THE EFFECT OF POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) ON MORPHOLOGY AND MECHANICAL PROPERTIES OF POLYOXYMETHYLENE (POM)

Podobne dokumenty
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

PHYSICAL PROPERTIES OF POLYOXYMETHYLENE COMPOSITE WITH QUARTZ SAND AFTER UV AGEING

MECHANICAL AND THERMAL PROPERTIES OF PET/POSS NANOCOMPOSITES

THE PROPERTIES OF REINFORCED POLYPROPYLENE COMPOSITES HAVING DIFFERENT DISTRIBUTED FIBERS

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

WPŁYW PARAMETRÓW OBRÓBKI CIEPLNEJ TAŚM ZE STALI X6CR17 NA ICH WŁAŚCIWOŚCI MECHANICZNE I STRUKTURĘ

Dr inż. Paulina Indyka

Modyfikacja poliamidu 6 i polioksymetylenu nanocząstkami [3-(2-aminoetylo)amino]propylo-heptaizobutylo-polisilseskwioksanu

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

ROZPRAWY NR 128. Stanis³aw Mroziñski

ZASTOSOWANIE TECHNOLOGII REP-RAP DO WYTWARZANIA FUNKCJONALNYCH STRUKTUR Z PLA

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

The synthesis and investigation of structure properties relationship in polyoxymethylene (POM) / montmorillonite (MMT) nanocomposites.

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

WPŁYW PRZETWÓRSTWA ORAZ WYGRZEWANIA NA WŁAŚCIWOŚCI DYNAMICZNE KOMPOZYTU POLIAMIDU 6,6 Z WŁÓKNEM SZKLANYM

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Lecture 18 Review for Exam 1

European Crime Prevention Award (ECPA) Annex I - new version 2014

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

WYKAZ DOROBKU NAUKOWEGO

Akademia Morska w Szczecinie. Wydział Mechaniczny

OCENA MOśLIWOŚCI ZASTOSOWAŃ WULKANICZNEGO TUFU JAKO NAPEŁNIACZA POLIMERÓW TERMOPLASTYCZNYCH

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WŁAŚCIWOŚCI KOMPOZYTÓW POLIMEROWYCH PE + TALK

Development of SOFC technology in IEn OC Cerel

Macromolecular Chemistry

TECHNOLOGIA OTRZYMYWANIA NANOKOMPOZYTÓW POLIAMIDOWO-MONTMORYLONITOWYCH TECHNOLOGY OF PREPARATING POLYAMIDE/MONTMORILLONITE NANOCOMPOSITES

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

INFLUENCE OF REPROCESSING ON FRACTURE AND STRUCTURE OF ABS AND PC/ABS BLENDS

DMTA AND DSC ANALYSES OF COMPOSITE PA 6,6 WITH GLASS FIBRE AFTER DYE ADDITION AND AGEING

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

Post low voltage insulators

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Polymerization of vinyl chloride in the presence of nanofillers effects on the shape and morphology of PVC grains

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Stopy metali nieżelaznych Non-Ferrous Alloys

Auditorium classes. Lectures

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

STUDY OF RESISTANCE TO ABRASIVE WEAR OF MULTICOMPONENT POLYOXYMETHYLENE COMPOSITES

Porównanie zdolności pochłaniania energii kompozytów winyloestrowych z epoksydowymi

WŁAŚCIWOŚCI MECHANICZNE MIESZANIN PET/PETG WYKONYWANYCH TECHNOLOGIĄ WTRYSKIWANIA Z WYKORZYSTANIEM MIESZALNIKA DYNAMICZNEGO

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

Profil Czasopisma / The Scope of a Journal

Tychy, plan miasta: Skala 1: (Polish Edition)

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Łukasz Reszka Wiceprezes Zarządu

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Has the heat wave frequency or intensity changed in Poland since 1950?

