BEZKOLEKTOROWA FLOTACJA WĘGLA KAMIENNEGO W OBECNOŚCI SPIENIACZY

Podobne dokumenty
ROZMIAR I HYDROFOBOWOŚĆ FLOTUJĄCYCH ZIARN ŁUPKA MIEDZIONOŚNEGO W OBECNOŚCI SPIENIACZY

Flotometria łupka miedzionośnego we flotacji pianowej w celce Hallimonda

Flotacja ziarn łupka miedzionośnego i kwarcu w obecności amin

Flotacja łupka miedzionośnego w obecności metyloizobutylokarbinolu jako spieniacza i olejów jako zbieraczy

FLOTOMETRYCZNA HYDROFOBOWOŚĆ ŁUPKA MIEDZIONOŚNEGO

KINETYKA FLOTACJI ŁUPKA MIEDZIONOŚNEGO ZA POMOCĄ ETERU BUTYLO- TRÓJPROPYLENOGLIKOLOWEGO (C 4 P 3 )

KĄT ZWILŻANIA ŁUPKA MIEDZIONOŚNEGO W OBECNOŚCI WYBRANYCH SPIENIACZY

Naturalna flotacja i hydrofobowość łupka miedzionośnego w zależności od ph

Wpływ wybranych spieniaczy na proces wzbogacania łupka miedzionośnego metodą flotacji

Hydrofobowość łupka miedzionośnego w obecności amin

Wpływ rodzaju gazu na flotację łupka miedzionośnego w celce Hallimonda

Porównanie flotacji łupka i chalkozynu prowadzonej w aparacie Hallimonda bez odczynników, w obecności tylko spieniaczy oraz za pomocą heksyloaminy

PORÓWNYWANIE UZYSKÓW ŁUPKA MIEDZIONOŚNEGO FLOTACYJNIE SEPAROWANEGO Z MIESZANINY MODELOWEJ Z KWARCEM W OBECNOŚCI SPIENIACZY

Flotacja łupka miedzionośnego za pomocą spieniaczy i ich mieszanin

WPŁYW PH NA WŁAŚCIWOŚCI ŁUPKA MIEDZIONOŚNEGO

FLOTACJA PIANOWA ZIARN ŁUPKA I KWARCU W CELCE HALLIMONDA

Flotacja łupka miedzionośnego w różnych flotownikach Hallimonda

Flotacja łupka miedzionośnego w obecności wybranych środków spożywczych

Flotacja łupka miedzionośnego w obecności butyloaminy, pentyloaminy i heksyloaminy

Ocena możliwości wydzielania łupka miedzionośnego z odpadów flotacyjnych z bieżącej produkcji KGHM

Flotacja łupka miedzionośnego w wodnych roztworach kolektorów oraz spieniaczy

Kinetyka flokulacji ziarn łupka miedzionośnego w wodzie oraz w roztworze soli

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2019 CZĘŚĆ PRAKTYCZNA

Moc i kineza heksyloaminy we flotacji łupka miedzionośnego

Flotometryczna hydrofobowość łupków miedzionośnych w obecności chlorku sodu

ZIARNA HYDROFILOWE W PRZEMYSŁOWYM PROCESIE FLOTACJI WĘGLI O RÓŻNYM STOPNIU UWĘGLENIA

Wpływ temperatury na flotację łupka w obecności wybranych spieniaczy

BADANIA LABORATORYJNE FLOTACJI WĘGLA W OBECNOŚCI ODCZYNNIKA RFK X. 1. Wprowadzenie. Marek Lenartowicz*, Beata Grynkiewicz-Bylina*

WPŁYW ZMIAN ZAGĘSZCZENIA MĘTÓW FLOTACYJNYCH WĘGLA NA ILOŚĆ WODY W PRODUKTACH PIANOWYCH**

Próba wzbogacenia łupka miedziowego za pomocą separatora elektrycznego

WYNIESIENIE MECHANICZNE ZIAREN PODDANYCH FLOTACJI WYŁĄCZNIE SPIENIACZEM

Flotacja mechaniczna łupka miedzionośnego we flotowniku Hallimonda w roztworach soli podwyższających i obniżających napięcie powierzchniowe wody

Flotacja łupka miedzionośnego w obecności spieniacza i polifosforanu sodu lub krzemianu sodu

BADANIA PROCESU FLOTACJI WIELOSTRUMIENIOWEJ WĘGLA** 1. Wprowadzenie. Jolanta Marciniak-Kowalska*, Edyta Wójcik-Osip*

Wpływ mieszanych spieniaczy na flotację łupka miedzionośnego

POLITECHNIKA GDAŃSKA

Wydział Inżynierii Mechanicznej i Informatyki, Politechnika Częstochowska, Częstochowa **

