Politechnika Koszalińska



Podobne dokumenty
Politechnika Koszalińska

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Promotor: prof. nadzw. dr hab. Jerzy Ratajski. Jarosław Rochowicz. Wydział Mechaniczny Politechnika Koszalińska

Politechnika Politechnika Koszalińska

STATYCZNA PRÓBA ROZCIĄGANIA

Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

STABILNOŚĆ STRUKTURALNA STALI P92 W KSZTAŁTOWANYCH PLASTYCZNIE ELEMENTACH RUROCIĄGÓW KOTŁÓW ENERGETYCZNYCH ANDRZEJ TOKARZ, WŁADYSŁAW ZALECKI

STATYCZNA PRÓBA ROZCIĄGANIA

Politechnika Koszalińska

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych

Ćwiczenie. dq dt. mc p dt

Prof. dr hab. inż. Józef Gawlik, prof. zw. PK Politechnika Krakowska Katedra Inżynierii Procesów Produkcyjnych Al. Jana Pawła II 37; Kraków

Laboratorium Wytrzymałości Materiałów

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

ZAPROSZENIE DO SKŁADANIA OFERT NA USŁUGĘ: Osadzanie sfałdowanych cienkich warstw Si-DLC i DLC na foliach PEEK i PU

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Politechnika Koszalińska

Politechnika Koszalińska. ska. Politechnika Koszalińska. Mechatroniki, Instytut Mechatroniki, Nanotechnologii Instytut

Recenzja. Dylatometryczna metoda detekcji efektów termomechanicznych w systemach podłoże-powłoka PVD

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

RHEOTEST Medingen Reometr RHEOTEST RN - Artykuły farmaceutyczne i kosmetyczne.

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Zakres akredytacji Laboratorium Badawczego Nr AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 12 z 7 lipca 2015r.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis

FRIALIT -DEGUSSIT Ceramika tlenkowa Rurki dylatometryczne wykonane z wysoce wydajnej ceramiki tlenkowej

CIENKOŚCIENNE KONSTRUKCJE METALOWE

Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)

Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)

Zadania badawcze realizowane na Wydziale Inżynierii Materiałowej Politechniki Warszawskiej

Materiały Reaktorowe. Właściwości mechaniczne

ZAPYTANIE OFERTOWE. Alchemia S.A. Oddział Walcownia Rur Andrzej, ul. Lubliniecka 12, Zawadzkie

Wyboczenie ściskanego pręta

Defi f nicja n aprę r żeń

Metody i techniki badań II. Instytut Inżynierii Materiałowej Wydział Inżynierii Mechanicznej i Mechatroniki ZUT

Szkła specjalne Wykład 6 Termiczne właściwości szkieł Część 1 - Wstęp i rozszerzalność termiczna

PL B1. POLITECHNIKA ŁÓDZKA, Łódź, PL

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

Oznaczenie odporności na nagłe zmiany temperatury

Spektrometr XRF THICK 800A

Differential Scaning Calorimetry D S C. umożliwia bezpośredni pomiar ciepła przemiany

Naprężenia i odkształcenia spawalnicze

Technologie PVD w zastosowaniu do obróbki narzędzi

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Wprowadzenie do WK1 Stan naprężenia

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Wytrzymałość Materiałów

Piotr Myśliński Autoreferat Załącznik nr 1. Autoreferat

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

STAL NARZĘDZIOWA DO PRACY NA ZIMNO

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

ZMĘCZENIE MATERIAŁU POD KONTROLĄ

TEMAT PRACY DOKTORSKIEJ

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

Optymalizacja konstrukcji wymiennika ciepła

Wydział Inżynierii Materiałowej i Ceramiki

Nasyp przyrost osiadania w czasie (konsolidacja)

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

Okres realizacji projektu: r r.

Metody badań materiałów konstrukcyjnych

ME 402 SERIA ME-402. Maszyny do badań na rozciąganie/ściskanie/zginanie 1-300kN.

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.

Fizyczne właściwości materiałów rolniczych

WPŁYW RODZAJU MASY OSŁANIAJĄCEJ NA STRUKTURĘ, WŁAŚCIWOŚCI MECHANICZNE I ODLEWNICZE STOPU Remanium CSe

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Pomiar twardości ciał stałych

STAL NARZĘDZIOWA DO PRACY NA GORĄCO

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Projekt kluczowy. Nowoczesne technologie materiałowe stosowane w przemyśle lotniczym. Segment nr 10

43 edycja SIM Paulina Koszla

PODSTAWY SKRAWANIA MATERIAŁÓW KONSTRUKCYJNYCH

DOTYCZY: Sygn. akt SZ /12/6/6/2012

... Definicja procesu spawania łukowego ręcznego elektrodą otuloną (MMA):... Definicja - spawalniczy łuk elektryczny:...

ĆWICZENIE 15 WYZNACZANIE (K IC )

Tematy prac dyplomowych dla III semestru uzupełniających studiów magisterskich kierunek Mechatronika. Rok akademicki 2012/2013

Dobór materiałów konstrukcyjnych cz.13

BADANIA MIESZANEK MINERALNO-ASFALTOWYCH W NISKICH TEMPERATURACH

THICK 800A DO POMIARU GRUBOŚCI POWŁOK. THICK 800A spektrometr XRF do szybkich, nieniszczących pomiarów grubości powłok i ich składu.

