WINTERING QUEEN BEES IN MODIFIED MATING NUCLEI



Podobne dokumenty
Has the heat wave frequency or intensity changed in Poland since 1950?

WYDAJNOŚĆ MIODU PSZCZÓŁ LINII KORTÓWKA W OCENIE TERENOWEJ

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Helena Boguta, klasa 8W, rok szkolny 2018/2019

BROOD AND BEE PRODUCTION IN HONEY BEE COLONIES IN THE WARMIA AND MAZURY REGION OF POLAND

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Dr hab. Beata Madras-Majewska, prof. SGGW

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Tychy, plan miasta: Skala 1: (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition)

Effect of cultivar on early yield of parsley grown from the late summer sowing

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)


Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

EFFECT OF INITIAL STRENGTH OF HONEY BEE COLONIES (Apis mellifera) SUPERED IN DIFFERENT WAYS ON MAXIMIZING HONEY PRODUCTION IN NEPAL

EFFECT OF QUEEN CAGING CONDITIONS ON INSEMINATION RESULTS

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)


MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Cracow University of Economics Poland

Patients price acceptance SELECTED FINDINGS

THE DAY TO DAY VARIABILITY OF AIR TEMPERATURE IN CRACOW AND ITS SURROUNDINGS

ACTA UNIVERSITATIS LODZIENSIS FOLIA GEOGRAPHICA PHYSICA 3, Joanna. Wibig PRECIPITATION IN ŁÓDŹ IN THE PERIOD


Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SPITSBERGEN HORNSUND

Krytyczne czynniki sukcesu w zarządzaniu projektami

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

SPITSBERGEN HORNSUND

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

HemoRec in Poland. Summary of bleeding episodes of haemophilia patients with inhibitor recorded in the years 2008 and /2010

Revenue Maximization. Sept. 25, 2018

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

EXPLOITATION OF RAPE FLOW BY BEE COLONIES IN STATIONARY AND MIGRATORY APIARY

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

WYKORZYSTANIE PÓŹNYCH POŻYTKÓW PRZEZ PSZCZOŁY Z LIKWIDOWANYCH RODZIN

Sargent Opens Sonairte Farmers' Market

WYKORZYSTANIE PSZCZÓŁ SELEKCJONOWANYCH NA POZYSKIWANIE DUŻYCH ILOŚCI OBNÓŻY PYŁKOWYCH

SPITSBERGEN HORNSUND

EPS. Erasmus Policy Statement

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Akademia Morska w Szczecinie. Wydział Mechaniczny

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

PRZYDATNOŚĆ RUTYNOWYCH BADAŃ PSZCZÓL Z OSYPU ZIMOWEGO

Test sprawdzający znajomość języka angielskiego

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2


Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

THE INFLUENCE OF SELECTED FACTORS ON THE YIELD OF Allium moly L. BULBS. Jerzy Hetman, Halina Laskowska, Wojciech Durlak

XT001_ INTRODUCTION TO EXIT INTERVIEW PYTANIE NIE JEST ZADAWANE W POLSCE W 2006 ROKU. WCIŚNIJ Ctrl+R BY PRZEJŚĆ DALEJ. 1.

SPITSBERGEN HORNSUND

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Extraclass. Football Men. Season 2009/10 - Autumn round

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

STRATY SPOWODOWANE ZATRUCIAMI PSZCZÓŁ PESTYCYDAMI

Angielski bezpłatne ćwiczenia - gramatyka i słownictwo. Ćwiczenie 8

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Konsorcjum Śląskich Uczelni Publicznych

PRODUKCJA MLECZKA PSZCZELEGO BEZ PRZEKŁADANIA LARW

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Nauka Przyroda Technologie Dział: Zootechnika

A n g i e l s k i. Phrasal Verbs in Situations. Podręcznik z ćwiczeniami. Dorota Guzik Joanna Bruska FRAGMENT

Kuropatwy (P e rd ix p e r d ix L in n.) z Doliny Pięciu Stawów Polskich w Tatrach.