Flotacja łupka miedzionośnego w roztworach wodorosiarczku sodu, tiomocznika oraz tiomocznika w mieszaninie z metyloizobutylokarbinolem

Flotacja łupka miedzionośnego w obecności spieniacza i związków glebowych

NATURALNA HYDROFOBOWOŚĆ FLUORYTU W WODZIE W ZALEŻNOŚCI OD ph

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

*KGHM Polska Miedz S.A. Oddział Zakłady Wzbogacania Rud, Polkowice, **Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, Wrocław

Wpływ amin krótkołańcuchowych na flotację łupka miedzionośnego

PRZERÓBKA KOPALIN I ODPADÓW PODSTAWY MINERALURGII. Wprowadzenie

Flotacja łupka miedzionośnego w obecności spieniacza, zbieracza oraz depresora w postaci dekstryny

Flotacja łupka miedzionośnego w zależności od ph w wodzie technologicznej

ZAKŁAD PRZERÓBKI KOPALIN I ODPADÓW Wydział Geoinżynierii, Górnictwa i Geologii ul. Na Grobli 15, Wrocław

Aglomeracja olejowa łupka miedzionośnego i próba jego aglomeracji sferycznej w obecności kwasu oleinowego zmieszanego z heptanem

Prędkość opadania ziarn łupka w roztworach surfaktantów i flokulantów przy różnym ph

FLOTOWALNOŚĆ MUŁÓW WĘGLOWYCH JAKO FUNKCJA KRYTYCZNEJ ENERGII POWIERZCHNIOWEJ ZWILŻANIA WĘGLA

Flotacja próżniowa łupka miedzionośnego

OKREŚLENIE WPŁYWU PRĘDKOŚCI PĘCHERZYKÓW POWIETRZA NA WYNIKI FLOTACJI WĘGLA** 1. Wprowadzenie. Ewa Małysa*, Anna Iwańska*

DENSYMETRIA ŁUPKA MIEDZIOWEGO

Powtarzalność flotacji łupka miedzionośnego w maszynce laboratoryjnej w obecności oktyloaminy

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

Spieniaczowa flotacja łupka miedzionośnego po jego traktowaniu silnymi substancjami utleniającymi i redukcyjnymi

SKŁAD ZIARNOWY ŁUPKA MIEDZIONOŚNEGO W WYNIKU ROZDRABNIANIA CHEMICZNEGO

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

Wielowymiarowa analiza statystyczna wyników wzbogacania rudy miedzi w ZWR Polkowice

Krytyczne stężenie koalescencji potencjalnych spieniaczy do flotacji łupka miedzionośnego

Punkt zerowego ładunku łupka miedzionośnego w obecności spieniaczy

PROBLEMY WYBORU KRZYWEJ WZBOGACANIA DO ANALIZY WYNIKÓW FLOTACJI

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

Kinetyka laboratoryjnej flotacji rudy miedzi z ZWR Polkowice po mieleniu w obecności mielników o różnym składzie chemicznym

Kinetyka laboratoryjnej flotacji rudy miedzi z ZWR Polkowice po mieleniu w obecności mielników o różnym składzie chemicznym

SYMULACJA EFEKTÓW PRACY UKŁADÓW TECHNOLOGICZNYCH PRZERÓBKI RUD MIEDZI Z WYKORZYSTANIEM KRYTERIÓW TECHNOLOGICZNYCH I EKONOMICZNYCH**

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

Flotacja w zasolonych wodach technologiczne ułatwienie czy środowiskowy problem

Potencjał dzeta łupka miedzionośnego w wodnych roztworach kolektorów oraz spieniaczy

I. Technologie przeróbki surowców mineralnych

Wpływ minerałów ilastych na spieniaczową flotację łupka miedzionośnego

WPŁYW DROBNEGO MIELENIA NA FLOTACJĘ KRAJOWYCH RUD MIEDZI

Opis efektów kształcenia dla modułu zajęć

Badania wpływu gęstości zawiesiny flotacyjnej oraz prędkości obrotowej wirnika na wzbogacalność urobku w KGHM Polska Miedź S.A.