LABORATORIUM NAUKI O MATERIAŁACH

ME 405 SERIA ME-405. Maszyny do badań na rozciąganie/ściskanie/zginanie kn.

5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH. 5.1 Cel ćwiczenia. 5.2 Wprowadzenie

Zmęczenie Materiałów pod Kontrolą

Dobór materiałów konstrukcyjnych cz. 10

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

STAL NARZĘDZIOWA DO PRACY NA GORĄCO

Transkrypt:

Politechnika Koszalińska Instytut Mechatroniki, Nanotechnologii i Techniki Próżniowej Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych Diagnostyka powłok z wykorzystaniem metod analizy termomechanicznej Zadanie 5.2. Piotr Myśliński Politechnika Koszalińska Seminarium projektu nr POIG.01.03.01-00-052/08: Hybrydowe technologie modyfikacji powierzchni narzędzi do obróbki drewna Koszalin, 18 i 25..03.2010

Cele seminarium: 1. Przedstawienie genezy i zasad wdrażanej termomechanicznej metody diagnostyki cienkich adhezyjnych powłok przeciwzużyciowych. 2. Prezentacja wybranych rezultatów badań diagnostycznych. 3. Ustalenie ujednoliconych standardów procedur diagnostycznych do stosowania w ramach projektu (warsztaty?).

Plan seminarium: 1. Wstęp. Wykorzystanie wzoru Stoney a do konstruowania charakterystyk naprężenie temperatura w powłoce układu podłoże-powłoka adhezyjna. 2. Stosowane w galwanotechnice sposoby wyznaczania naprężeń wewnętrznych poprzez pomiar odkształceń liniowych podłoża. 3. Istota prezentowanej metody 4. Zasada metody 5. Charakterystyka obiektu badań diagnostycznych 6. Właściwości metody 7. Zagadnienia naukowe związane z wdrożeniem metody 8. Efekty estymacji naprężeń i odkształceń 9. Charakterystyka urządzenia badawczego ( dylatometru ) 10. Możliwe opcje diagnostyki z rejestracją zmian wskaźnika alpha m AC 11. Przykładowe rezultaty i ich interpretacje 12. Zakres koniecznych uzgodnień metodologicznych w zakresie standardowych procedur diagnostycznych w ramach projektu.

Wstęp. tot 2 Es ts 1 1 6 1 t R R s f f 0 w funkcji temperatury E s moduł Younga materiału warstwy ν s liczba Poissona materiału warstwy t s grubość warstwy t f grubość podłoża R f promień odkształcenia podłoża po osadzeniu warstwy R o - promień odkształcenia podłoża przed osadzeniem warstwy w funkcji temperatury

..naprężenia w funkcji temperatury wyznaczane metodą Stoney a.. wg C. Mitterer, P.H. Mayrhofer, J. Musil, Thermal stability of PVD hard coatings, Vacuum, 71 (2003) 279-284 wg P.H. Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive non-reactive unbalaced magnetron sputter deposition of TiN coatigs, Thin Solid Films 415(2002)151-159

wg. M. Bielawski, D. Seo, Residual stress development in UMS TiN coatings, Surface and Coatings Technology 200 (2005) 1476-1482 Naprężenia w funkcji temperatury warstw Al. wg. A. Prószyński, Modyfikacja naprężeń w cienkich warstwach metalicznych, Praca Doktorska, Politechnika Łódzka, 2007

Stosowane w galwanotechnice sposoby wyznaczania naprężeń wewnętrznych poprzez pomiar odkształceń liniowych podłoża wg. A. Ryabchikov, H.Lille, J. Kooo, A device for Determination of Residua Stresie In Galvanic Coatings from the Measured Longitudinal Deformation of a Strip Substrate, Materiale Science Forum, 404-407 (2002) 263-268 wg. E. Szeptycka, Metoda wyznaczania naprężeń własnych w powłokach galwanicznych przy użyciu dylatometru, Powłoki Ochronne, 1-3 (113-115) (1992) 33-41

rozwiązania historyczne wg R. Heiner, U Heuberger, A.Pfund, A. Zielonka, Messung und Korrektur von Makrospannungen in galvanischen Schichten, Galvanotechnik, vol. 91 9 (2000) 2483-2493

...100 lecie opublikowania pracy: G.G. Stoney, The tension of Metallic Films Deposited by Electrolysis, Proc. R. Soc. Lond A82 (1909) 172.