Streszczenie rozprawy doktorskiej

Technologia wytwarzania oraz badania mikrostruktury i właściwości stopów amorficznych i krystalicznych na bazie żelaza

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH


Cracow University of Economics Poland

CHOOSEN PROPERTIES OF MULTIPLE RECYCLED PP/PS BLEND

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

MODIFICATION OF POLYURETHANE VISCOELASTIC FOAMS BY FUNCTIONALIZED POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS)

FOAMING EXTRUSION OF THERMOPLASTIC POLYURETHANE MODIFIED BY POSS NANOFILLERS

Mechanical properties of polypropylene copolymers composites filled with rapeseed straw

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Międzynarodowa aktywność naukowa młodej kadry Wydziału Metali Nieżelaznych AGH na przykładzie współpracy z McMaster University w Kanadzie

Hybrid composites with epoxy resin matrix manufactured with vacuum casting technology (Rapid Communication)

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Knovel Math: Jakość produktu

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Sargent Opens Sonairte Farmers' Market

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

ANALYSIS OF VOLUME CHANGES OF SELECTED CEREAL GROUND GRAIN IN RESULT OF LOADING*

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Dr inż. Paweł Czaja zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

Nanokompozyty POM/POSS struktura i w³aœciwoœci termiczne

Krytyczne czynniki sukcesu w zarządzaniu projektami

WPŁYW CIĘTYCH WŁÓKIEN WĘGLOWYCH NA WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTU NA OSNOWIE STOPU AlSi10Mg

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

IMPACT OF THE RESEARCH CONDITIONS ON THE ACCURACY OF THE DESIGNATION OF HIGH PERFORMANCE CONCRETE STRENGTH PARAMETERS

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

THE IMPACT OF EBA AND ECB POLYMER MODIFICATION OF 50/70 BITUMEN

FREZY PM; END MILLS PM

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

LISTA PUBLIKACJI PAKIETU BADAWCZEGO KCM 1

Patients price acceptance SELECTED FINDINGS

BADANIE ZJAWISKA RELAKSACJI NAPRĘŻEŃ ZACHODZĄCEGO W ASFALTACH DROGOWYCH PODDANYCH ROZCIĄGANIU W NISKIEJ TEMPERATURZE

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

CONTENT STONE OAK ACORN. LEAF Basic. LEAF Slim. LEAF slim Accessories DOVE. SHELL Basic FERN BIRCH. PINE Pendant. PINE Surface ICICLE SUNFLOWER

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

Few-fermion thermometry

Transkrypt:

12: 4 (2012) 232-236 Dorota Czarnecka-Komorowska 1*, Tomasz Sterzynski 1, Hieronim Maciejewski 2,3, Michal Dutkiewicz 2 1 Poznan University of Technology, Faculty of Mechanical Engineering and Management, Institute of Materials Technology, Division of Plastics Processing ul. Piotrowo 3, 60-965 Poznan, Poland 2 Adam Mickiewicz University, Faculty of Chemistry, Department of Organometallic Chemistry, ul. Grunwaldzka 6, 60-780 Poznan, Poland 3 Adam Mickiewicz University Foundation, Poznan Science and Technology Park, ul. Rubiez 46, 61-612 Poznan, Poland *Corresponding author. E-mail: Dorota.Czarnecka-Komorowska@put.poznan.pl Received (Otrzymano) 10.04.2012 THE EFFECT OF POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) ON MORPHOLOGY AND MECHANICAL PROPERTIES OF POLYOXYMETHYLENE (POM) Polyoxymethylene nanocomposites with octakis (dimethylsiloxy, ethyl epoxycyclohexy) octasilsesquioxanes (POSS) were obtained during melt blending. The influence of the POSS nanoparticles on the morphology and mechanical properties of polyoxymethylene (POM) nanocomposites properties was investigated. POM/POSS nanocomposites were produced by means of melt mixing of POM with POSS; with a POSS content of 0.5, and 1 wt.%. The uniaxial elongation test of polyoxymethylene has been performed to determine the influence of POSS on the mechanical properties of the new hybrid material. The dispersion of POSS in the POM nanocomposites was studied by scanning electron microscopy (SEM). According to the mechanical investigation, it was found that the process of polyhedral oligomeric silsesquioxane (POSS) addition leads to an enhancement of both the tensile strength and stiffness, where the most encouraging results were achieved for the POM/POSS nanocomposites with 0.5 wt.% POSS. The SEM studies allowed us to provide direct evidence of better interfacial adhesion between the POSS particles and POM matrix, which may lead to better mechanical properties, specially tensile strength, elongation and stiffness. The obtained polymer composites POM/POSS are an interesting group of materials of construction, showing very good performance. Keywords: polyoxymethylene, polyhedral oligomeric silsesquioxanes (POSS), nanocomposites, morphology, mechanical properties WPŁYW POLISILSESKWIOKSANU (POSS) NA STRUKTURĘ I WŁAŚCIWOŚCI MECHANICZNE POLIOKSYMETYLENU (POM) Nanokompozyty polioksymetylenu z oktakis (dimetylosiloksy, etyloepoksycykloheksylo) oktasilseskwioksanem (POSS) otrzymano w procesie przetwórstwa. Określono wpływ nanocząstek POSS na strukturę i właściwości mechaniczne nanokompozytów na bazie polioksymetylenu (POM). Badaniom poddano kompozyty POM z POSS wytworzone poprzez homogenizację w stanie stopionym, dodawanymi w ilościach 0,5 i 1% wag. W próbie jednoosiowego rozciągania dokonano oceny wpływu POSS na właściwości mechaniczne nowego materiału hybrydowego. Stopień zdyspergowania POSS w matrycy POM określono metodą skaningowej mikroskopii elektronowej (SEM). Na podstawie badań mechanicznych stwierdzono, Ŝe proces modyfikacji polioksymetylenu nanocząstkami POSS prowadzi do poprawy zarówno wytrzymałości na rozciąganie, jak i sztywności, gdzie najbardziej zadowalające wyniki uzyskano dla nanokompozytów POM/POSS z 0,5% wag. zawartością POSS. Badania SEM okazały się bezpośrednim dowodem występowania lepszych oddziaływań międzyfazowych pomiędzy nanocząstkami POSS a matrycą polioksymetylenową, co moŝe prowadzić do poprawy właściwości mechanicznych, w tym w szczególności wytrzymałości na rozciąganie, wydłuŝenie i sztywność. Uzyskane kompozyty polimerowe POM/POSS stanowią interesującą grupę materiałów konstrukcyjnych, wykazujących wyjątkowo korzystne właściwości uŝytkowe. Słowa kluczowe: polioksymetylen, polisilseskwioksan (POSS), nanokompozyty, struktura, właściwości mechaniczne INTRODUCTION Polyoxymethylene (POM) belongs to major thermoplastic engineering materials, commonly used to replace metal or alloy products, due to its high stiffness, corrosion resistance, dimensional stability and processing ability [1, 2]. On the other hand, its low impact toughness, notch sensitivity and especially low heat-resistance displays a certain limit of POM applications in industries such as cams, bearings, springs, gear shafts and gear wheels production. The incorporation of a low quantity of polyhedral oligomeric silsesquioxane (POSS), in the form of a nanoclaster cage into polymeric materials may lead to an improvement of the polymer properties, like temperature and oxidation resistance, surface hardening and reduction in flammability [3, 4].