ANALIZA MOŻLIWOŚCI PROGNOZOWANIA WYNIKÓW WZBOGACANIA POLSKICH RUD MIEDZI UWZGLĘDNIAJĄCEGO STOSOWANĄ TECHNOLOGIĘ

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2016 CZĘŚĆ PRAKTYCZNA

Wpływ flokulacji drobnoziarnistej frakcji łupka miedzionośnego na jego flotację w celce Hallimonda

K02 Instrukcja wykonania ćwiczenia

Jerzy SABLIK 1) Streszczenie. Summary

OCENA EFEKTYWNOŚCI WZBOGACANIA WĘGLA ENERGETYCZNEGO W CYKLONACH WZBOGACAJĄCYCH Z RECYRKULACJĄ PRODUKTU PRZEJŚCIOWEGO

MATEMATYCZNE ASPEKTY OPISU I OCENY WZBOGACALNOŚCI RUD MIEDZI. 1. Wstęp. Tadeusz Tumidajski*, Daniel Saramak*, Tomasz Niedoba*

Wpływ zawartości węgla organicznego na hydrofobowość łupka miedzionośnego

KATEDRA TECHNIKI WODNO-MUŁOWEJ I UTYLIZACJI ODPADÓW INSTRUKCJA DO LABORATORIUM Z UNIESZKODLIWIANIA ODPADÓW PRZEMYSŁOWYCH FLOTACJA

Parametry wytrzymałościowe łupka miedzionośnego

WPŁYW GĘSTOŚCI SUROWCA NA BILANSOWANIE PRODUKTÓW KLASYFIKACJI HYDRAULICZNEJ W HYDROCYKLONACH W OPARCIU O WYNIKI LASEROWYCH ANALIZ UZIARNIENIA**

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

KRYTYCZNE NAPIĘCIE POWIERZCHNIOWE ZWILŻANIA RÓŻNYCH TYPÓW WĘGLA WZBUDZONE ODCZYNNIKAMI STOSOWANYMI W ANALIZIE GĘSTOŚCIOWEJ I FLOTACJI

Opis efektów kształcenia dla modułu zajęć

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Marek LENARTOWICZ 1) Summary. Streszczenie

PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza

K1. KONDUKTOMETRYCZNE MIARECZKOWANIE STRĄCENIOWE I KOMPLEKSOMETRYCZNE

I. Technologie przeróbki surowców mineralnych

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l

Próba zastosowania wybranych biosurfaktantów do flotacji rudy miedzi zawierającej łupek miedzionośny

EFEKTY WZBOGACANIA WĘGLA ENERGETYCZNEGO W DWÓCH RÓWNOLEGŁYCH OSADZARKACH**

Transkrypt:

III Polski Kongres Górniczy, Mineralurgia i wykorzystanie surowców mineralnych, Drzymała J., Kowalczuk P.B. (red.), 14-16 września 215, Wrocław, 52-6 BEZKOLEKTOROWA FLOTACJA WĘGLA KAMIENNEGO W OBECNOŚCI SPIENIACZY Mikołaj Janicki, Łukasz Bartkowicz, Bartosz Zakręcki, Przemysław B. Kowalczuk Politechnika Wrocławska, Wybrzeże Wyspiańskiego 27, 5-37 Wrocław, przemyslaw.kowalczuk@pwr.edu.pl Słowa kluczowe: flotacja, selektywność, węgiel, spieniacz Streszczenie W pracy omówiono wpływ typu i dawki (mocy) spieniaczy (α-terpineol i C 1P 2) na bezkolektorową flotację naturalnie hydrofobowego węgla kamiennego. Wykazano, że moc spieniacza wpływa na maksymalny wychód koncentratu i maksymalny rozmiar flotujących ziarn. Selektywność procesu F przedstawiono za pomocą krzywej wzbogacania Fuerstenaua obrazującej zależności uzysku substancji palnej w koncentracie od uzysku popiołu w odpadzie. Otrzymane wyniki wskazują, że niezależnie od typu i mocy spieniacza selektywnośc procesu F maleje wraz ze wzrostem wielkości flotujących ziarn. Największą selektywność obserwuje się dla ziarn drobnych, podczas gdy ziarna grube nie ulegają wzbogacaniu w bezkolektorowej flotacji węgla kamiennego. Wstęp Flotacja jest fizykochemicznym procesem powszechnie stosowanym do wzbogacania rud, surowców i innych materiałów. Główną cechą wykorzystywaną do separacji substancji jest różnica w ich właściwościach powierzchniowych. Właściwości te, wynikające ze stanu energetycznego powierzchni, mogą być modyfikowane przy użyciu różnych reagentów chemicznych, zwanych odczynnikami flotacyjnymi. Wśród odczynników stosowanych w procesie flotacji wymienić można kolektory, które adsorbując się na powierzchni ciała stałego zwiększają jego hydrofobowość (Drzymała, 21) oraz spieniacze, zadaniem których jest wytworzenie stabilnej piany flotacyjnej, zapobieganie koalescencji pęcherzyków gazowych oraz podniesienie skuteczności procesu (Cho i Laskowski, 22). Wiele naturalnie hydrofobowych ciał stałych posiada naturalną flotowalność i ulega flotacji bez użycia kolektorów. Proces taki nazywa się flotacją bezkolektorową i może być prowadzony jako proces bezpianowy i pianowy (w obecności spieniaczy). Mechanizm naturalnej i bezkolektorowej flotacji minerałów siarczkowych i substancji węglowych, w tym węgli kamiennych i łupków miedzionośnych o wysokich zawartościach węgla organicznego, został opisany przez wielu autorów (Małysa i in., 1987; Lekki, 1997; Drzymala, 21; Ozdemir, 213; Kowalczuk i in., 215). Dotychczasowe badania wskazują, że obecność spieniaczy we flotacji bezkolektorowej, poprzez zerwanie cienkiej warstwy cieczy pomiędzy ziarenkiem a pęcherzykiem gazowym i odkrycie tak zwanej naturalnej hydrofobowości flotowanych substancji, wpływa na kinetykę procesu. Niewiele jest jednak prac pokazujących wpływ mocy (dawki) spieniaczy na selektywność bezkolektorowej flotacji węgli kamiennych http://dx.doi.org/1.5277/mineralurgia151