European Crime Prevention Award (ECPA) Annex I - new version 2014

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

Few-fermion thermometry

CZĘSTOTLIWOŚĆ I INTENSYWNOŚĆ WYSTĘPOWANIA PRZYMROZKÓW W POLSCE PÓŁNOCNO-WSCHODNIEJ W LATACH

DOI: / /32/37

Employment. Number of employees employed on a contract of employment by gender in Company

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Trend in drug use in Poland

THE ROLE OF PHYTOHORMONES IN INSTRUMENTAL INSEMINATION OF QUEEN BEES

Instructions for student teams

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Transkrypt:

Journal of Apicultural Science 87 WINTERING QUEEN BEES IN MODIFIED MATING NUCLEI Maciej Siuda 1, Jerzy Wilde 1, Janusz Bratkowski 1, Boż ena Chuda-Mickiewicz 2, Jerzy Woyke 3, Zygmunt Jasiń ski 3, Beata Madras-Majewska 3, Jerzy Samborski 2 1 Apiculture Division, University of Warmia and Mazury in Olsztyn, Poland 2 Department of Zoology and Beekeeping, West Pomeranian University of Technology in Szczecin, Poland 3 Division of Apiculture, University of Life Science-SGGW, Warszawa, Poland E-mail: jerzy.wilde@uwm.edu.pl Received 14 February 2011; Accepted 29 April 2011 S u m m a r y The aim of this study was to develop an effective method which provides for additional queen bees to overwinter in mating nuclei. The assay was carried out in the years 2005-2008 (three wintering seasons) in three places in Poland: the Department of Zoology and Beekeeping at the West Pomeranian University of Technology in Szczecin, Division of Apiculture, University of Life Science-SGGW in Warsaw, and the Apiculture Division at the University of Warmia and Mazury in Olsztyn. Experimental colonies were created and kept in two types of nuclei: in a trapezoid, top-bar mating nucleus [TB] and in a mini-plus nucleus [MP]. The highest number of colonies survived in Szczecin (63%), less in Warsaw (31%), and the least in Olsztyn (20%). In the TB nuclei, only 2% of the colonies overwintered successfully. In the MP nuclei with one colony, 65% overwintered successfully, and in MP with two colonies - 45% overwintered successfully. Keywords: wintering season, queen bees, mating nuclei. INTRODUCTION It is crucial for beekeepers to have spare queen bees in early spring. Additional queens can be introduced into colonies that have lost their own queen bees in the winter. They can also be introduced into new colonies which have been divided early in the spring. This is particularly important in Poland because of the severe winters, cold springs and short vegetative period. Introduction of spring of queen bee imports from outside Europe, is popular among beekeepers (Wilde, 2000). Due to climatic differences, young queen bees from outside Europe were available in the early spring, when in Poland the rearing of queens is impossible. Instead of expensive imports, methods for wintering queen bees can be developed. Such methods could become a breakthrough in the applied apicultural technologies. First of all these methods are inexpensive - after the breeding season, beekeepers have mating nuclei with egg laying queen bees. Second - the small colonies overwintered as nuclei, grow in strength during the spring. Then, they can be divided, and the new queens reared the next season can be introduced into the queenless parts. And third - when there are egg laying queens in the spring, the beekeepers can divide the colonies early, and increase the number of productive colonies for the late flow. Introducing a young queen in a bee colony stimulates the colony s dynamic development (Wilde, 2006). The queen s age determines its fertility and the amount of the secreted maternal pheromone (Seeley and Fell, 1981; Naumann et al., 1991). The queen bee s fertility determines the strength of the colony. A fourfold increase in the colony strength,

88 brings about a six-fold increase in its honey productivity (Farrar, 1971). According to Woyke (1984), honey bee colonies with one-year-old queens, produced 27% more honey than those with two-year-old queens. Wilde (2000) and Wilde et al. (2002) report that about 50% less honey was collected from colonies with threeyear-old queens than from those with oneyear-old queens. Bee colonies with young queen bees are also less likely to develop a swarming impulse (Zeiler, 1985; Siuda and Wilde, 2002; Wilde, 2006). The first attempts at wintering spare queen bees, date back to the 60s of the previous century. Most often, young queen bees were wintered in small nuclei (Olejniczak, 2002) or in small colonies (Pidek, 2003). Most tests were carried out in a bee yard. Single queen bees were placed in the original hive, in a compartment composed of several honeycombs, separated by a tight board (Bornus and Szymankiewicz, 1968; Ostrowska, 1974). This method of wintering was not adopted in practice, though, because of the high labor input and material costs. Several queen bees were also wintered in cages called queen banks, in a hive. However, due to the antagonistic behavior of the surrounding bees, the queens were injured (Woyke, 1988; Jasiński, 1995). In one bee colony, the attempts to winter several freely moving queen bees deprived of their stingers, also failed (Paleolog, 2001). Efforts were made to keep queen bees outside the hive in the winter (Foti et al., 1962; Wyborn et al., 1993; Prabucki et al., 2003). But so far, no satisfactory results have been achieved. During wintering, nosema disease developed in the attendant bees (Kostecki, 1976; Prabucki et al., 1982; Gliński and Chmielewski, 1994; Sokół and Romaniuk, 2000; Muszyńska, 2001; Czekońska, 2002; Tomaszewska, 2002). After some time, it was found that bees originating from healthy colonies were affected by Nosema apis (El-Shemy and Pickard, 1989). Wintering queen bees in mating nuclei is cheap compared to the cost of importing queen bees. This is because, queenrearing beekeepers have at their disposal a great number of nuclei with egg laying queens. Earlier, these nuclei with egg laying queens had to be eliminated after the breeding season (Wilde, 2004). The reasons mentioned above, triggered the search for a way to develop an effective method of overwintering spare queen bees in mating nuclei. MATERIALS AND METHODS The assay was carried out in the years 2005-2008 (three wintering seasons), in the following centers: 1. Department of Zoology and Beekeeping, West Pomeranian University of Technology in Szczecin (northwestern Poland) 2. Division of Apiculture, Warsaw University of Life Science - SGGW (central Poland) 3. Apiculture Division, University of Warmia and Mazury in Olsztyn (northeastern Poland) Queens-sisters of Apis mellifera carnica subspecies were reared every year in queenless rearing colonies. On the 9 th day, capped queen cells were transferred to an incubator (T=34.5 o C and RH=80%). After emergence, the queens were marked with numbered plastic discs. Then, they were placed in small transport cages with 10 attendant worker bees. They waited in the cages before being introduced into the experimental colonies. Experimental colonies were created and kept in two types of nuclei: a trapezoid, top-bar mating nucleus [TB] (with a comb size of 13.5 top 9 bottom 9 height cm) and a multi-super nucleus with six combs in the box, in frames measuring 215 x 163 mm - mini-plus nucleus [MP]. All the nuclei were supplied with comb foundations. In order to extend the nest area for a wintering colony in trapezoid nuclei, supers with six honeycombs were added (frame size: 148 x 125mm). After the nuclei were stocked with worker bees

