spieczeniu składa się ona z faz krystalicznych (głównie krzemianów) spojonych fazą szklistą, której głównym składnikiem jest krzemionka. Faza szklista tworzy się i topi w czasie spiekania gliny, rozpływając się wokół powierzchni faz krystalicznych, łącząc je ze sobą. Cechą charakterystyczną wyrobów garncarskich jest szorstka i matowa powierzchnia. Ceramika ta jest porowata i mocno nasiąka wodą. W celu ograniczenia nasiąkliwości wodą, wypalone elementy pokrywa się szkliwem i ponowne wypala. W wyniku tej obróbki struktura ceramiki pozostaje niezmieniona, a zamknięte zostają jej pory powierzchniowe. W ten sposób wytwarza się wyroby kaflarskie, garncarskie i większość fajansów.

Porcelana rodzaj białej, przeświecającej ceramiki wysokiej jakości, wynaleziony w Chinach w VII w. Porcelana jest wytwarzana z mieszanki glinki kaolinowej (skała zawierająca głównie kaolinit, minerał z gromady krzemianów), ze skaleniem (glinokrzemian metali alkalicznych) i kwarcem (krzemionka/sio 2 ) poprzez wypalanie uformowanych wyrobów w temperaturze od 920-980 C (wyroby nieszkliwione, tzw. biskwit) aż do 1280-1460 C (wyroby szkliwione). Charakteryzuje się niską nasiąkliwością, bardzo dobrymi właściwościami dielektrycznymi, dużą wytrzymałością na ściskanie, wysoką odpornością na działanie czynników chemicznych i nieprzepuszczalnością dla cieczy i gazów. W technice używana jako materiał na nisko- i wysokonapięciowe izolatory i sprzęt laboratoryjny, oraz jako wyroby gospodarstwa domowego. Rozróżnia się ceramikę twardą (o składzie: 40-60% kaolinu, 20-30% skalenia, 20-30% kwarcu) o wytrzymałości na ściskanie około 500 N/mm 2, stosowaną w technice i w gospodarstwie domowym i miękką (25-40% kaolinu, 25-40% skalenia, 30-45% kwarcu), stosowaną w gospodarstwie domowym.

Kamionka wyroby otrzymywane z glin z dodatkiem szamotu (przepalonej i zmielonej gliny ogniotrwałej*) lub piasku kwarcowego, wypalane w temperaturze od + 1230 do + 1300 C. Surowe wyroby przed wypalaniem pokrywa się solą kuchenną NaCl lub innymi sproszkowanymi minerałami. Dzięki temu w trakcie wypalania tworzy się na powierzchni wyrobu szklista polewa glazura o różnych barwach. Wyroby kamionkowe są nieprzeźroczyste. Charakteryzują się dużą wytrzymałością mechaniczną, odpornością na działanie kwasów, i minimalną nasiąkliwością wodną. Kamionka używana jest więc do produkcji aparatury kwasoodpornej, płytek posadzkowych, kształtek i płytek ściennych stosowanych w pomieszczeniach sanitarnych, zakładach przemysłu spożywczego itp.; rur i kształtek kanalizacyjnych. Z kamionki wykonuje się także naczynia. * Gliny ogniotrwałe, inaczej iły kaolinitowe, powstają w wyniku rozmycia wychodni skaolinizowanych skał i wtórnego osadzenia się kaolinitu, co powoduje oddzielenie się ziaren kwarcu i znaczne zwiększenie ogniotrwałości surowca.

Szkło według normy ASTM-162 (1983), szkło zdefiniowane jest jako nieorganiczny materiał, który został schłodzony do stanu stałego bez krystalizacji. Szkło nie posiada uporządkowania dalekiego zasięgu. Sposób rozmieszczenia podstawowych elementów sieci przestrzennej szkła przypomina rozmieszczenie molekuł w cieczy. Molekuły te nie posiadają możliwości przemieszczania się, albo możliwość ta jest ekstremalnie mała z powodu bardzo dużej lepkości. Z punktu widzenia termodynamiki, szkło jest materiałem nietrwałym stan energetyczny sieci amorficznej jest wyższy od jej krystalicznego odpowiednika. Z tego względu, każde szkło wykazuje dążność do krystalizacji, jednak nie dochodzi do niej nawet po bardzo długim czasie, z powodu lepkości, takiej samej jak w krystalicznych ciałach stałych.

Szkła posiadają w swojej budowie uporządkowanie bliskiego zasięgu jest to jedna z przyczyn dużego wzrostu lepkości stopu w miarę zmniejszania się temperatury. Zjawisko to w efekcie prowadzi do tego, że materiał zastyga zamrażając" w sobie strukturę cieczy. Innymi słowy opory wewnętrzne są tak duże, że uniemożliwiają krystalizację. Żeby do niej doszło stop musi przebywać w warunkach, w których z termodynamicznego punktu widzenia krystalizacja jest możliwa i dodatkowo kiedy lepkość stopu jest na tyle mała, aby ruchy molekuł były możliwe. Zdolność do krystalizacji (wzrostu kryształów) maleje tutaj wraz ze spadkiem temperatury. W przypadku metali, aby uzyskać stan szklisty konieczne jest bardzo szybkie chłodzenie (mowa tu o szybkościach studzenia rzędu ok. 10 6 C/s), które uniemożliwi utworzenie krystalicznej struktury.