skumulowana zawartość ziarn, % Bezkolektorowa flotacja węgla kamiennego w obecności spieniaczy 53 w odniesieniu do rozmiaru flotujących ziarn, zawartości popiołu oraz substancji palnej. Zależności te zostały zbadane i opisane w tej pracy. Metodyka Eksperymenty flotacyjne węgla kamiennego o gęstości 1,55 g/cm 3 przeprowadzono w laboratoryjnej maszynce flotacyjnej typu mechanicznego Denver, w celce o pojemności 1,5 dm 3. Nadawę w ilości 3 g o określonym składzie ziarnowym (rys. 1) wraz z wodą wodociągową umieszczano w celce flotacyjnej i mieszano przez 1 minutę bez odczynników flotacyjnych i dostępu powietrza. Flotację przeprowadzono w obecności dwóch spieniaczy (α-terpineol C 1H 18O, masa molowa 154,25 g/mol i C 1P 2 C 1H 3O(C 3H 6O) 2H, masa molowa 148,2 g/mol), każdy przy trzech dawkach stężenia (7,5, 15 i 3 mg/dm 3, co odpowiada 37,5, 75 i 15 g odczynnika na Mg suchej masy). Czas mieszania zawiesiny flotacyjnej w obecności spieniacza wynosił 1 minutę. Po tym czasie otwierano zawór powietrza i rozpoczęto ręczne zbieranie piany flotacyjnej. Wszystkie eksperymenty flotacyjne prowadzono w temperaturze pokojowej, przy stałym przepływie powietrza (4 dm 3 /h), przy stałych obrotach wirnika (8 obr./min) i naturalnym ph (7-8) zawiesiny. Całkowity czas zbierania produktów pianowych wynosił 15 minut dla α-terpineolu o stężeniu 3 mg/dm 3 oraz 12 minut dla pozostałych eksperymentów. Wszystkie produkty flotacji suszono przez 48 godzin w temperaturze 9 C, a następnie przesiano na siedem wąskich klas ziarnowych (+5, 3-5, 2-3, 1-2, 71-1, 41-71, -41 µm). Dodatkowo w produktach otrzymanych w wyniki flotacji odczynnikami spieniającymi o stężeniach 15 i 3 mg/dm 3 oznaczono zawartość popiołu λ p oraz substancji palnej λ L. Do oznaczenia zawartości popiołu użyto pieca muflowego, wagi analitycznej, tygli porcelanowych oraz moździerza. Tygle zostały wcześniej wyparzone do stałej masy i umieszczone w eksykatorze. Z każdej próbki węgla odważono na zważonym wcześniej tyglu naważkę o masie 1 g z dokładnością do,1 g. Próbki o uziarnieniu większym od,1 mm dodatkowo domielono w moździerzu. Piec muflowy rozgrzano do temperatury około 2 C, a następnie umieszczano w nim tygle z naważonym węglem. Od momentu osiągnięcia przez piec temperatury 8 C próbki pozostawiono na 2 h w temperaturze 8 C. Następnie tygle umieszczono w eksykatorze. Po osiągnięciu temperatury pokojowej tygle zważono na wadze analitycznej w celu określenia zawartości popiołu λ p oraz substancji palnej λ L. 1 8 d 8 =,6 mm 6 4 d 5 =,28 mm 2 d 1 =,3 mm..2.4.6.8 1. rozmiar ziarn, mm Rysunek 1. Skumulowana krzywa składu ziarnowego nadawy do flotacji