Journal of Apicultural Science 89 of Apis mellifera carnica subspecies, they were transferred to a dark cellar for two days (T=10 o C). TB was stocked with ca. 100g bees, and MP with ca. 250g bees in one box. Seven/eight-day-old queen bees were instrumentally inseminated with 8 μl semen from a Carniolan drone. When the queens started egg laying, the colonies diet was supplemented with candy. Each year, winter feeding of the colonies started 15 th August and ended 15th September. The colonies to be wintered in MP were fed syrup (5 : 3, sugar : water), and those to be wintered in TB were fed candy, in several portions. The c olonies prepared for wintering were randomly divided into the following groups: I TB trapezoid, top-bar mating nucleus II TBS trapezoid, top-bar mating nucleus with a super III MP1/2 mini-plus twin-nucleus (two colonies, each wintering on three combs of the nucleus, separated in the middle by a vertical board) IV MP1 mini-plus nucleus, one colony wintering on six combs in a whole box The colonies in each group were divided into two subgroups: A - wintered on a bee yard and B - wintered in a cellar. From 20 th Aug. to 15 th Dec. all nuclei were in a bee yard. In the autumn, when the temperatures fell below 0 o C for a few consecutive nights, half the colonies were transferred to a cellar (T=4-5 o C and RH=ca. 65-75%). Once a month, the wintering colonies were examined with a stethoscope. Based on the emitted sounds, the course of wintering was assessed. When sound assessment was difficult, it was always possible to lift the nucleus cover for a quick look at the colonies. For Olsztyn, the temperature and humidity data were obtained from the measurements of the UWM meteorological station, for Warsaw - from the SGGW meteorological station in the Ursynów quarter, and for Szczecin - from the service: Weather Underground (http://www. wunderground.com). The average daily air temperatures for Poland for the last 30 years, referred in this paper as perennial data, were also obtained from the UWM meteorological station in Olsztyn. Two and three-way ANOVA was carried out. Significance of difference between the means ( ) was determined by Duncan s multiple range test. The data in percentages to be used in statistical calculations, were converted by the arcsine transformation (Bliss). The means differing significantly (p < 0.05) were marked with different small letters. RESULTS 1.1 Weather conditions Weather conditions could have considerably affected the results of the research. That is why throughout the assay, temperature and relative humidity of air were regularly measured. The two-way analysis of variance (research place and season) did not show significant interaction between the place of the investigation and the consecutive wintering seasons (F 2 =0.090, p<0.985). While the colonies were wintering, the average monthly air temperatures for each center were similar to the perennial average (Fig. 1a). In the late autumn and in the winter, the highest average temperatures were in Szczecin, average temperatures were lower in Warsaw and the lowest average temperatures were in Olsztyn (Fig. 1a). In the early spring, the highest temperature was in Warsaw, and the lowest in Szczecin. Average monthly temperatures for individual centers, were slightly higher than the perennial average temperatures. The average relative air humidity during wintering was very similar in all centers (Fig. 1b). It ranged between 76.2% and 92.4% from November to March. During the first spring months, it decreased in all centers. In April, the average relative air humidity was highest in Szczecin (75.7%), and lowest in Olsztyn (63.4%). Average monthly temperatures differed significantly in the consecutive wintering seasons (F 2 =15.728, p<0.001).

