STEROWANIE MAŁEJ ELEKTROWNI WIATROWEJ NA MAKSIMUM MOCY CZYNNEJ

Podobne dokumenty
MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014

Przekształtnikowe układy elektrowni wiatrowych z generatorami PMSG

Wybrane zagadnienia modelowania elektrowni wiatrowej

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

BADANIA MODELOWE OGNIW SŁONECZNYCH

MMB Drives 40 Elektrownie wiatrowe

Zdjęcia Elektrowni w Skawinie wykonał Marek Sanok

WPŁYW ADDYTYWNYCH ZAKŁÓCEŃ TYPU SINUSOIDALNEGO SYGNAŁÓW WEJŚCIOWYCH REGULATORÓW PI W UKŁADZIE FOC Z SILNIKIEM INDUKCYJNYM NA PRĘDKOŚĆ OBROTOWĄ

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

KOMPENSACJA MOCY BIERNEJ W ELEKTROWNIACH WIATROWYCH Z MASZYNAMI INDUKCYJNYMI

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

SYSTEM DO REJESTRACJI DANYCH POMIAROWYCH Z ELEKTROWNI WIATROWEJ

Rozszerzony konspekt preskryptu do przedmiotu Sterowanie napędów i serwonapędów elektrycznych

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA

ZWARTE PRĘTY ROZRUCHOWE W SILNIKU SYNCHRONICZNYM Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

HYBRYDOWY SYSTEM ZASILANIA W ENERGIĘ ELEKTRYCZNĄ DOMKÓW REKREACYJNYCH

MEW Z WYSOKOSPRAWNYM GENERATOREM SYNCHRONICZNYM WZBUDZANYM MAGNESAMI TRWAŁYMI

Układy regulacji i pomiaru napięcia zmiennego.

Jednofazowy przekształtnik DC/AC dedykowany do współpracy z odnawialnymi źródłami energii

MMB Drives 40 Elektrownie wiatrowe

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012

ZASTOSOWANIE MASZYNY INDUKCYJNEJ PIERŚCIENIOWEJ W ELEKTROWNI WIATROWEJ

MAKSYMALNIE SPRAWNA TURBINA AEROCOPTER 450

Symulator turbiny wiatrowej na bazie silnika prądu stałego

MODEL SYMULACYJNY I EKSPERYMENTALNY PRZEKSZTAŁTNIKA SOLARNEGO WSPÓŁPRACUJĄCEGO Z SIECIĄ ENERGETYCZNĄ

MAŁA PRZYDOMOWA ELEKTROWNIA WIATROWA SWIND 3200

LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ

ANALIZA PRACY MAŁEJ ELEKTROWNI WIATROWEJ PRACA AUTONOMICZNA ORAZ PRZY PODŁĄCZENIU DO SIECI ELEKTROENERGETYCZNEJ

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

Przetwornica SEPIC. Single-Ended Primary Inductance Converter z przełączanym jednym końcem cewki pierwotnej Zalety. Wady

SYNTEZA PRZEKSZTAŁTNIKOWEGO UKŁADU STEROWANIA AUTONOMICZNYM GENERATOREM INDUKCYJNYM. CZĘŚĆ II BADANIA SYMULACYJNE

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

ZMODYFIKOWANY SZEROKOPASMOWY AKTYWNY KOMPENSATOR RÓWNOLEGŁY

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

KONCEPCJA NEURONOWEGO DETEKTORA USZKODZEŃ CZUJNIKA PRĘDKOŚCI DLA UKŁADÓW NAPĘDOWYCH Z SILNIKIEM INDUKCYJNYM STEROWANYCH METODĄ POLOWO ZORIENTOWANĄ

PRZEKSZTAŁTNIK ENERGOELEKTRONICZNY PEŁNIĄCY FUNKCJĘ SPRZĘGU MIĘDZY SIECIĄ ENERGETYCZNĄ A ZESPOŁEM PANELI FOTOWOLTAICZNYCH PV

WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO

ELEKTROWNIA WIATROWA Z MASZYNĄ DWUSTRONNIE ZASILANĄ BADANIA SYMULACYJNE

SYMULACJA PRACY TURBIN WIATROWYCH PRZY WYMUSZENIU RZECZYWISTYM DLA RÓŻNYCH METOD MODELOWANIA CHARAKTERYSTYKI MOCY

BADANIA ELEKTROWNI WIATROWEJ Z GENERATOREM ASYNCHRONICZNYM DWUSTRONNIE ZASILANYM

PL B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

Prototyp energoelektronicznego przekształtnika solarnego współpracującego z siecią energetyczną prądu przemiennego

BEZCZUJNIKOWY I ENERGOOSZCZĘDNY NAPĘD WENTYLATORA Z SILNIKIEM PMSM

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM

Regulacja dwupołożeniowa (dwustawna)

STEROWANIE CZĘSTOTLIWOŚCIOWE SILNIKÓW INDUKCYJNYCH SYNCHRONIZOWANYCH

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

Rozwój sterowania prędkością silnika indukcyjnego trójfazowego

Przegląd koncepcji maszyn wzbudzanych hybrydowo do zastosowania w napędzie samochodów

Mała przydomowa ELEKTROWNIA WIATROWA SWIND 6000

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny

ELASTYCZNY SYSTEM PRZETWARZANIA I PRZEKSZTAŁCANIA ENERGII MAŁEJ MOCY DLA MASOWEGO WYKORZYSTANIA W GOSPODARCE ENERGETYCZNEJ KRAJU

XIV International PhD Workshop OWD 2012, October 2012 BADANIE WPŁYWU ŹRÓDEŁ WIATROWYCH NA REGULACJE CZĘSTOTLIWOŚCI I MOCY

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

PORÓWNANIE MAŁYCH ELEKTROWNI WIATROWYCH ZNAJDUJĄCYCH SIĘ NA TERENIE POLITECHNIKI BIAŁOSTOCKIEJ

AEROCOPTER 450 posiada deklarację zgodności z dyrektywami Unii Europejskiej i został oznakowany znakiem CE.

BADANIA MODELU WIELOPOZIOMOWEGO FALOWNIKA PRĄDU

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

Wykład 2 z podstaw energetyki wiatrowej

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

PORÓWNANIE SILNIKA INDUKCYJNEGO ORAZ SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM - BADANIA EKSPERYMENTALNE

BADANIE POBORU ENERGII W UKŁADZIE ZAPŁONOWYM STOSOWANYM W JEDNOSTKACH BEZZAŁOGOWYCH

Modelowanie samowzbudnych prądnic indukcyjnych

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

Zastosowanie modelu matematycznego synchronicznej maszyny elektrycznej z magnesami trwałymi do obliczeń energetycznych pojazdów drogowych 4

METODA ODTWARZANIA POŁOŻENIA WAŁU SSMT DLA PRĘDKOŚCI ZEROWEJ W OBECNOŚCI ZAKŁÓCEŃ

ZASTOSOWANIE PRZETWORNICY BUCK BOOST W UKŁADZIE ZAPŁONOWYM CDI

WYBRANE ZAGADNIENIA STEROWANIA UKŁADEM MIKROPROCESOROWYM DSP-FPGA PRĄDNIC PRZEKSZTAŁTNIKOWYCH PRACUJĄCYCH RÓWNOLEGLE W SIECI OKRĘTOWEJ

ZARZĄDZANIE PRZETWARZANIEM ENERGII W MAŁEJ ELEKTROWNI WODNEJ O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ

Mała elektrownia wodna z wysokosprawnym generatorem synchronicznym wzbudzanym magnesami trwałymi

MODELOWANIE SAMOWZBUDNYCH PRĄDNIC INDUKCYJNYCH

WIELOPOZIOMOWY FALOWNIK PRĄDU

PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Ćwiczenie 3 Falownik

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

Badanie charakterystyk turbiny wiatrowej w funkcji prędkości wiatru

CYFROWY REGULATOR PRĄDU DIOD LED STEROWANY MIKROKONTROLEREM AVR *)