54 M. Janicki, Ł. Bartkowicz, B. Zakręcki, P.B. Kowalczuk Hydrofobowość i maksymalny rozmiar flotujących ziarn Na rysunku 2. przedstawiono kinetykę flotacji węgla kamiennego w wodzie (flotacja bezpianowa) oraz dwóch odczynnikach pianotwórczych o trzech stężeniach każdy (flotacja pianowa). Można zauważyć, że węgiel mimo naturalnej hydrofobowości nie flotuje w samej wodzie. Brak flotacji węgla w wodzie spowodowany jest brakiem piany, która jest niezbędna we flotacji pianowej w urządzeniach mechanicznych. Dodatek niewielkiej ilości spieniacza powoduje zajście flotacji węgla kamiennego. Niezależnie od typu użytego odczynnika spieniającego obserwuje się flotację węgla (rys. 2), a wychód koncentratu rośnie wraz ze stężeniem spieniacza. Użycie większej dawki (mocy) odczynnika przyspiesza proces flotacji. Maksymalny wychód koncentratu wynoszący ponad 5% otrzymuje się zarówno w obecności α-terpineolu jak i C 1P 2 o stężeniu 3 mg/dm 3 (rys. 2). Przedstawione wyniki wskazują, że w procesie flotacji oba użyte odczynniki spieniające działają podobnie. wychód, % 1 8 6 4 α-terpineol 3 α-terpineol 15 α-terpineol 7,5 C1P2 3 C1P2 7,5 woda wychód, % 1 8 6 4 α-terpineol C1P2 2 2 5 1 15 2 czas flotacji, min 1 2 3 4 stężenie, mg/dm 3 Rysunek 2. Wpływ typu i dawki (mg/dm 3 ) spieniacza na flotację naturalnie hydrofobowego węgla kamiennego Na rysunku 3. przedstawiono uzysk węgla kamiennego w różnych klasach ziarnowych w obecności spieniaczy. Z zależności tej można odczytać maksymalny rozmiar flotujących ziarn d max. W pracy tej d max zdefiniowano jako d 5, czyli rozmiar dla którego uzysk wynosi 5% (Chipfunhu i in., 21; Kowalczuk i in., 211). Na podstawie rys. 3 i 4 oraz tabeli 1. można zauważyć, że d max (=d 5) zależy od mocy (dawki) odczynnika pianotwórczego, natomiast nie zależy od typu badanych w tej pracy spieniaczy. Największe wartości d max otrzymuje się dla najwyższych stężeń. Przykładowo dla α-terpineolu o stężeniu 7,5 mg/dm 3 maksymalny rozmiar flotujących ziarn węgla kamiennego wynosi,15 mm, podczas gdy dla 15 i 3 mg/dm 3 d 5 jest równy odpowiednio,24 i,3 mm. Tabela 1. Maksymalny rozmiar flotujących ziarn węgla kamiennego we flotacji pianowej dawka (moc) C1P2 α-terpineol mmol/dm 3 mg/dm 3 g/mg d5, mm d5, mm,,5 7,5 37,5,3,15,1 15 75,25,24,2 3 15,33,3

Bezkolektorowa flotacja węgla kamiennego w obecności spieniaczy 55 1 1 α-terpineol, mg/dm 3 C 1 P 2, mg/dm 3 8 7.5 8 7.5 15 15 uzysk ziarn, % 6 4 3 uzysk ziarn, % 6 4 3 2 2 2 4 6 8 2 4 6 8 rozmiar ziarn, µm rozmiar ziarn, µm Rysunek 3. Uzysk węgla w zależności od wielkości ziarn dla różnych typów i dawek odczynników spieniających.4.3 d 5, mm.2 C1P2 α-terpineol.1 1 2 3 4 stężenie, mg/dm 3 Rysunek 4. Wpływ typu i dawki spieniacza na maksymalny rozmiar flotujących ziarn węgla kamiennego Wpływ dawki spieniacza na bezkolektorową flotację ziarn grubych zaobserwowano również dla łupka miedzionośnego flotowanego różnymi odczynnikami (Witecki i in., 214). Drzymała (214), a następnie Kowalczuk (Witecki i in., 214; Kowalczuk, 215) pokazali, że spieniacze nie zmieniają, a odkrywają tak zwaną naturalną (efektywną) hydrofobowość ciał stałych. Odkrycie naturalnej hydrofobowości, wyrażonej jako flomoteryczny kąt zwilżania, związane jest z zerwaniem filmu wodnego pomiędzy pęcherzykiem a ciałem stałem i utworzeniem stabilnego agregatu ziarno-pęcherzyk. W literaturze istnieje wiele równań wiążących rozmiar i hydrofobowość ziarn. Równania te pozwalają na wyznaczenie tak zwanego flotometrycznego kąta zwilżania. Wśród nich wymienić można np. (1) równanie Scheludki i wsp. (1976) oparte na bilansie dwóch sił (kapilarnej i grawitacji) działających w statycznym układzie sferyczne ziarno na granicy faz ciecz/gaz (teoria kapilarności), (2) model Varbanova i in. (1993) dla uproszczonego modelu prawdopodobieństwa i kinetyki flotacji, czy też (3) równanie Kowalczuka i in. (211) oparte na bilansie sił działających we flotacyjnym