90 Fig. 1a. Average air temperature in the centers ( o C). Fig. 1b. Average relative air humidity in the centers (%). In the 2005/2006 season, the average air temperature in November (8.9 o C) was considerably higher than the average in other seasons, and higher than the perennial average (2.7 o C - Fig. 1c). In January 2005/2006, the average temperature (-7.1 o C) was significantly lower than the average temperatures for the 2006/2007 and 2007/2008 seasons: 3.4 o C and 0.9 o C, respectively; and lower than the perennial average (-2.9 o C). The frost-period in the 2005/2006 season, lasted until March when the average temperature was -1.2 o C. In March, the average temperature was significantly lower than the perennial average (1.2 o C) and lower than the average temperatures in the 2006/2007 and 2007/2008 seasons: 6.2 and 3.1 o C, respectively. The average air temperatures in the individual seasons in April, were similar to the perennial average and ranged between 6.7 o C and 8.0 o C.

Journal of Apicultural Science 91 Fig. 1c. Average air temperature in the seasons ( o C). Fig. 1d. Average relative air humidity in the seasons ( %). The average monthly relative air humidity for the three locations in the consecutive seasons was very similar from November to March, and ranged between 84.1% and 92.8% (Fig.1d). In the first spring months, the humidity fell in all locations. In April, the significantly lowest average (F 2 = 5.4, p<0.005) was observed in the 2006/2007 season (60.6%), and the highest in the last 2007/2008 season (81.7%). 1.2. Survival of colonies The place where the queen bees were wintered (a bee yard or an underground wintering building) did not significantly affect the differences in the survival of the colonies (F 1 = 0.562, p = 0.454). Consequently, the rest of our report contains the total results, without referring to the colonies as being split into the subgroups: A (colonies wintering on a bee yard) and B (colonies wintering in a cellar).

92 1.2.1. Survival of colonies in three locations Wintering the queen bees in trapezoid nuclei without a super (group I, TB) was not successful in any of the locations and seasons. That is why this assay group is not presented in Table 1, nor in the following description of the results. The two-way ANOVA indicated a highly significant interaction between the assay groups and apicultural seasons as well as the place of the research F 2 = 3.324, p= 0.001. The queen bees overwintered most effectively in Szczecin. In the 2007/2008 season, 19% of them survived in trapezoid top-bar nuclei with a super (gr. II, TBS), 81% in twin mini-plus nuclei (gr. III, MP1/2), and as many as 95% in one-box mini-plus nuclei (gr. IV, MP1 - Tab. 1) In Warsaw and Olsztyn, queen bees in trapezoid nuclei with a super (gr. II, TBS) did not survive the winter in any season. In the last year 2007/2008, in Warsaw, most colonies survived in twin and singlecolony mini-plus nuclei (gr. III, MP1/2 and gr. IV, MP1), i.e. 75% and 68%, respectively. In 2005/2006 in Olsztyn, most colonies (32%) survived in twin-colony mini-plus nuclei (gr. II, MP1/2). In 2007/2008 most colonies (46%) survived in the same nuclei type, yet wintered as a single colony (gr. IV, MP1). In total, in all three seasons, the significantly highest percentage of queen bees were those that survived the winter in Szczecin (63%). In Warsaw, a significantly high percentage of queens (31%) survived the winter, than in Olsztyn (20%) (Tab. 1). Table 1 Effectiveness of extra queen bees survival during the wintering of experimental colonies (%) Center Szczecin Group Year II (TBS) III (MP1/2) IV (MP1) Centers in total n % ± sd N % ± sd n % ± sd n % ± sd 2005/2006 20 0.0 a ± 0.0 20 65 d ± 0.5 21 90 e ± 0.3 2006/2007 23 0.0 a ± 0.0 20 90 e ± 0.3 24 83 de ± 0.4 219 63 c ± 0.5 2007/2008 21 19 ab ± 0.4 26 81 de ± 0.4 44 95 e ± 0.2 Warszawa 2005/2006 6 0.0 a ± 0.0 13 0.0 a ± 0.0 10 0.0 a ± 0.0 2006/2007 20 0.0 a ± 0.0 22 50 cd ± 0.5 20 40 c ± 0.5 2007/2008 18 0.0 a ± 0.0 16 75 d ± 0.5 19 68 d ± 0.5 144 31 b ± 0.5 Olsztyn 2005/2006 19 0.0 a ± 0.0 28 32 bc ± 0.5 8 25 abc ± 0.5 2006/2007 20 0.0 a ± 0.0 20 10 ab ± 0.3 20 45 c ± 0.5 2007/2008 20 0.0 a ± 0.0 24 13 ab ± 0.3 24 46 cd ± 0.5 183 20 a ± 0.4 Groups in total 167 2 a ± 0.2 189 47 b ± 0.5 190 65 c ± 0.5 546 40 ± 0.5 Years of investigation in total 145 2005/2006 2006/2007 2007/2008 189 212 30 a ± 0.5 36 a ± 0.5 50 b ± 0.5 group II (TBS) trapezoid polystyrene mating nuclei with a super group III (MP1/2) one-box mini-plus nuclei with two colonies group IV (MP1) one-box mini-plus nuclei with one colony Different small letters indicate significance of differences for p<0.05.