Istota prezentowanej metody

cd. Istoty metody

St ress σ Total = σ th + σ G + σ ph Total internat (resiudal) stress Intrinsic or growth stress Thermal stress ~0.3 Deposition Temp. (T/Tm) wg. Cheng Y.H., Tay B.K., Lau S.P., Influence of deposition temperature on the structure and internal stress TiN films deposited by filtered cathodic vacuum arc, J. Vac. Sci. Technol. A 20(4) (2002) 1270-1274 wg. J.A. Thornton, Thin Solid Films (1989)

ZASADA WDRAŻANEJ METODY Zasada metody: rejestracja zmian (kinetyki) warunków sprzężeń termomechanicznych między podłożem a adhezyjną powłoką badanego fizycznego modelu podłoże-powłoka w funkcji temperatury lub czasu zmiany odkształceń liniowych podłoża. Termomechanika jest dziedziną wiedzy technicznej próbującą wyjaśnić i opanować zjawiska wynikające z rozszerzalności cieplnej materiałów oraz mechanizmów sprzężeń termomechanicznych, tzn. wzajemnych oddziaływań pól naprężeń (odkształceń) i temperatur. Stabilność termiczna cienkich powłok adhezyjnych Definicja stabilności termicznej nanostrukturalnych supertwardych pokryć: Stabilność termiczna jest ogólnym terminem używanym do opisu zmian (lub braku zmian) właściwości materiału w funkcji temperatury. Właściwościami takimi są między innymi: odporność na utlenianie, struktura, właściwości mechaniczne. Pokrycie supertwarde posiada wysoką stabilność termiczną jeżeli twardość i rozmiar ziaren (które zależą od nanostruktury i składu), mierzone w temperaturze pokojowej pozostają nie zmienione w trakcie wyżarzania aż do 1100 o C. wg. A. Ravel i inni, Thermal stability of nanostructured superhard coatings: A review, Surf. Coat. Techno. 201 (2007) 6136 6142

Stosowane metody pomiarowe do badań stabilności termicznej: pomiar twardości/mikrotwardości (w temperaturze pokojowej po odprężaniu) pomiar zależności twardości wskroś (segregacja stabilności i dyfuzja pomiędzy podłożem a powłoką) pomiar stabilności okresu nadstruktury w funkcji temperatury odprężania pomiar właściwości tribologicznych pomiar naprężeń ( np. metodą XRD) pomiar względnych zmian naprężeń w funkcji temperatury pomiar względnych zmian naprężeń w powłoce adhezyjnej po odprężaniu

Dotychczasowe wdrożenia prezentowanej metody realizowane w Politechnice Koszalińskiej były dedykowane diagnostyce przeciwzużyciowych warstw/powłok wielowarstwowych osadzanych próżniowo-plazmowymi metodami łukowymi na narzędziach do obróbki metali i drewna. Wyżarzanie układów podłoże-powłoka adhezyjna powoduje termiczne aktywowanie zróżnicowanych procesów oraz relaksacji naprężeń w powłoce lub/i podłożu (o kinetyce zależnej od energii ich aktywacji): wzrost ziarna rekrystalizacja i zdrowienie dyfuzja między powłoką a podłożem relaksacje naprężeń własnych (anihilacja, migracja i redystrybucja defektów sieciowych) utlenianie powłoki / (degradacja chemiczna) makroskopowa degradacja mechaniczna powłoki (lokalne odpryski, delaminanacja) pełzanie odkształcenia plastyczne. SYNERGIA

Uzasadnienie wdrożenia prezentowanej metody: pomimo prowadzonych w ostatniej dekadzie intensywnych badań, których celem jest rozpoznanie właściwości super twardych powłok istnieje wciąż luka pomiędzy wiedzą o ich technologiach i strukturze a stabilnością termiczną; np. powłoki o różnych strukturach i składach mogą wykazywać podobne twardości, ale różne zachowanie się stabilności termicznej. wg. A. Ravel i inni, Thermal stability of nanostructured superhard coatings: A review, Surf. Coat. Techno. 201 (2007) 6136 6142

CHARAKTERYSTYKA OBIEKTU BADAŃ DIAGNOSTYCZNYCH Obiekt badań: fizyczny model układu podłoże-cienka powłoka adhezyjna ( próbka ). Kształt podłoża: A. walec o średnicy 3 mm, długość 30 mm; Schemat i fotografia fragmentu głowicy pomiarowej dylatometru. 1-elementy konstrukcji głowicy pomiarowej wykonanych ze szkła kwarcowego, 2-próbki (2a-badana, 2b-odniesienia-w przypadku względnych zmian wydłużeń), 3 dyski czujników temperatury, 4-symbole strumieni energii cieplnej z układu grzewczego dylatometru, 5-popychacze czujników LVDT dylatometru 1 2 3 5 4 2a 2b

B. płaskownik o długości 30 mm, szerokości 3 mm, grubość (140-170) µm

Powłoka: - osadzona próżniowo-plazmowymi technikami PVD na powierzchni bocznej walca lub obustronnie w przypadku podłoża w kształcie płaskownika - jedno lub wielowarstwowa - grubości powłok typowe dla technologii powłok przeciwzużyciowych (1,5 8(?) µm). Warunki osadzania: - w ramach procesów samodzielnych (np. w celu optymalizacji technologii, w tym optymalizacji wzajemnej konfiguracji elementów komory technologicznej i obrabianego elementu lub detekcji pęknięć w obszarze interfejsu podłoże-powłoka, detekcji odkształceń plastycznych, itp ) - w ramach procesów rutynowych z wsadem modyfikowanych narzędzi; próbka świadek opcja wskazana przy realizacji projektu (system ekspertowy, optymalizacja Taguchi, powiązanie z danymi z testów narzędzi półprzemysłowych i przemysłowych)