56 M. Janicki, Ł. Bartkowicz, B. Zakręcki, P.B. Kowalczuk układzie sferyczne ziarno-ciecz-gaz oraz właściwościach hydrodynamicznych urządzenia, w którym prowadzony jest proces. Pełne równania opisujące poszczególne modele zostały opisane w cytowanych pracach. Na rysunku 5. przedstawiono zmierzone za pomocą siedzącej kropli oraz obliczone wartości katów zwilżania węgla kamiennego w obecności α-terpineolu i C 1P 2. Można zauważyć, że niezależnie od metody pomiaru i typu badanego odczynnika spieniającego, węgiel w obecności spieniaczy jest materiałem hydrofobowym (kąt zwilżania większy od zera). Najniższe kąty zwilżania zostały wyznaczone z równania teorii kapilarności Scheludki i wsp. (1976). Obliczona zerowa wartość kąta zwilżania w wodzie wynika z braku flotacji węgla, a tym samym brakiem możliwości wyznaczenia maksymalnego rozmiaru flotujących ziarn w wodzie (d 5=). Na podstawie przedstawionych danych eksperymentalnych oraz flotometrycznych (rys. 5) można zauważyć, że spieniacze nie zmieniają kąta zwilżania węgla, a stopniowo, wraz ze wzrostem stężenia, odkrywają jego naturalną hydrofobowość (rys. 5) poprzez zerwanie filmu wodnego pomiędzy ziarnem a pęcherzykiem gazowym. Przedstawione dane potwierdzają teorię Drzymały (214) i Kowalczuka (215). 1 8 C1P2 siedząca kropla C1P2 Scheludko i in. (1976) C1P2 Kowalczuk i in. (211) α-terpineol Scheludko i in. (1976) α-terpineol Kowalczuk i in. (211) kąt zwilżania, 6 4 2 Selektywność procesu 1 2 3 4 stężenie, mg/dm 3 Rysunek 5. Wpływ stężenia spieniacza na efektywną hydrofobowość węgla kamiennego Na rysunku 6. przedstawiono analizę wyników bezkolektorowej flotacji węgla kamiennego w obecności α-terpineolu i C 1P 2 o stężeniach 3 i 15 mg/dm 3. Można zauważyć, że niezależnie od typu i dawki spieniacza uzyski substancji palnej (rys. 6a) i popiołu (rys. 6b) w koncentracie maleją, natomiast uzysk popiołu w odpadzie (rys. 6c) rośnie wraz ze wzrostem rozmiaru ziarn. Najwyższe uzyski substancji palnej i popiołu w koncentracie obserwuje się dla ziarn drobnych, podczas gdy popiół w odpadzie koncentruje się w ziarnach grubych. Na rysunkach 6a-6c wyniki wzbogacania przedstawiono jako zależność jednego wskaźnika wzbogacania (uzysk) od wielkości ziarn, podczas gdy do pełnego opisu procesu separacji niezbędne jest użycie co najmniej dwóch parametrów, zależność których można przedstawić w formie graficznej jako tak zwane krzywe separacji (krzywe wzbogacania). Użycie krzywych wzbogacania i przedstawiających je opisów matematycznych pozwala na dobór optymalnych technologicznie i ekonomicznie wskaźników procesu wzbogacania (Drzymała i Łuszczkiewicz, 211).