Journal of Apicultural Science 93 1.2.2. Survival of queen bees in different nuclei types In total, of all the centers and seasons, the significantly highest percentage of queen bees that survived in the colonies (65%) were those that occupied the whole box of a mini-plus nucleus (gr. IV, MP1). A significantly high percentage of queen bees that survived in the colonies (47%) were those that occupied half a miniplus nucleus. But only 2% of queen bees survived in the colonies that occupied trapezoid top-bar mating nuclei with a super (gr. II, TBS) (Tab. 1). 1.2.3. Survival of queen bees in different seasons Survival of queen bees in different seasons varied. In total, of all the centers, significantly more queen bees (50%) survived the 2007/2008 winter which was the last year of the study, than in 2006/2007 and 2005/2006: 36% and 30%, respectively. Compared to the last year, the survival rate in 2006/2007 and 2005/2006 was 14% and 20% smaller, respectively. 1.3. Survival of colonies in consecutive wintering months The number of living colonies gradually decreased in the consecutive wintering months in all the centers, groups, and years of the research (Fig. 2). 1.3.1. Average monthly survival of colonies in different locations On the average, of all the three seasons and nuclei types, the fewest colonies died in Szczecin (Fig. 2). In October - January more than 80% survived, and by the end of the wintering season, the survival rate fell in March to 60% of the initial value. In Warsaw and in Olsztyn, the survival rate decreased similarly. During the first two months, 90% of the colonies survived. Then, the survival rate suddenly dropped. In December, 60% of the colonies survived, and by the end of wintering, only 20% survived in Warsaw and ca. 5% in Olsztyn. On the average, of all the three seasons and locations, the colonies in trapezoid top-bar nuclei with a super (gr. II, TBS) already started to suddenly die in December (40% of the living colonies). By the end of wintering in March, only a few of them survived (Fig. 3). The colonies in one half of the mini-plus nucleus (gr. III, MP1/2) overwintered successfully till January. A decrease was observed in this group (gr. III, MP1/2) after January, and eventually 47% of the colonies survived the winter. Wintering was most successful for the colonies in the whole box of a miniplus nucleus (gr. IV, MP1), where single losses were distributed evenly, throughout the whole wintering season (Fig. 3). Fig. 2. Average survival of colonies in consecutive months in three locations (%).

94 On the average, of all the locations and nuclei types for the first wintering season of 2005/2006, the fewest colonies survived between January and March (Fig. 4). During the next wintering season, the fewest colonies survived in January and February 2007. In the last season; 2007/2008, single colonies started dying in December. Losses were evenly distributed throughout the wintering period. The most frequent cause of losses of colonies was insufficient nutrition, as 71.4% died from hunger (Fig. 5). Starving colonies often suffered from dysentery (9.5%). Quite often (10.2%), the bees did not move to upper sections of the trapezoid top-bar nuclei with a super (gr. II, TBS), even though there was still food left. A sudden population drop of bees was observed in 8.9% of the colonies. Fig. 3. Average survival of colonies from different groups in the consecutive months of wintering season (%). Explanation: TBS - trapezoid, top-bar mating nucleus with a super; MP1/2 mini-plus twin-nucleus; MP1 mini-plus nucleus, one colony wintering on six combs in a whole box. Fig. 4. Average survival of colonies (%) in the consecutive months of three wintering seasons.