The effect of polyhedral oligomeric silsesquioxane (POSS) on morphology and mechanical properties of polyoxymethylene (POM) 233 Nowadays, considerable interest is devoted to nanocomposites due to their appealing properties, which may be obtained by additional nanoscaled fillers, including montmorillonite, aluminium oxide, and calcium carbonate, carbon nanotubes (CNTs), carbon nanofibers and silica or titanium oxide [5, 6, 16, 17]. The composites of polyhedral oligomeric silsesquioxane reagents, monomers, and polymers are emerging as a new class of organic-inorganic nanocomposites [7-9]. It is known that the final properties of nanocomposites depend on the particle size and shape, contents and distribution of fillers in the matrix of the polymer and on the adhesion at the interface surface [10, 16, 17]. Silsesquioxanes are compounds with an empirical formula RSiO 1,5, where R is hydrogen and belongs to an organic group [6, 9, 11, 12], which has aroused great interest among researchers in recent years.. Silsesquioxanes may reveal an enclosed ladder or random structures, and partial cage structures or cage structures, as illustrated in Figure 1 [11]. Today POSSs are readily available and can be functionalized with various functional groups such as: epoxy, vinyl, alkyl or methacryloylin in order to achieve interfacial coupling or copolymerization and/or cross linking [11-13]. In certain cases, very low POSS contents - i.e. a few percent, may be sufficient to improve stiffness, strength, dimensional stability and toughness, to enhance barrier resistance and to improve thermal stability as well as halogen-free flame retardancy [5, 6]. The aim of this study is to determine the effect of the octakis (dimethylsiloxy, ethyl epoxycyclohexy) octasilsesquioxane (POSS) nanofiller on the morphology and thermo-mechanical properties of the POM/epoxy POSS nanocomposites. Fig. 1. General cage structure (closed and open) of polyhedral oligomeric silsesquioxanes (POSS) Rys. 1. Ogólna struktura klatkowa polisilseskwioksanu (POSS) [11] MATERIALS AND INVESTGATION METHODS As the matrix of the composite, poly(oxymethylene) (POM), a copolymer Tarnoform 300 (density, ρ = = 1.41 g/cm 3, T m =167 o C) provided by the Nitrogen Works in Tarnow (Poland) was used in our investigations. The POM pellets were characterized by a melt flow index (MFI) of 9 g/10 min, at 190 o C and load of 2.16 kg. Before compounding, the polymer pellets were dried for at least 4 hours, at 120 o C. The POSSs were manufactured by the laboratory at the Faculty of Chemistry at the Adam Mickiewicz University of Poznan [14, 15]. The chemical structure of the octakis (dimethylsiloxy, ethyl epoxycyclohexy) octasilsesquioxane (POSS) [8] used in this work is shown in Figure 2. Fig. 2. Chemical structure of octakis (dimethylsiloxy, ethyl epoxycyclohexy) octasilsesquioxane (POSS) Rys. 2. Budowa chemiczna oktakis(dimetylosiloksy, etyloepoksycykloheksylo)oktasilseskwioksanu (POSS) PREPARATION OF POM/POSS NANOCOMPOSITES The POM/POSS nanocomposites were produced by means of melt mixing POM with POSS; with a POSS content of 0.5, and 1 wt.%. The POSS powder and POM pellets were mixed in a solid state during 15 minutes, followed by melt mixing with a single screw extruder, equipped with a zone of intensive mixing, operating at the temperature of 180 o C. The L/D ratio of the screw was 34 and the rotating speed of the screw was kept at 10 rpm. To achieve a high homogeneity of the composites, the POM/POSS blends were processed twice. The extruded rods were cooled and palletised. Before further processing, the granulates were dried at 120 o C for 4 hours in a Shini - CD 5 dryer (Shini Plastics Technologies, Inc., Taiwan). Dumbbell-shaped samples were produced (sample geometry according to ISO 527-2, type 1A). The injection molding machine ENGEL ES 80/20 HLS with a Twente Mixing Ring was used. All the samples were produced in accordance to the processing conditions recommended by the producer (nozzle temperature 190 o C, mould temperature 60 o C, injection pressure 76 MPa). The mechanical properties were determined by means of tensile tests performed with a universal testing machine, Instron model 4481 (Canton, MA, UK), operating at room temperature, with a ν = 50 mm/min crosshead speed, and the stress-strain curves σ = f(ε) were registered. The dispersion of POSS in the POM nanocomposites was studied by scanning electron microscopy (SEM). The fracture surfaces of the tensile loaded specimens, coated with a carbon layer were subjected to