WŁAŚCIWOŚCI METODY - badana próbka jest/może być odwzorowaniem materiałowym i technologicznym danego procesu osadzania powłok na elementach użytkowych z wyłączeniem uwarunkowań związanych z wpływem parametrów określających właściwości fizyczne i energetyczne powierzchni obrabianych elementów na warunki wzrostu osadzanych powłok. - ilościowe rezultaty badań diagnostycznych mogą być relacjonowane jedynie w ujęciu zmian względnych wyznaczanych parametrów. Opcje pomiarów: A.- z próbką odniesienia (np. z podłożem bez powłoki) - bez próbki odniesienia z zachowaniem funkcji kompensacji rozszerzalności głowicy B.- bez atmosfery ochronnej - z atmosferą ochronną

ZAGADNIENIA NAUKOWE ZWIĄZANE Z WDROŻENIEM METODY Zagadnienia termosprężystości sprzężonej* w zdefiniowanej przestrzeni (obiekcie) pokrytej warstwą lub powłoką wielowarstwową innego materiału. Zagadnienia transportu i redystrybucji strumienia ciepła w materiałach o zróżnicowanych właściwościach cieplnych. Zagadnienia pomiarów efektów cieplnych z udziałem obiektów inercyjnych. Właściwości metod Analizy Termomechanicznej (TMA) i Dynamicznej Analizy Mechanicznej (DMA) z wykorzystaniem modulowanych zmian temperatury. Parametry technologii PVD warstw lub powłok wielowarstwowych zastosowanych do preparatyki badanych modeli podłoże-powłoka adhezyjna a kinetyka termomechanicznych sprzężeń między podłożem, warstwą przejściową i adhezyjną powłoką. * Termosprężystość sprzężona-uwzględnia się pełne sprzężenie pola temperatury i pola odkształcenia: zmiana temperatury wpływa na zmianę odkształcenia, ale również zmiana pola odkształcenia wpływa na zmianę temperatury.

Termomechaniczna analiza z modulacją tempetarury MT TMA

Przykłady zestawień modeli układów podłoże powłoka adhezyjna

EFEKTY ESTYMACJI NAPRĘŻEŃ I ODKSZTAŁCEŃ Obliczenia numeryczne wykonane w celu oszacowania wielkości odkształceń podłoża wynikających z interakcji termomechanicznych między podłożem a adhezyjną powłoką w warunkach sterowanego wyżarzania badanych układów podłoże-adhezyjna powłoka do temperatury 850 o C:.w walcowym modelu układu podłoże-powłoka adhezyjna. Rozpatrywano płaski element skończony stanowiący fragment osiowego przekroju modelu o wymiarach 700 μm x 2000 μm i grubości 2 μm umieszczony w centralnej części przekroju wzdłuż osi 0Y. Do dyskretyzacji podłoża ustalono 21 000 elementów, natomiast do dyskretyzacji warstwy 11 000 elementów. W obliczeniach z zastosowaniem programu ANSYS 5.7. przyjęto parametry E, ν, α dla podłoża z żelaza Armco oraz spieku WCCo6, dla warstwy: azotek tytanu TiN o grubości 2 µm.

Rozkład naprężeń termicznych dla układu Fe-TiN: wartość i rozkład naprężeń płaskich σ th w warstwie TiN o grubości 2μm w połowie długości modelu wartość i rozkład naprężeń σ th w podłożu Fe wzdłuż całej długości wg. K. Pietruszka

Naprężenia zredukowane w warstwie w temperaturze pokojowej w warstwie TiN układu Fe-TiN w warstwie TiN układu WCCo-TiN

Naprężenia zredukowane w podłożu Fe w temperaturze pokojowej..układu Fe TiN Naprężenia zredukowane w podłożu WCCo..układu WCCo TiN wg R. Kucharskiego (prace nie publikowane) Wartość Fe TiN WCCo TiN naprężenia zredukowane w warstwie [GPa] 2.74 3.79 naprężenia rozciągające w warstwie [GPa] 1.7-3.43 naprężenia zredukowane w podłożu [MPa] 20.1 67 naprężenia rozciągające w podłożu [MPa] -13.1 41.7

Obliczone odkształcenia podłoża w funkcji temperatury dla układu Fe-TiN wg. R. Kucharskiego nie publikowane

Eksperymentalne odkształcenia podłoża w funkcji temperatury dla układu Fe-TiN

.dla układu Fe-TiN z podłożem w kształcie płaskownika, temperatura osadzania 400 o C y g warstwa podłoże h z x l s Dane do obliczeń: 1.długość l = 30mm 2.szerokość s = 3mm 3.grubość podłoża h = 140μm 4.grubość warstwy TiN g = 2μm 5.temperatura osadzania T dep = 400 C 6.temperatura pokojowa T o = 20 C Odkształcenie (wydłużenie) układu ε [μm] Bez warstwy Z warstwa 156,18 153,08 Różnica 3,10 μm