MAŁE ELEKTROWNIE WODNE JAKO ŹRÓDŁO ENERGII ODNAWIALNEJ

PRĄDNICA TRÓJFAZOWA MAŁEJ MOCY WZBUDZANA MAGNESAMI TRWAŁYMI

BADANIA SPRZĘGU ENERGOELEKTRONICZNEGO Z SIECIĄ ELEKTROENERGETYCZNĄ

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

ZASTOSOWANIE PROGRAMU SMATH W ANALIZIE STANÓW USTALONYCH W OBWODACH ELEKTRYCZNYCH

Gdansk Possesse, France Tel (0)

ENERGOELEKTRONICZNY SPRZĘG ALTERNATYWNYCH ŹRÓDEŁ ENERGII Z SIECIĄ ELEKTROENERGETYCZNĄ

Transkrypt:

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Adam GULCZYŃSKI* STEROWANIE MAŁEJ ELEKTROWNI WIATROWEJ NA MAKSIMUM MOCY CZYNNEJ Przedstawiono sposób sterowania pozwalający na optymalizowanie generowanej mocy w małej elektrowni wiatrowej. Zaprezentowany sposób sterowania opiera się na pomiarze wielkości prądów i napięć w układzie przekształtnikowym, obliczaniu mocy czynnej oraz cyklicznej zmianie obciążenia, przez co nie istnieje konieczność stosowania układów pomiaru prędkości wiatru oraz prędkości obrotowej generatora. Pokazano wybrane wyniki badań symulacyjnych dla układu elektrowni pracującej ze zmienną prędkością obrotową, z generatorem z magnesami trwałymi oraz z pełnowymiarowym układem przekształtnikowym. Porównano pracę elektrowni w zamkniętymi i otwartym układzie sterowania. 1. WSTĘP Pomimo niedoskonałości elektrowni wiatrowych, a właściwie stochastycznej natury wiatru, liczba elektrowni wiatrowych podłączonych do sieci lub pracujących indywidualnie rośnie. Ponadto prowadzone są badania nad sposobami gromadzenia energii takimi jak: akumulatory litowo-jonowe, koła zamachowe i systemy magazynowania za pomocą sprężonego powietrza [1]. Z wyżej wymienionych powodów modelowanie, projektowanie nowych rozwiązań układów oraz algorytmów sterowania dla elektrowni wiatrowych jest istotnym zagadnieniem. Przedmiotem badań jest mała elektrownia wiatrowa składająca się z turbiny wiatrowej, generatora z magnesami trwałymi oraz pełnowymiarowego układu przekształtnikowego. Układ przekształtnikowy stanowią: prostownik niesterowany, przetwornica podwyższająca napięcie oraz falownik napięcia. Celem jest opracowanie prostego sposobu sterowania elektrowni wiatrowej na maksimum mocy czynnej. Zaproponowany sposób opiera się na cyklicznej zmianie obciążenia elektrowni poprzez zmianę napięcia referencyjnego falownika, na pomiarze wielkości napięć i prądów na wyjściu przetwornicy, obliczaniu mocy czynnej oraz analizie mocy w zależności od obciążenia. Wówczas możliwe jest określenie punktu pracy w jakim znajduje się elektrownia oraz określenie dalszej zmiany obciążenia, tak aby pozyskiwać maksymalną moc z wiatru. Zaproponowany sposób nie wymaga stosowania stosunkowo drogich i skomplikowanych układów pomiaru prędkości wiatru oraz prędkości obrotowej turbiny. * Politechnika Poznańska.