234 D. Czarnecka-Komorowska, T. Sterzynski, H. Maciejewski, M. Dutkiewicz SEM inspection in a Vega Tescan model TS 5135 (TESCAN, Brno, Czech Republic), at an acceleration voltage of 3 kv. RESULTS AND ANALYSIS The uniaxial elongation test of polyoxymethylene has been performed to determine the influence of POSS on the mechanical properties of the new hybrid material. In Figure 3, a comparison of the stress-strain curves of neat POM and nanocomposites of 0.5 and 1 wt.% POSS can be seen. Fig. 5. Elongation at yield of neat POM and POM/POSS composites with different POSS content Rys. 5. WydłuŜenie na granicy plastyczności dla czystego POM i kompozytów POM/POSS z róŝną zawartością POSS Fig. 3. Comparison of stress-strain curves of POM neat and POM/POSS composites with different POSS content Rys. 3. Porównanie krzywych napręŝenie-odkształcenie czystego POM i kompozytów POM/ POSS z róŝną zawartością POSS The mechanical properties of the neat polyoxymethylene (POM) and POM/epoxy-POSS, for e.g. tensile strength, elongation at yield, and Young s modulus were evaluated on the basis of a stress-strain curve, as an average value determined for five samples in each case. The corresponding results are presented in Figures 4, 5 and 6. Fig. 4. Tensile strength of neat POM and POM/POSS composites with different POSS content Rys. 4. NapręŜenie zrywające dla czystego POM i kompozytów POM/POSS z róŝną zawartością POSS Fig. 6. Young s modulus of neat POM and POM/POSS composites with different POSS content Rys. 6. Moduł spręŝystości wzdłuŝnej dla czystego POM i kompozytów POM/ POSS z róŝną zawartością POSS As follows from Figure 4, the tensile strength of POM/POSS nanocomoposites increases continuously with an increasing POSS content up to 1 wt.%, where a tensile strength value of 61.5 MPa was noted, compared to 54 MPa for pure POM (increase of about 14%). A significant increase in stiffness and stress at break observed in nanocomposites may be due to an increase in the degree of crystallinity with an increasing POSS content in the matrix polymer. The highest value of elongation at the yield point of the POM/POSS nanocomposites (Fig. 5) was observed for the addition of 0.5 wt.% POSS (an increase of about 28%). Also a higher value of Young s modulus (about 28%, Fig. 6), comparing to the neat POM, was found, an effect which may be caused by the increased interfacial area in the nanocomposite with the nanofiller. Further, from the results of the mechanical tests, the incorporation of 0.5 wt.% POSS leads to a satisfactory interfacial interaction with POM, where also a homogeneous dispersion of POSS in the POM matrix was observed (Fig. 8). A certain decrease in the elongation at yield, as observed for the POSS content of l wt.%

The effect of polyhedral oligomeric silsesquioxane (POSS) on morphology and mechanical properties of polyoxymethylene (POM) 235 may probably be explained by the stress concentration, due to the agglomeration of POSS particles in the polymeric matrix. In general, it may be stated that the sample of POM/POSS with 0.5 wt.% POSS, reveals better mechanical properties comparing to nonmodified POMs. To determine the microstructure of the nanocomposites, especially the dispersion of polyhedral oligomeric silsesquioxanes (POSS) in the polyoxymethylene matrix, the fracture surfaces of neat POM and POM/POSS nanocomposites were studied by means of SEM, as shown in Figures 7, 8 and 9. and 1 wt.%, are presented. As can be seen on the SEM micrographs, the dispersion of the POSS particles in the polyoxymethylene matrix was homogeneous, only a few so called aggregates appeared with an average dimension less than 5 µm, may be seen in Figure 9. As POSS cage molecules are characterized with a dimension between 1.5 and 3 nm [1], the sub particles can be observed on the micrographs, due to the development of nanospherical aggregates [10]. POM/1 wt.% POSS Neat POM Fig. 7. SEM micrograph of neat polyoxymethylene (POM) Rys. 7. Obraz SEM powierzchni przełomów pierwotnego polioksymetylenu (POM) POM/0.5 wt.% POSS Fig.9. SEM micrograph of POM/POSS composites with 1 wt.% POSS Rys. 9. Obraz SEM powierzchni przełomów nanokompozytów POM/ POSS z 1% zawartością POSS CONCLUSIONS According to the mechanical investigation, it was found that the process of polyhedral oligomeric silsesquioxane (POSS) addition leads to an enhancement of both the tensile strength and Young s modulus, where the most encouraging results were achieved for the POM/POSS nanocomposites with 0.5 wt.% POSS. The SEM studies allowed us to provide direct evidence of better interfacial adhesion between the POSS particles and POM matrix, which may lead to better mechanical properties, especially tensile strength, elongation and stiffness. Further determination of the POM/POSS characteristic properties, such as thermal and rheological properties, will be published. Fig. 8. SEM micrograph of POSS POM/POSS composites with 0.5 wt.% Rys. 8. Obraz SEM powierzchni przełomów nanokompozytów POM/ POSS z 0,5% zawartością POSS In Figure 7, the fractured surfaces of neat polyoxymethylene are shown, and in Figures 8 and 9, the surface of the POM/POSS nanocomposites with 0.5 wt.% Acknowledgements This work entitled, Polyhedral oligomeric silsesquioxane (POSS) as nanofillers and modifications in polymer composites, has been performed thanks to the financial support of the European Union Programme through the European Regional Development Fund under the Innovative Economy Operational Programme 2007-2013, obtained from Project nr. UDA-POIG. 01.03.01-30-173/09, Priority I "Research and development of new technologies", Action 1.3. "Support for