..dla podłoży walcowych naprężenia termiczne σ th... w/g P. Myśliński, W. Precht, L. Kukiełka, P. Kamasa, K. Pietruszka, P. Małek, A possibility of application on MT DIL to the residual stresses analysis the hard coating-substrate system, Journal of Thermal Analysis and Calorimetry, 77 (2004) 253-258 WNIOSEK GENERALNY z obliczeń: Wymagana rozdzielczość pomiarów zmian wydłużenia liniowego podłoża nie mniejsza niż 0,01 µm

Charakterystyka urządzenia badawczego ( dylatometru kompensacyjnego) Właściwe warunki metrologiczne badań zapewniono poprzez: A. Wykorzystanie indukcyjnego czujnika przesunięć liniowych HP LVDT (high precision linear variable differential transformer) firmy TESSA (+ czytnik elektroniczny) o rozdzielczości 0,01 µm. B. Opracowanie i skonstruowanie dylatometru różnicowego z radiacyjno - konwenkcyjnym układem grzewczym. uchwyt z próbką układ grzewczy termoelement popychacz czujnik przemieszczenia głowica pomiarowa komora pomiarowa układ regulacji czujników

DIL DC / m < A DIL > / m T s -T o / o C C. Zastosowanie różnicowej dylatometrii (analizy termomechanicznej TMA) z modulacją temperatury MT TMA T s (t) = To + < q > t + A Ts sin ωt ω = 2 Π f Podstawowa właściwość dylatometrii (analizy termomechanicznej TMA) z modulacją temperatury (MT TMA) polega na możliwości separacji odwracalnych zmian temperatury i wydłużeń próbki od nieodwracalnych zmian tych parametrów. Pozwala to na detekcje efektów cieplnych i mechanicznych z czułością 1000. krotnie większą niż z zastosowaniem wyłącznie zmian liniowych temperatury układu grzewczego urządzenia badawczego wg Y. Kraftmakher, Modulated Calorimetry and Related Techniques, Elsevier (2002) Przykład: 80 70 60 50 40 30 20 10 0 T o +<q>t+a T sin t T o <q>t A T sin t -10 0 200 400 600 800 1000 1200 Time / s 325 300 275 250 225 200 175 150 125 100 75 50 25 0 Fe < A DIL > = - 0,35 m (a) (b) 2,0 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 200 400 600 800 0,5 Temperature ( o C)

Ogólne zdefiniowanie właściwości analizy MT TMA: sygnał pomiarowy złożony jest z dwóch składowych: dl/dt = α. (dt/dt) + f (t,t) gdzie α = (dl/dt) jest cieplnym współczynnikiem rozszerzalności. Pierwszy składnik reprezentuje odwracalne zmiany wydłużeń próbki, natomiast f (t,t) jest pewną funkcją temperatury i czasu reprezentującą zmiany długości próbki pojawiające się wskutek relaksacji naprężeń w próbce lub odkształceń w wyniku przyłożonego obciążania (!) i jest częścią równości reprezentującą nieodwracalne zmiany wydłużeń. Przedmiotem dekonwolucji Fouriera są rejestrowane sygnały MT TMA czyli: - odpowiedzi termiczne z czujnika (czujników) temperatury próbki - odpowiedzi dylatometryczne z czujnika LVDT dylatometru.

Produktami operacji dekonwolucji są następujące dane do analizy zmian odkształceń podłoża: - dane dotyczące odwracalnych zmian temperatury próbki w funkcji czasu: Tp DC

-dane dotyczące odwracalnych zmian wydłużeń próbki w funkcji czasu DIL DC,

< A T >/ o C < A L > / m - oraz dotyczące nieodwracalnych efektów cieplnych i dylatometrycznych zawartych w odpowiedziach próbki na pobudzenie cieplne A Ts sin ωt: < A T > i < A L > w funkcji temperatury lub czasu, < A T > jest bieżącą amplitudą odpowiedzi cieplnej < A L > bieżącą amplitudą odpowiedzi dylatometrycznej. 10 < A T > 8 B C 4 < A L > A B 6 4 2 2 0 0-2 -4-6 -2-8 -10 8000 10000 12000 14000 Czas / sek -4 8000 10000 12000 14000 Czas / sek

Do detekcji zmian oddziaływań termomechanicznych przyjęto wskaźnik alpha m AC zdefiniowany następująco: α m AC(f) = < A L > / Lm ot < A T > gdzie znacznik m oznacza, że mamy do czynienia w badanej próbce z mechanicznym oddziaływaniem adhezyjnej powłoki na podłoże, L ot jest bieżącą początkową wartością długości podłoża, f częstotliwością modulacji. 13,0 12,5 alphaac480 12,0 11,5 alpha m AC / ppm o C (-1) 11,0 10,5 10,0 9,5 9,0 8,5 8,0 7,5 7,0 7000 8000 9000 10000 11000 12000 13000 14000 Czas / sek