242 Adam Gulczyński 2. CHARAKTERYSTYKA UKŁADU Rysunek 1 przedstawia schemat badanego układu elektrowni wiatrowej. Rozważono turbinę wiatrową bez regulacji kata natarcia łopat, sprzężoną bezpośrednio z generatorem, bez przekładni. Układ taki charakteryzuje się prostą budową części mechanicznej. Nieobecność przekładni zmniejsza awaryjność elektrowni oraz zwiększa sprawność, jednak pociąga za sobą konieczność zastosowania generatora wolnoobrotowego. TURBINA WIATROWA GENERATOR PMSG PROSTOWNIK PRZETWORNICA FALOWNIK ŚIEĆ REGULACJA NAPIĘCIA U d I d U ref OPTYMALIZACJA MOCY CZYNNEJ Rys. 1. Schemat blokowy badanego układu małej elektrowni wiatrowej Dla małych elektrowni wiatrowych dobrym rozwiązaniem generatora wolnoobrotowego jest generator synchroniczny z magnesami trwałymi (PMSG). Konstrukcja generatora PMSG zapewnia długotrwałą pracę bez wymiany i konserwacji podzespołów. Nowe wysokoenergetyczne magnesy umożliwiają budowę generatorów synchronicznych o wysokiej sprawności. Ponadto generator PMSG nie wymaga dodatkowego obwodu wzbudzenia. Warunkiem koniecznym na pozyskiwanie maksymalnej mocy z wiatru jest praca elektrowni ze zmienną prędkością obrotową wirnika. Jednak generatory z magnesami trwałymi nie dają stałego napięcia w przypadku gdy zmienia się prędkość oborowa lub prąd obciążenia. Dlatego w układzie z generatorem PMSG pracującym przy zmiennej prędkości obrotowej konieczne jest zastosowanie układu energoelektronicznego. Układ energoelektroniczny przekształca cała energię elektryczną o zmiennej częstotliwości i amplitudzie na energię o parametrach dopasowanych do sieci lub odbiornika. Układ przekształtnikowy składa się z niesterowanego układu prostownikowego, przetwornicy podnoszącej napięcie oraz falownika napięcia. Powyższe rozwiązanie umożliwia oddawanie energii do sieci również w przypadku występowania niskich prędkości wiatru. Gdy prędkość wiatru jest niska, turbina obraca się wolno, na zaciskach generatora uzyskujemy niską wartość napięcia. Wówczas przetwornica

Sterowanie małej elektrowni wiatrowej na maksimum mocy czynnej 243 podwyższa napięcie do takiej wartości, przy której możliwe jest oddawanie energii do sieci lub odbiornika. Odpowiednie sterowanie falownikiem umożliwia oddawanie do sieci zadanej lub optymalnej wartości mocy czynnej. W układzie występują dwie pętle sprzężenia zwrotnego. Pierwsza pęta reguluje wartość napięcia na kondensatorze wyjściowym szyny napięcia stałego, poprzez zmianę współczynnika wypełnienia modulatora przetwornicy. Napięcie stałe utrzymywane jest na takim poziomie, przy którym istnieje możliwość oddawania energii do obciążenia. Zastosowanie regulatora PI zapewnia odpowiednią jakość regulacji napięcia. W drugiej pętli zaimplementowano proponowany algorytm optymalizowania mocy. Polega on na cyklicznej zmianie obciążenia elektrowni. Dla stałej prędkości wiatru obciążenie oscyluje wokół pewnej wartości, przy której elektrownia oddaje moc maksymalną. Dzięki temu elektrownia znajduje się pobliżu optymalnego punktu pracy. Zmianę obciążenia dokonuje się poprzez zmianę przebiegu napięcia referencyjnego falownika. 2.1. Model turbiny Moc mechaniczna P m turbiny jest mniejsza od mocy wiatru P w ponieważ prędkość wiatru za turbiną nie jest zerowa. Stosunek mocy uzyskiwanej przez turbinę do mocy wiatru określa współczynnik wykorzystywania energii wiatru c p. Współczynnik c p zależy od względnej prędkości końca łopat oraz, w przypadku gdy istnieje możliwość regulacji łopat, od kąta natarcia łopat. Znając charakterystykę współczynnika mocy c p, moc mechaniczną uzyskiwaną z wiatru przez turbinę wyrazić można wzorem [2]: 1 2 3 Pm Pw c p ( ) R v c p ( ), (1) 2 gdzie: ρ gęstość powietrza, v prędkość powietrza, R promień wirnika, λ względna prędkość końca łopat. Przy czym względną prędkość końca łopat określamy w zależności od prędkość obrotowej wału turbiny ω m, promienia wirnika oraz prędkości wiatru, w następujący sposób: m R. (2) v Współczynnik wykorzystania energii wiatru dla przykładowej turbiny wiatrowej zgodnie z [3] możemy aproksymować wzorem: 3 c p ( ) 0,4 sin( ). (3) 15 Maksymalna teoretyczna wartość c p wynosi 0,593, jednak w praktyce zmienia się w zakresie od 0,1 do 0,4 [3]. Charakterystykę współczynnika mocy w funkcji względnej prędkości końca łopat, określonego zgodnie z wzorem (3) przedstawia