Journal of Apicultural Science 95 Fig. 5. Causes of wintering colonies dying (%). DISCUSSION Successful wintering of bees is significantly affected by atmospheric conditions, especially by the number of days with severe frost as well as by the number of days with thaws. During the first and the second wintering season, extremely low temperatures occurred (even -30 o C), which weakened the effectiveness of queen bee wintering, to 30% and 36%, respectively. Weather conditions considerably improved the last year, which resulted in a higher survival rate of the wintering queen bees (50%). The wintering success was different in the three different places. Most colonies survived the winter in Szczecin (63%), less in Warsaw (31%), and the least in Olsztyn (20%). These results were probably caused by lower winter temperatures in the two latter locations as compared with Szczecin. Also, other authors (Bornus et al., 1974; Bobrzecki, 1976; Ostrowska, 1984; Prabucki et al., 2003) have pointed out the effect of temperature on the success of overwintering bee colonies. Pechhacker and Kasjanow (2004) believe that bees should winter in an outdoor temperature of around 0 o C, as in such conditions the intensity of heat generated by bees, which reflects the level of their metabolism, is minimal. Sowa et al. (1983) wintered the colonies indoors, at a temperature ca. 4 o C, and the survival rate was 93-95%. During the wintering period, relative air humidity was very high (ca. 90%) in all the research centers and seasons. Such high humidity shortens the life of wintering bees (Ostrowska, 1984; Muszyńska, 2004; Skubida, 2004b; Roman, 2007). According to Bratkowski (1998), the most decisive factor affecting bee survival in winter is the strength of bee colonies. The results of our research prove that it is not satisfactory to overwinter queen bees in trapezoid top-bar mating nuclei (TB) either in a bee yard or in a cellar as independent units. Only 2% of these queen bees survived the winter. Maul and Schneider (1991) were able to overwinter such small colonies in a cellar only when they replaced the worker bees in the colonies three or four times. Bornus and Szymankiewicz (1968) successfully overwintered 50% of queen bees in mating nuclei, which were placed between two bee colonies wintering in one hive. In such conditions, bees in the nuclei took advantage of the heat generated by the neighbouring colonies. The colonies wintering in mini-plus nuclei (MP) had better chances for survival because of an extended nest area. This area gave both a greater storage potential as well as a larger number of bees, and at the same time - there was a smaller production of thermal energy per bee. In our assay, in mini-plus nuclei, 47% of the wintered colonies survived the winter on three

96 honeycombs (gr. III, MP1/2), and 65% on six honeycombs (gr. IV, MP1). There is definitely less heat loss in the case of a bigger cluster because of the favorable relation of the cluster size to its surface, and because of greater heat production. In weak colonies, the mechanism is the same, yet with an adverse effect. Wintering of spare queen bees in mating nuclei is difficult, because of the small number of bees and the small nest surface. Food scarcity was the most common cause of the dying of colonies (71.4%). Starving colonies often suffered from dysentery. Defecation into the nest was observed in 9.5% of wintered colonies. In trapezoid top-bar mating nuclei with a super (gr. II, TBS), bees quite frequently (10.2%) did not get to the upper sections, even though there was still food left. This may have resulted from rearing brood in the lower sections late in the autumn, and then the bees remained in the lower sections. The sudden population drop in 8.9% of the wintered colonies is difficult to explain, yet it may be attributed to the phenomenon of single bees leaving the hive during a wintering season. CONCLUSIONS Trapezoid top-bar mating nuclei are unsuitable for self-wintering of bee colonies in Poland, because of their small size. The best conditions for wintering of spare queen bees were in mini-plus nuclei, when the colonies occupied the entire box (six combs). ACKNOWLEDGEMENTS The assay was carried out thanks to the support of the Ministry of Science and Higher Education - as Own Research Project No 2 P06Z 058 28. We would like to thank the head of this project Prof. Dr. hab. Jarosław Prabucki, for effectively managing this experiment for 3 years. REFERENCES Bobrzecki J. (1976) - Rozwój i produkcyjność rodzin pszczelich zimowanych na różnych pokarmach węglowodanowych. Zesz. Nauk. ART., Olsztyn, 19: 43-92. Bornus L., Bobrzecki J., Bojarczuk Cz., Gromisz M., Kalinowski J., Król A., Nowakowski J., Ostrowska W., Woźnica J., Zaremba J. (1974) - I. Przydatność użytkowa mieszańców międzyrasowych pszczoły miodnej w warunkach przyrodniczych Polski. Pszczeln. Zesz. Nauk., 18: 1-52. Bornus L., Szymankiewicz J. (1968) - Porównawcze badania nad zimowaniem zapasowych matek pszczelich. Pszczeln. Zesz. Nauk., 12(1-2): 31-41. Bratkowski J. (1998) - Czynniki wpływające na zimowanie rodzin pszczelich. Pszczelarstwo, 49(10): 19. Czekońska K. (2002) - Jakość matek pszczelich dopuszczonych do obrotu handlowego. Pszczeln. Zesz. Nauk., 44(l): 23-24. El-Shemy A. A. M., Pickard R. S. (1989) - Nosema apis Zander infection levels in honeybees of known age. J. Apic. Res., 28(2): 101-106. Farrar C. L. (1971) - Productive management of honeybee colonies. Am. Bee J., 113(8): 288-290. Foti N., Barac I., Alexandru V., Mirza E. (1962) - Untersuchungen über die Űberwinterung von Weiseln ausserhalb der Traube und ihre Verwendung innerhalb der Produktion Arch. Geflűgelz. Kleintierz, 11: 340-360. Gliński Z., Chmielewski M. (1994) - Patologia i terapia chorób owadów użytkowych. Wyd. AR Lublin. Jasiński Z. (1995) - Uszkodzenia matek pszczelich w czasie ich przechowywania. Rozprawy Naukowe i Monografie. Wydawnictwo SGGW. Kleinschmidt G. J. (1990) - Banking of queen honey bees. Queensland Agricultural College Lewes Qld, 43: 1-7.