236 D. Czarnecka-Komorowska, T. Sterzynski, H. Maciejewski, M. Dutkiewicz R & D projects for companies, carried out by scientific bodies," Sub-measure 1.3.1 "Development projects". REFERENCES [1] Li G., Wang L., Ni H., Pittman C.U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers (A Review), J. Inorg. An Organometallic Polymer Chem. 2001, 11(3), 123-154. [2] Fina A., Tabuani D., Carniato F., Frache A., Boccaleri E., Camino G., Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation, Thermochimica Acta 2006, 440, 36-42. [3] Sánchez-Soto M., Silvia Illescas S., Milliman H., Schiraldi D.A., Asier Arostegui A., Morphology and thermomechanical properties of melt-mixed polyoxymethylene/polyhedral oligomeric silsesquioxane nanocomposites, Macromolecular Materials and Engineering 2010, 295, 846-858. [4] Baldi F., Bignotti F., Fina A., Tabuani D., Ricco T., Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends, J. Appl. Polym. Sci. 2007, 105, 935-943. [5] Hasegawa N., Okamoto H., Kato M., Preparation and mechanical properties of polypropylene-clay hybrids based on modified polypropylene and organophilic clay, J. Appl. Polym. Sci. 2000, 11, 1918-1922. [6] LeBaron P.C., Wang Z., Pinnavaia T., Polymer-layered silicate nanocomposites: an overview, J. Applied Clay Science 1999, 15, 1-2, 11-29. [7] Hong-Un K., Hyuk Bang Y., Myung Choi S., Morphology and mechanical properties of PET by incorporation of aminepolyhedral oligomeric silsesquioxane, Composites Science and Technology 2008, 68, 13, 2739-2747. [8] Siengchin S., Karger-Kocsis J., Psarra G.C.S, Thomann R., Polyoxymethylene/polyurethane/alumina ternarycomposites: structure, mechanical, thermal and dielectrical properties, J. Appl. Polym. Sci. 2008, 110, 1613-1623. [9] Provatas A., Matisons J.G., Silsesquioxanes: Synthesis and applications, Trends Polymer Science 1997, 5(10), 327-332. [10] Joshi M., Butola S., The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-poss composites, J. Macromol. Sci. Polym. Rev. C44 2004, 389-410. [11] Maitra P., Wunder S.L., Structural characterization of POSS siloxane dimer and trimer, Chem. Mater, 2002, 14, 4494-4497. [12] Mei Wang L., Preparation and characterization of polypropylene/clay nanocomposites, Applied Mechanics and Materials, 2011, 55-57, 1584-1587. [13] Illescas S., Arostegui D., Schiraldi A., Sanchez-Soto M., Velasco J.I., The morphology and properties of melt-mixed polyoxymethylene/monosilanolisobutyl-poss composites, J. Nanosci. Nanotechnology 2001, 23, 457-467. [14] Maciejewski H., Szubert K., Marciniec B., Technologie otrzymywania funkcjonalizowanych polisiloksanów, Polimery 2009, 10, 706-711. [15] Marciniec B., Maciejewski H., Dutkiewicz M., Karasiewicz J., New fluorocarbofunctional spherosilicates: synthesis and characterization, Organometallics 2011, 30, 2149-2153. [16] Broza G., Piszczek K, Schulte K., Sterzynski T., Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT), Comp. Sci. Tech. 2010, 70, 6, 966-969. [17] Mencel K., Kelar K., Jurkowski B., Influence of shear stress on the structures and properties of polyamide 6/montmorillonite nanocomposites, Polimery 2009, 54, 5, 361-369.