244 Adam Gulczyński rysunek 2. Gdy względna prędkość końca łopat równa się wartości optymalnej turbina znajduje się w optymalnym punkcie pracy, współczynnik mocy c p jest największy. 0.4 0.3 C p 0.2 0.1 optymalne 4 6 8 10 12 14 16 Rys. 2. Charakterystyki współczynnika mocy określonego zgodnie z wzorem (x) Charakterystyki mocy turbiny w funkcji prędkości obrotowej dla współczynnika mocy określonego zgodnie z wzorem (3) przedstawia rysunek 3. 14000 12000 V=10m/s P m 10000 8000 6000 V=8.5m/s 4000 2000 0 V=7m/s V=5.5m/s V=4m/s optymalne 10 15 20 25 30 35 Rys. 3. Charakterystyki mocy turbiny w funkcji prędkości obrotowej dla różnych prędkości wiatru Dla danej prędkości wiatru istnieje dokładnie jedna wartość prędkości obrotowej turbiny, przy której z wiatru pozyskiwana zostaje moc maksymalna. Zadaniem algorytmu sterującego jest utrzymywanie elektrowni w pobliżu optymalnego punktu pracy. 2.2. Algorytm sterowania Klasyczny algorytm optymalizujący generowaną moc reguluje względną prędkość końca łopat na wartość optymalną. Układ taki wymaga znajomości modelu turbiny, aktualnej prędkości wiatru oraz prędkości obrotowej. Jednak nie m

Sterowanie małej elektrowni wiatrowej na maksimum mocy czynnej 245 zawsze posiadamy dokładne parametry modelu. Co więcej układy pomiaru prędkości wiatru oraz prędkości obrotowej komplikują budowę oraz podrażają koszt elektrowni [4]. Alternatywą jest poniżej przedstawiony algorytm sterowania. Prezentowany algorytm (rysunek 4) opiera się na ciągłej zmianie obciążenia. Przy czym wielkości wejściowe wpływają na ścisłą monotoniczność obciążenia. Wielkościami wejściowymi są napięcie (U d ) oraz natężenie prądu (I d ) na wyjściu przetwornicy podwyższającej napięcie. Zmiana obciążenia dokonywana jest poprzez zmianę napięcia referencyjnego falownika. W wyniku działania algorytmu obciążenie oscyluje wokół pewnej wartości, przy której elektrownia oddaje moc maksymalną. START P[k-1]=P[k] ΔP[k-1]=ΔP[k] Pomiar U d [k], I d [k] P[k]=U d [k]i d [k] ΔP[k]=P[k]-P[k-1] FLAGA=1 TAK ΔP[k]>=0 NIE FLAGA=1 lub ΔP[k]<ΔP[k-1] NIE TAK U ref [k]= U ref [k-1]+δu ref FLAGA=0 ΔU ref =-ΔU ref Rys. 4. Algorytm sterowania na maksimum mocy czynnej W przypadku gdy moc rośnie lub nie zmienia się oznacza to odpowiedni kierunek zmiany obciążenia, elektrownia zbliża się do optymalnego punktu pracy. Jednak po pewnym czasie stała zmiana obciążenia powoduje oddalenie się od optimum. Zatem gdy wcześniej moc rosła a po chwili zaczęła maleć oznacza to, że należy zmienić kierunek zmian obciążenia. Wówczas moc zacznie ponownie rosnąć, osiągnie wartość maksymalną i po pewnej chwili zacznie maleć, cykl się powtórzy. Układ będzie pracował w otoczeniu punktu optymalnego. Dla pewnych warunków układ jest niestabilny. Mianowicie gdy prędkość wiatru maleje a obciążenie rośnie, moc zaczyna gwałtownie maleć. Przypadek ten można wykryć poprzez porównywanie aktualnego oraz poprzedniego przyrostu mocy. Występuje on gdy moc maleje oraz aktualny przyrost jest mniejszy od poprzedniego. Wówczas wystarczy zmienić kierunek zmiany obciążenia. 3. WYNIKI BADAŃ SYMULACYJNYCH Badania przeprowadzono w środowisku Matlab/Simulink. Badania wykonano dla zamkniętego układu regulacji z zaimplementowanym algorytmem optymalizującym oddawaną moc oraz dla układu otwartego z stałą wartością napięcia referencyjnego falownika czyli stałą wartością obciążenia (rysunek 5).