uzysk popiołu w koncentracie, % Bezkolektorowa flotacja węgla kamiennego w obecności spieniaczy 57 uzysk substancji palnej w koncentracie, % 1 8 6 4 2 α-terp 3 α-terp 15 C1P2 3 1 8 6 4 2 α-terp 3 α-terp 15 C1P2 3 2 4 6 8 wielkość ziarn, μm (a) 1 2 4 6 8 wielkość ziarn, μm (b) uzysk popiołu w odpadzie, % 8 6 4 2 α-terp 3 α-terp 15 C1P2 3 2 4 6 8 wielkość ziarn, μm (c) Rysunek 6. Wpływ typu i dawki spieniacza (mg/dm 3 ) oraz wielkości ziarn na (a) uzysk substancji palnej w koncentracie, (b) uzysk popiołu w koncentracie i (c) uzysk popiołu w odpadzie Najczęściej stosowaną i opisaną matematycznie krzywą wzbogacania jest krzywa Halbicha, czyli zależności uzysk-zawartość składnika użytecznego w koncentracie (Napier-Munn, 1998; Neethling i Cilliers, 28; Drzymala i wsp. 213). Krzywa ta mimo wielu zalet nie znajduje zastosowania do porównania procesu separacji o zmiennym składzie nadawy ponieważ zawartość składnika w nadawie określa położenie charakterystycznych linii odniesienia braku i idealnej separacji (wzbogacania). Porównanie procesu wzbogacania dla nadawy o zmiennym składzie możliwe jest przy użyciu tak zwanych krzywych alfa-nieczułych, gdzie alfa to zawartość składnika użytecznego w koncentracie (Drzymała i Łuszczkiewicz, 211). Przykładem alfa-nieczułej krzywej wzbogacania jest krzywa uzysk-uzysk, inaczej zwana krzywą wzbogacania Fuerstenaua (Fuerstenaua i in., 1988-1992). Krzywa ta w łatwy sposób pozwala na określenie wpływu wybranych parametrów (np. wielkości ziarn, typ i dawka odczynnika, warunki hydrodynamiczne, itd.) na selektywność procesu.

uzysk substancji palnej w koncentracie, % 58 M. Janicki, Ł. Bartkowicz, B. Zakręcki, P.B. Kowalczuk 1 α-terpineol 3 mg/dm 3 8 F 71-4 = 71 6 4 2 rozmiar ziarn węgla, μm <4 71-4 1-71 2-1 3-2 3-5 2 4 6 8 1 uzysk popiołu w odpadzie, % idealne wzbogacania Rysunek 7. Selektywność bezkolektorowej flotacji węgla kamiennego przedstawiona na krzywej wzbogacania Fuerstenaua dla α-terpineolu 3 mg/dm 3 Na rysunku 7. przedstawiono przykładową krzywą wzbogacania Fuerstenaua dla różnych klas ziarnowych (-4, 4-71, 71-1, 1-2, 2-3, 3-5 µm) flotowanych w obecności α-terpineolu o stężeniu 3 mg/dm 3. Najlepsze dopasowanie krzywej do punktów pomiarowych uzyskano przy użyciu równania z jednym dostosowywanym parametrem c opisanym w pracy Drzymały i Ahmeda (25). Bakalarz i Drzymała (213) wykazali, że parametr c definiuje kinetykę procesu wzbogacania. Na krzywej uzysk-uzysk (rys. 7) zaznaczono przebieg braku, rzeczywistego oraz idealnego wzbogacania. Położenie linii rzeczywistego wzbogacania w stosunku do linii idealnego i braku wzbogacania pozwala na określenie selektywności procesu. Selektywność F może zostać opisana za pomocą równań matematycznych oraz odczytana z krzywej jako punkt przecięcie linii rzeczywistego wzbogacania z diagonalną poprowadzoną od punktów : do 1:1 (Drzymala, 21). Punkt przecięcia nazywany jest również punktem optymalnym wzbogacania (Drzymała i Łuszczkiewicz, 211). Wartość selektywności F może być mniejsza, równa lub większa od 5%. Gdy F<5% następuje zubożanie, F=5% brak wzbogacania (linia rzeczywistego wzbogacania leży na linii braki wzbogacania), F>5% wzbogacanie. Im większa wartość F tym większa selektywność procesu. Na rysunku 7. selektywność F dla poszczególnych klas ziarnowych w obecności α-terpineolu została oznaczona symbolem o. Wyznaczone wartości selektywności F w zależności od wielkości ziarn w procesie bezkolektorowej flotacji węgla kamiennego przedstawiono na rys. 8. Można zauważyć, że niezależnie od typu i dawki spieniacza, im większy rozmiar ziarn tym mniejsza selektywność. Największe wartości selektywności obserwuje się dla ziarn drobnych, podczas gdy ziarna grube nie ulegają wzbogacaniu we flotacji z użyciem wyłącznie spieniaczy.