Journal of Apicultural Science 97 Kostecki R. (1976) - Zarys chorób i szkodników pszczół. PWRiL Warszawa. Maul V., Schneider H. (1991) - Überwinterung von Reserveköniginen im Kirchhainer begattungskastchen (KBK). Die Biene, 127(2): 61-68. Muszyńska J. (2001) - Effect of honeydew honey-containing food on the condition of caged bees. J. Apic. Sci., 45: 159-166. Muszyńska J. (2004) - Zimowanie pszczół. Zmiany zachodzące w tym okresie w pszczołach i rodzinach pszczelich. Pasieka, 4: 38-39. Naumann K., Winston M. L., Slessor K. N., Prestwich G. D., Webster F. X. (1991) - The production and transmission of honeybee queen (Apis mellifera L.) mandibular gland pheromone. Beh. Ecol. Soc., 29: 321-332. Olejniczak R. (2002) - Zimowanie matek zapasowych w małych rodzinach. Pszczelarstwo, 53(8): 19. Ostrowska W. (1974) - Dodatkowe prace pasieczne w sezonie. [w] Gospodarka pasieczna, PWRiL Warszawa: 357-360. Ostrowska W. (1984) - Porównanie niektórych aspektów biologii oraz utrzymywanych w różnych typach uli w warunkach przyrodniczych Polski północno -wschodniej. Pszczeln. Zesz. Nauk., 28: 15-28. Paleolog J. (2001) - An attempt at overwintering sting-clipped queens in multiple-queen colonies. J. Apic. Sci., 45: 13-20. Pechhacker G., Kasjanow A. (2004) - Naukowcy odpowiadają na pytania dotyczące zimowli. Pszczelarstwo, 55(10): 20-21. Pidek A. (2003) - Matka zapasowa - co to znaczy? Pszczelarstwo, 54(2): 25. Prabucki J. (1975) - Norweski bank matek. Pszczelarstwo, 26(5): 9-10. Prabucki J., Samborski J., Chuda-Mickiewicz B. (2003) - Experiment on storing bee queens over the winter outside the hive. J. Apic. Sci., 47(2): 39-46. Prabucki J., Wertejuk M., Chuda-Mickiewicz B. (1982) - Przyczynek do poznania nosemozy w warunkach Pomorza Zachodniego. Pszczelarstwo, 33(5): 2-4. Roman A. (2007) - Opieka nad pasieką w okresie jesienno-zimowym. Przegląd Hodowlany, 75(1): 22-24. Seeley T. D., Fell R. D. (1981) - Queen substance production in honey bee (Apis mellifera) colonies prepering to swarm. (Hymenoptera: Apidae). J. Kansas Entomol. Soc., 54(1): 192-196. Siuda M., Wilde J. (2002) - Racjonalne rozmnażanie rodzin skutecznie zwalcza nastrój rojowy i zwiększa produkcyjność rodzin. Biul. Nauk., 18(5): 27-34. Skubida P. (2004a) - Kilka aspektów dobrego zimowania. Pszczelarstwo, 55(11): 20-21. Skubida P. (2004b) - Dokarmianie pszczół i wilgotność w zimowym gnieździe. Pszczelarstwo, 55(12): 17-18. Sokół R., Romaniuk K. (2000) - Ocena kilku metod podawania fumagiliny pszczołom. Pszczeln. Zesz. Nauk., 44 (Suplement do nr l): 89-92. Sowa S., Jagiełło R., Woźnica J. (1983) - Zimowanie zapasowych matek w rodzinkach weselnych w pomieszczeniu zamkniętym. XX Naukowa Konferencja Pszczelarska, 23-25 marzec Puławy: 20. Tomaszewska B. (2002) - Zwalczanie nosemozy bez użycia środków farmakologicznych. Pszczelarstwo, 53(11): 8-9. Wilde J. (2000) - Wczesnowiosenna wymiana matek w pasiekach. Pszczelarstwo, 51(4): 20-21. Wilde J. (2004) - Wymiana matek pszczelich oraz intensywna gospodarka wędrowna z uwzględnieniem wędrówek pasiek na pożytki - droga do sukcesu w pszczelarstwie. Konferencja: Problemy współczesnego pszczelarstwa. 9 października, Polagra, Międzynarodowe Targi Poznańskie, Poznań: 1-11.