246 Adam Gulczyński v[m/s] P[kW] 10 5 10 8 6 4 2 0.4 c p 0.35 0.3 280 U ref [V] 260 240 układ zamkniety zamknięty układ otwarty odwarty Rys. 5. Wyniki badań symulacyjnych dla zamkniętego oraz otwartego układu regulacji Elektrownia pracująca w zamkniętym układzie regulacji wykazuje większą efektywność w zmiennych warunkach wiatrowych, co szczególnie wynika z przebiegu współczynnika mocy c p na rysunku 5. 0.401 c p 0.4 0.399 1 1.5 2 2.5 3 3.5 4 4.5 5 265 U ref [V] 264 263 262 1 1.5 2 2.5 3 3.5 4 4.5 5 Rys. 6. Wyniki badań symulacyjnych dla stałej prędkości wiatru dla układu zamkniętego Rysunek 6 przedstawia wyniki symulacji dla stałej prędkości wiatru. Współczynnik mocy c p oraz wartość referencyjna napięcia falownika, a przez co obciążenie elektrowni, oscylują wokół optymalnych wartości. 4. PODSUMOWANIE Prezentowany algorytm może być atrakcyjnym rozwiązaniem dla małych elektrowni wiatrowych ze względu na to, że nie wymaga pomiaru prędkości wiatru, pomiaru prędkości obrotowej oraz znajomości modelu turbiny. Można go

Sterowanie małej elektrowni wiatrowej na maksimum mocy czynnej 247 zaimplementować w istniejącym układzie mikroprocesorowym który steruje elektrownią wiatrową. Ponadto wielkościami wejściowymi są sygnały łatwo dostępne i mierzalne w układzie przekształtnikowym. Proponowany algorytm umożliwia wzrost generowanej energii elektrycznej. W trakcie badań symulacyjnych dokonano porównania pracy elektrowni w układzie otwartym i zamkniętym. Praca w układzie zamkniętym z zaproponowanym sposobem sterowania wykazała większą efektywność. Z badań symulacyjnych wynika również, że algorytm sprawdza się dla różnych prędkości wiatru. Wadą prezentowanego rozwiązania jest stosunkowo długi czas regulacji. LITERATURA [1] Electricity Storage Technologies: Market Penetration and Roadmapping, http://www.frost.com [2] Burton T., Sharpe D., Jenkins N., Wind Energy Handbook. England 2001. [3] Mosaud Barakati S., Handbook of Renewable Energy Technology. Wind Turbine Systems: History, Structure and Dynamic Model. Chapter 2. World Scientific Publishing 2011. [4] Tan K., Islam S., Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors, IEEE Transactions on Energy Conversion, Volume 19, Number 2, June 2004. OUTPUT POWER MAXIMIZATION CONTROL TECHNIQUE OF SMALL WIND TURBINE This text focuses on technique to get maximum power of wind energy conversion system. It uses the measurements of power converter current and voltage, power calculation and permanent load change without using sensors for wind and rotor speed. Simulation results of the wind turbine with permanent magnet synchronous generator and fully rated power electronics converter controlled by proposed algorithm was presented. Obtained results was compared with simulation results of system with constant load. The presented control allows the wind turbine system operate with optimal power.