Bezkolektorowa flotacja węgla kamiennego w obecności spieniaczy 59 1 8 F > 5 wzbogacanie α-terp 3 α-terp 15 C1P2 3 selektywność F 6 4 F = 5 brak wzbogacania 2 F < 5 zubożanie 2 4 6 8 wielkość ziarn, μm Rysunek 8. Selektywność bezkolektorowej flotacji węgla kamiennego w obecności spieniaczy (dawka wyrażona w mg/dm 3 ) Wnioski Węgiel kamienny jako substancja naturalnie hydrofobowa posiada naturalną flotowalność i ulega bezkolektorowej flotacji w obecności spieniaczy. Wykazano, że dawka (moc) spieniacza wpływa na szybkość i selektywność procesu wzbogacania w odniesieniu do rozmiaru flotujących ziarn oraz zawartości popiołu i substancji palnej w produktach flotacji. Największą selektywność procesu zdefiniowaną za pomocą krzywej wzbogacania uzysk-uzysk (Fuerstenaua) zaobserwowano dla ziarn drobnych, podczas gdy ziarna grube nie ulegają wzbogacaniu w bezkolektorowej flotacji węgla kamiennego. Podziękowania Praca częściowo powstała przy wsparciu finansowym Narodowego Centrum Nauki (DEC-212/7/D/ST8/2622). Literatura Bakalarz A., Drzymala J., 213. Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation. Physicochem. Probl. Miner. Process. 49(2), 443 451. Chipfunhu D., Zanin M., Grano S., 21. The dependency of the critical contact angle for flotation on particle size Modelling the limits of fine particle flotation. Miner. Eng. 24(1), 5 57. Cho Y.S., Laskowski J., 22. Effect of flotation frothers on buble size and foam stability. Int. J. Miner. Process. 64, 69 8. Drzymala J., 21. Podstawy mineralurgii. Ofic. Wyd. PWr, Wrocław. Drzymała J., 214. Flotometryczna hydrofobowość łupka miedzionośnego, w: Łupek miedzionośny, Drzymała J., Kowalczuk P.B. (red.), WGGG PWr, Wrocław, 77 82. Drzymała J., Ahmed H.A.M., 25. Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves. Int. J. Miner. Process. 76, 55 65.

6 M. Janicki, Ł. Bartkowicz, B. Zakręcki, P.B. Kowalczuk Drzymała J., Łuszczkiewicz A., 211. Zalety krzywej uzysk-uzysk (Fuerstenaua) do technologicznej analizy i oceny wzbogacania surowców. Przegląd górniczy 7/8, 122 128. Drzymala J., Kowalczuk P.B., Oteng-Peprah M., Foszcz D., Muszer A., Henc T., Luszczkiewicz A., 213. Application of the grade-recovery curve in the batch flotation of Polish copper ore. Miner. Eng. 49, 17 23. Fuerstenau D.W. et al., 1988-1992. Coal surface control for advanced fine coal flotation. Final Report, University of California, Berkeley, Final Report DOE/PC/88878-T13, DE92 15625 for U.S. Dept. of Energy. Prepared by Univ. California, Columbia Univ., Univ. of Utah, and Praxis Engineers Inc. Kowalczuk P.B., 215. Flotation and hydrophobicity of quartz in the presence of hexylamine. Int. J. Miner. Process. 14, 66 71. Kowalczuk P.B., Sahbaz O., Drzymala J., 211. Maximum size of floating particles in different flotation cells. Miner. Eng. 24(8), 766 771. Kowalczuk P.B., Mroczko D., Drzymala J., 215. Influence of frother type and dose on collectorless flotation of copper-bearing shale in a flotation column. Physicochem. Probl. Miner. Process. 51(2), 547 558. Lekki J.J., 1997. Flotometryczna ocean flotowalności naturalnej, bezkolektorowej oraz ksantogenianowej minerałów siarczkowych. Fizykochemiczne Problemy Mineralurgii 31, 175 196. Małysa E., Małysa K., Czarnecki J., 1987. A method of comparison of the frothing and collecting properties of frothers. Colloids and Surfaces 23, 29 39. Napier-Munn T.J., 1998. Analysing plant trials by comparing recovery-grade regression lines. Miner. Eng. 11(1), 949 958. Neethiling S.J., Cilliers J.J., 28. Predicting and correcting grade-recovery curves: theoretical aspects. Int. J. Miner. Process. 89(1 4), 17 22. Ozdemir O., 213. Specific ion effect of chloride salts on collectorless flotation of coal. Physicochem. Probl. Miner. Process. 49(2), 511 524. Scheludko A., Toshev B.V., Bojadijev D.T., 1976. Attachment of particles to a liquid surface (capillary theory of flotation). J. Chem. Soc. Faraday Trans. 72, 2815 2828. Varbanov R., Forssberg E., Hallin M., 1993. On the modelling of the flotation process. Int. J. Miner. Process. 37, 27 43. Witecki, K. Duchnowska M., Kowalczuk P.B., 214. Rozmiar i hydrofobowość flotujących ziarn łupka miedzionośnego w obecności spieniaczy, w: Łupek miedzionośny, Drzymała J., Kowalczuk P.B. (red.), WGGG PWr, Wrocław, 83 9.