Ze względu na cieplnie inercyjne właściwości obiektu badanego moduły i fazy odpowiedzi <A T > i <A L > są zależne od częstotliwości modulacji Zmiana temperatury w osi symetrii czoła układu próbka uchwyt (kwarc), mapa rozkładu temperatury czoła uchwytu kwarcowego z próbką po czasie 3s Zmiana temperatury w osi symetrii czoła układu próbka uchwyt platyna i miedź, mapa rozkładu temperatury czoła uchwytu kwarcowego z próbką po czasie 0,03s Stąd wskaźnik α m AC(f) można zdefiniować również (w płaszczyźnie zmiennych zespolonych) α m AC(f) = (1/L) (L exp(j(ωt +φ L ))/T exp(j(ωt +φ T ))= =1/L o (L/T) exp(jω (φ L -φ T )) gdzie: L exp(j(ωt +φ L )) i T exp(j(ωt +φ T )) są cyklicznymi mierzonymi zmianami odpowiednio wydłużenia i temperatury i próbki a L średnią zmianą długości w czasie jednego okresu cyklicznych zmian.

Re DC 5 20 min 10 8 4 20 4 10 8 3 2 =16 s =64 s 2 4 1 1 0 2 0.5 1 0.5 min 0 1 2 3 4 5 Im Teoretyczny amplitudowo - fazowy nomogram zmian odpowiedzi < A T > dla podłoża z żelaza Armco i = 16 i 64 sek oraz A Ts =5 C w funkcji częstotliwości modulacji temperatury ( okresy 0,5 20 min.) wg P. Kamasy

Re <AT> ^ / uv x 7,1 6 <qm>=1 C/min,p=20min. <qm>=2, p=10 4 2 < AT > (<qm>) podłoże Fe poziom 300 C plik: ri 2 ampl. modul.=5o C DC <qm>=2.5, p=8 0 0-2 <qm>=40, p= 0.5 <qm>=7.5, p=2.67-4 <qm>=20, p=1 <qm>=10, p=2 <qm>=5,p=4-6 -1,5-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 Im <AT>^ / uvx7,1 Doświadczalny amplitudowo fazowy nomogram odpowiedzi < A T > dla podłoża z żelaza Armco w funkcji częstotliwości modulacji temperatury.

Doświadczalny amplitudowo fazowy nomogram odpowiedzi < A T > dla podłoża z żelaza Armco w funkcji temperatury

Doświadczalny amplitudowo fazowy nomogram odpowiedzi < A T > dla podłoża z żelaza Armco w funkcji temperatury

Doświadczalny amplitudowo fazowy nomogram odpowiedzi < A T > dla podłoża z żelaza Armco w funkcji temperatury

< AT >/ DC Optymalizacja częstotliwości modulacji z wykorzystaniem próbki HSS-TiAlN alpha AC / ppm x 1/oC < A dil > / DC DIL DC 10,45 10,425 10,4 10,375 10,35 HSS/TiAlN, plik tg1 alpha AC, air, obr.spr. p = 1 min. 10,325 10,3 p= 16 min. 10,275 10,25 10,225 10,2 10,175 10,15 10,125 p = 12 min. p = 7 min. p = 4 min. 10,1 10,075 10,05 p = 10 min. 10,025 0,85 1,35 1,85 2,35 2,85 3,35 3,85 ln < q m > / oc/min 1,15 1,1 1,1 p = 7 min. 1,05 p = 7 min. 1,05 1 0,95 p = 16 min. p = 5 min. p = 4 min. 1 0,95 0,9 p = 12 min. p = 6 min. p = 4 min. p = 2 min. 0,9 0,85 p =12 min. p = 10 min. p = 8 min. p = 6 min. p = 2 min. 0,85 0,8 p = 16 min. p = 10 min. 0,8 0,75 0,7 0,65 0,6 0,55 HSS/TiAlN, plik tg1 < AT > test 3/4 (< AT > / Tp DC) air, obr.spr., p = 1 min. 0,75 0,7 0,65 0,6 0,55 HSS/TiAlN, plik tg1 DIL test 3/4 (ampl. DIL / DIL DC) air, obr.spr., p = 1 min. 0,5 0,85 1,1 1,35 1,6 1,85 2,1 2,35 2,6 2,85 3,1 3,35 3,6 3,85 ln < q > 0,5 0,85 1,1 1,35 1,6 1,85 2,1 2,35 2,6 2,85 3,1 3,35 3,6 3,85 ln < qm > / oc/min

wg. Z. Suszyński, Termofalowe, metody badania materiałów i przyrządów elektronicznych.

Wyżarzanie (odprężanie) izotermiczne w zakresie 20-850 (900) o C i czasie dowolnym.

Temperatura pieca / o C Liniowe zmiany temperatur próbek z szybkościami optymalnymi dla metody ew. połączone z procesami wyżarzania 1000 800 600 400 200 0 0 10000 20000 30000 40000 50000 Czas / sek.

Temperatura pieca / o C Opcje badań diagnostycznych: 1000 1. z wykorzystaniem liniowych zmian temperatury próbek z szybkościami optymalnymi dla metody i ewentualnie połączone z procesami wyżarzania 800 600 400 200 0 0 10000 20000 30000 40000 50000 Czas / sek.