98 Wilde J. (2006) - Czy polskiemu pszczelarstwu potrzebny jest import matek pszczelich wczesną wiosną? Pszczoły PL, portal o pszczelarstwie. [online] www.pszczoly.pl/ jerzy_wilde/jerzy_wilde3.php. Wilde J., Wilde M., Gogolewska E. (2002) - Łatwe i skuteczne sposoby wymiany matek pszczelich. Biul. Nauk., 18(5): 77-84. Woyke J. (1984)- Correlations and interactions between population, length of worker life and honey production by honeybees in temperate region. J. Apic. Res., 23(3): 148-154. Woyke J. (1988) - Problems with queen banks. Am. Bee J., 128(4): 276-278. Wyborn M. H., Winston M. L., Laflamme P. H. (1993) - Storing mated queens during the winter in managed honey bee colonies. Am. Bee J., 133(3): 201-205. Zeiler C. (1985) - Ratschläge für den Frezeitimker. Drezno. J. Neumann-Neudamm: 1-132. ZIMOWANIE ZAPASOWYCH MATEK PSZCZELICH W ZMODYFIKOWANYCH ULIKACH WESELNYCH Siuda M., Wilde J., Bratkowski J., Chuda-Mickiewicz B., Woyke J., Jasiń ski Z., Madras-Majewska B., Samborski J. S t r e s z c z e n i e Posiadanie zapasowych matek wczesną wiosną jest bardzo ważne dla pszczelarzy. Matki te można poddać do rodzin, które straciły własne matki zimą. Można je również poddać do wczesnych odkładów. Ma to szczególne znaczenie w Polsce, charakteryzującej się srogimi zimami, chłodnymi wiosnami i krótkim sezonem wegetacyjnym. Celem badań była próba opracowania skutecznej metody zimowania zapasowych matek pszczelich w ulikach weselnych. Doświadczenie przeprowadzono w latach 2005-2008 (3 zimowle) równolegle w trzech jednostkach: Katedrze Zoologii i Pszczelnictwa Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Samodzielnej Pracowni Hodowli Owadów Użytkowych SGGW w Warszawie i Katedrze Pszczelnictwa Uniwersytetu Warmińsko-Mazurskiego w Olsztynie. Rodzinki z matkami unasienionymi sztucznie 8 μl nasienia w wieku 7-8 dni przygotowane do zimowli podzielono losowo na następujące grupy: I TS trapezoidalny snozowy ulik weselny. II TSN trapezoidalny snozowy ulik weselny z nadstawką. III MP1/2 dwurodzinny ulik mini-plus (dwie rodzinki, każda zimująca na 3 plasterkach w połowie ulika, przedzielonego pionową przegrodą). IV MP1 ulik mini-plus, jedna rodzinka zimująca na 6 plasterkach w całym korpusie. Rodzinki w każdej grupie podzielono na 2 podgrupy: A - zimowane na pasieczysku i B - zimowane w piwnicy. Miejsce zimowania matek (toczek lub stebnik) nie wpłynęło istotnie na zróżnicowanie przeżywalności rodzinek (F 1, = 0,562, p = 0,454). Nie udało się przezimować matek w ulikach trapezoidalnych bez nadstawki (gr. I, TS) we wszystkich ośrodkach oraz latach badań. W sumie, ze wszystkich miejscowości i sezonów, wysoko istotnie najwięcej matek (65%) przeżyło w rodzinkach zimujących pojedynczo w korpusie ulika mini-plus (gr IV, MP1). Najwięcej rodzinek przeżyło w Szczecinie (63%), mniej w Warszawie (31%), a najmniej w Olsztynie (20%). W ulikach TS przezimowano tylko 2%, a w ulikach MP zasiedlonych pojedynczo - 65% i 45% przy zasiedleniu przez dwie rodzinki. Trapezoidalne snozowe uliki weselne, ze względu na swoje niewielkie wymiary, nie nadają się do samodzielnego zimowania rodzinek pszczelich w Polsce. Najkorzystniej zapasowe matki zimowały w ulikach mini-plus, gdy rodzinki zajmowały cały korpus (6 plasterków). Słowa kluczowe: zimowla, matki pszczele, uliki weselne.

Journal of Apicultural Science 99