Surowcem do produkcji tradycyjnego szkła jest piasek kwarcowy oraz dodatki, topniki: węglan sodu (Na 2 CO 3 ) i węglan wapnia (CaCO 3 ), tlenki boru i ołowiu (B 2 O 3,PbO) oraz pigmenty, którymi są zazwyczaj tlenki metali przejściowych (kadm, mangan i inne). Surowce są mieszane, topione w temperaturze 1200 1300 C, po czym formowane w wyroby przed pełnym skrzepnięciem. Po dodaniu do masy szklanej odpowiednich tlenków metali można otrzymać szkło barwne.

Zalety szkła: odporność na czynniki atmosferyczne, odporność na działanie kwasów (z wyjątkiem fluorowodorowego) i zasad, odporność na działanie wysokich temperatur, przezroczystość, niepalność, łatwość kształtowania w stanie plastycznym, nieprzenikalność dla cieczy i gazów, mała przewodność cieplna i elektryczna. Wady szkła: kruchość, wrażliwość na naprężenia cieplne.

Przykłady zastosowań szkła Budowlane: płaskie walcowane i ciągnione, zespolone, hartowane, barwne nieprzejrzyste, piankowe - zwykle sodowo-wapniowo-potasowokrzemianowe. Jenajskie (boro-krzemianowe): wynalezione w Jenie, cechujące się stosunkowo niską temperaturą topnienia (ok. 400 C), łatwością formowania i wysoką odpornością na nagłe zmiany temperatury. Jest ono stosowane w sprzęcie laboratoryjnym i kuchennym. Ołowiowe (kryształowe): przepuszczalne dla ultrafioletu, o bardzo wysokim współczynniku załamania światła. Jest bezbarwne lub o odcieniu żółtym lub fioletowym. Używane do produkcji wyrobów dekoracyjnych, soczewek optycznych, przezroczystych osłon przed promieniowaniem X (o grubości równoważnej zwykle 2 lub 5 mm Pb) i promieniowaniem γ. Szkło optyczne: stosowane na potrzeby optyki. Ważne cechy takiego szkła to m.in. niski współczynnik załamania światła i niska gęstość. Szkło sodowe:cao, SiO 2, Na 2 O, stosowane w życiu codziennym, wykonane są z niego np. opakowania szklane, szyby, szklanki.

Ceramika inżynierska podział ze względu na surowce: 1. Ceramika tlenkowa Tlenek aluminium Al 2 O 3 (duża twardość, odporność na korozję także w wysokich temperaturach, izolator) Dwutlenek cyrkonu ZrO 2 (wysoka wytrzymałość, niska przewodność cieplna; bariera cieplna na elementach turbin gazowych) Tytanian baru BaTiO 3 (wysoka stała dielektryczna; używany w kondensatorach) Tlenek berylu BeO (wysoka przewodność cieplna) Ferryty otrzymywane z naturalnego węglanu magnezu (właściwości ferromagnetyczne) 2. Ceramika beztlenkowa: SiC, SiN, BN Bardzo wysoka twardość (BN największa 4700 HV) Wysoka wytrzymałość i odporność na korozję, także w wysokich temperaturach Niski współczynnik tarcia, wysoka odporność na ścieranie Wysoka przewodność cieplna (SiC) Mała przewodność cieplna (BN)

Wyroby ceramiki inżynierskiej wytwarza się techniką metalurgii proszków z drobnoziarnistych (wielkość ziaren poniżej 1µm) proszków ceramicznych. Etapy procesu: Wytworzenie proszku Przygotowanie proszku (mielenie, czyszczenie, suszenie, mieszanie różnych proszków, itp.) Formowanie proszku na zimno (np. prasowanie) Spiekanie poniżej temperatury topnienia ~1500 2100 C Obróbka końcowa, np. obróbka cieplna, skrawanie

Ceramika inżynierska przykłady zastosowań Obszar Typowe wyroby Materiały elektronika energetyka budowa silników obróbka materiałów inżynieria chemiczna optyka medycyna kondensatory, izolatory, nadprzewodniki, rdzenie cewek, magnesy, osłony tłoki, tuleje cylindrowe, komory wstępnego spalania, zespoły popychaczy zaworów, wirniki i łożyska turbosprężarek noże tokarskie, narzędzia cierne, pasty polerskie, elementy mielące Czujniki, naczynia, filtry, złoża katalizatorów materiały do laserów, fotoelementy, szkła optyczne, implanty tytaniany, Al 2 O 3, ferryty, BeO, węgliki, azotki Ceramika tlenkowa, węgliki, azotki węgliki, azotki Porcelana, ceramika tlenkowa,węgliki, azotki ceramika tlenkowa, szkła

Cermetale Cermetale są spiekami wysokotopliwych i twardych węglików, tlenków i borków z metalami. Łączą one cechy metali (dobre wł. mech. w temperaturze otoczenia, odporność na udary cieplne) z cechami ceramiki (niewielka zmiana właściwości mechanicznych pod wpływem temperatury, żarowytrzymałość, odporność na korozję. Przykłady zastosowania cermetali: spieki metalowo-diamentowe, w których ziarna diamentu znajdują się w osnowie stopów metali na bazie Fe, Cu, Mo, W lub węglików WC, TiC. Okładziny metalowo-diamentowe ściernic lub narzędzi stalowych umożliwiają obróbkę najtwardszych materiałów - węglików spiekanych, ściernic korundowych. Okładziny są też stosowane na korony narzędzi wiertniczych w górnictwie i pracach geologicznych. spieki proszków Cu i Fe, z dodatkami Sn, Pb, grafitu oraz SiO 2 i Al 2 O 3 materiały cierne, stosowane są na nakładki hamulców i tarcz sprzęgieł ciernych. spieki z proszku metalu i Al 2 O 3 oraz węglików i borków materiały żarowytrzymałe, stosowane są na elementy silników odrzutowych.