Temperatura 2. z wykorzystaniem standardowych sekwencji temperatura/czas połączone z procesami wyżarzania T odprężania faza C faza A start pomiaru faza B pomiar alpha m AC przed procesem wyżarzania faza C wyżarzanie próbki faza E pomiar alpha m AC po procesie wyżarzania T pomiarowa 1 2 faza B 1 2 faza E faza A Standardowa sekwencja pomiarowa faza D Czas faza F 900 0 C Substrate annealing T heat. proc. 550 0 C 400 0 C 350 0 C PVD Process TIN 200 o C 6 2 T meas. RT Przykład kolejności sekwencji pomiarowych

REZULTATY I INTERPRETACJE. Wskaźnikowanie degradacji oddziaływań mechanicznych powłoki na podłoże - wskaźnik alpha m AC po procesie osadzania powłoki (przed wyżarzaniem próbki α m AC(s) -wskaźnik alpha m AC po operacji wyżarzania próbki w temperaturze T α m AC(T) - wskaźnik względnej zmiany alpha m AC(T) jako skutek wyżarzania próbki w temperaturze T ((α m AC(s) - αm AC(T) ) / αm AC(s) ) 100 %

REZULTATY I INTERPRETACJE. alpha AC(4) / ppm o C^(-1) % zmian alpha AC(4) 10,00 Wskaźniki alpha AC(4) dla układów typu "Al", "Cr", "TiN" i podłoża Fe AF_1, 2, 4 CF_5, 6, 7 9,70 TF_5, 6, 7 9,50 9,50 Fe 9,82 9,00 8,61 8,57 8,68 8,70 8,50 8,35 8,16 8,00 7,90 7,89 7,50 7,61 7,53 7,00 przed odprężaniem po odprężaniu 320 o C/1godz. (atm. powietrze) po odprężaniu 520 o C/1godz. (atm. powietrze) po odprężaniu 650 o C/1 godz. (atm. powietrze) 88 % zmiana wskaźnika alpha AC(4) normalizowana do Fe, względem wartości po osadzeniu powłok, dla układów typu "Al", "Cr", "TiN" po kolejnych sekwencjach odprężania 85,61 68 66,69 AF_1, 2, 4 CF_5, 6, 7 TF_5, 6, 7 53,14 48 36,65 41,77 28 23,58 8 po odprężaniu 320 o C/1godz. (atm. powietrze) -12-8,04-8,75-1,06 po odprężaniu 520 o C/1godz. (atm. powietrze) po odprężaniu 650 o C/1 godz. (atm. powietrze)

% alpha AC(4) 12,00 10,00 AF_1, 2, 4 CF_5, 6, 7 TF_5, 6, 7 % zmiana wskaźnika alpha AC(4) dla układów typu "Al", "Cr", "TiN" po kolejnych etapach odprężania 11,34 8,63 8,00 6,00 5,77 6,53 4,00 4,28 2,00 2,13 0,00 0,00-0,57-2,00-1,18 po odprężaniu 320 o C/1godz. (atm. powietrze) po odprężaniu 520 o C/1godz. (atm. powietrze) po odprężaniu 650 o C/1 godz. (atm. powietrze)

% zmiany alpha AC(4) normalizowane 90 % zmiany wskażnika "alpha AC(4) normalizowane względem wartości po osadzeniu warstwy 82,69 80 CF_5,6,7 (673) 70 60 CF_9,11 (673 II) CF_1,2,3,4(625) CF 1,2 (kpcrn) 62,57 50 48,42 48,21 40 34,62 30 24,89 19,55 20 10 0 po odprężaniu 320oC/godz. (atm. powietrze) 0,60-10 -20-30 -3,62-9,50-20,83 po odprężaniu 520 oc/1 godz. (atm. powietrze) po odprężaniu 650 oc/1godz. (atm. powietrze) -40-50 -60-52,88

% zmian oddziaływań mechanicznych Detekcja wpływu napięcia polaryzacji narzędzi w czasie osadzania powłoki 65 60 55 50 45 40 35 30 % zmian oddziaływań mechanicznych warstwy TiN osadzonej na podłożu ze stali SW7M" pom. alpha AC w temp. 200 oc, pliki: st3,st5 Vs = -70 V Vs = -10 V 25 20 15 10 5-0,01% 330oC -31,27% 330 oc 7,12% 550 oc 60,58% 550 oc 5,08% 550 oc 43,41% 550 oc 0-5 1 2 3-10 -15-20 -25-30 -35 kolejny proces odprężania

Detekcja wpływu atmosfery gazowej w komorze pomiarowej czasie badań alpha AC m 4 8,6 8,55 8,5 8,45 8,4 8,35 8,3 8,25 8,2 8,15 8,1 8,05 8 7,95 7,9 7,85 7,8 7,75 7,7 7,65 7,6 7,55 7,5 7,45 7,4 7,35 7,3 7,25 7,2 7,15 7,1 7,05 7 plik AS1 = odprężanie ARGON plik FS1= odprężanie AIR 8,18 argon 7,98 air detekcja wpływu atmosfery Fe/TiN grub.podł. Fe =150 µm grub.warstwy TiN = 3,2 µm podłoże nie obciążone 7,57 argon 8,51 air przed procesem odprężania po proc. odprężania 310 o C / 2 godz.

%zmian alpha AC / ppm 1/C 1/oC Detekcja wpływu zastosowania obrotu próbek wokół własnej osi w czasie procesu osadzania 12 10 9,98 Fe/TiN Vs=-70V 8 6 4,95 5,31 TF4 5,8 6,12 BEZ obrotu Z obrotem 4 2 TF3/TF4 TF1/TF2 TF1 TF2 0,67 po 2. proc. odpr. 460oC/1 godz 0-2 różnica po osadz. po 1. proc. odpr. 460oC/1godz. TF3 TF4 TF1-1,17 TF3 TF2-1,72-4 -3,52-6 -8-10 -12-11,32

Detekcja dodatkowego obciążenia mechanicznego podłoża w czasie osadzania powłoki alphaac / ppm oc^(-1) 8,6 8,4 8,2 8 7,8 7,6 7,4 7,2 7 6,8 6,6 6,4 6,2 6 5,8 5,6 5,4 5,2 5 4,8 4,6 4,4 4,2 4 3,8 3,6 3,4 3,2 3 2,8 2,6 2,4 2,2 2 8,15 σt = - 2,08 GPa 4,32 detekcja wpływu obciążnia podłoża 5N Alpha AC m 4 Proces 1 grubość warstwy TiN = 2,2 µm σt = -2,33 GPa 8,01 (-1,71%) σt = -1,50 GPa 5,15 (+19,21 %) przed procesem 1 odprężania po proc. odprężania 2 310 o C/air BS = z obciążeniem podłoża, # podłoża 150 mkrm ES =, bez obciążenia podłoża, # podłoża 260 mkr σt = - 1,85 GPa

Detekcja dodatkowego obciążenia mechanicznego podłoża w czasie osadzania powłoki - cd Dane materiałowe: α s =13,7[10-6 K -1 ]; α c =9,35[10-6 K -1 ]; lo=30mm; grub. warstwy TiN=2µm Podłoże Fe Armco bez warstwy Podłoże Fe Armco z adhezyjną warstwą TiN osadzaną w temp. 400 o C Zadane parametry (temp., siła obciążenia) obc. 5N obc..5n bez obc. obc. 5N Przyrost wydłużenia ΔL [μm] Naprężenia termiczne (składowa) σ th [MPa] 1,56 + 157,74 + 156,18 podłoże 5,47 5,84 0-151,61 (δ l = +1,47) + 19 (δ =+6 MPa) bez obc. - 153,0 8 + 13 warstwa - - - -818-839

Korelacja rezultatów badań z pomiarami naprężeń metodą dyfrakcji RTG 3,6 3,486 3,4 3,2 3 Fc Fe/TiN N200oC, AIR ampl. modul. 10oC przed procesem odprężania po procesie odprężania 320 oc/2 godz. AIR 2,8 2,6 2,523 2,4 2,2 T 2 = -2,33 GPa = -1,85 GPa 1,8 1,6 1,605 1,549 1,632 1,618 1,674 1,489 1,4 1,2 1 σt = -1,76 GPa =-1,43 GPa = -1,89 GPa = -1,76 GPa = -2,06 GPa = -1,92 GPa próbka 1siteCS1 próbka siteas1a 2 próbka sitefs1 3 próbka 4 sitees1

delta L/Lo x 10^(-5) Preparatyka podłoży - detekcja wpływu atmosfery normalizowania 0-25 0,00 0,00-19,77-6,45-26,96 DIL DC delta L/Lo x 10^(-5) podłoże Fe Armco, wycięte z tasiemki -50-75 przed odprężaniem po odprężaniu 320-58,04-54,77-56,19-100 po odprężaniu 550 oc po odprężaniu 650 oc -125-150 Podłoze Fe odprężane w Ar 900 oc, wycięte z tasiemki Podłoże Fe odprężane w H 900 oc, wyciete z tasiemki po odprężaniu w 320 oc -175-200 -225-219,10-207,75-250

% zmiany alpha AC usrednione Preparatyka podłoży - detekcja wpływu atmosfery normalizowania % zmian alpha m ACśr. normalizowane do wartości przed odprężaniem % zmiany alpha AC usrednione normal w stosunku do wart przed odprężaniem 21 20 19 18 17 16 15 14 Odpręż. Ar 900, pom Ar, pwc Odpręż. Ar 900, pom Ar, wycięta z paska Odpręż. H 900, pom Ar wycięta z paska 14,44 19,98 19,23 13 12 12,29 11 10 9 8 7 7,64 8,56 6 5 5,20 4 3 2 1 0 1,18 2,82% po odprężaniu 320 oc po odprężaniu 550 oc po odprężaniu 650 oc po odprężaniu 320 oc bis

Preparatyka podłoży - detekcja wpływu temperatury/czasu wyżarzania podłoży w próżni na powtarzalność odkształceń w funkcji temperatury

c.d. Preparatyka podłoży - detekcja wpływu temperatury/czasu wyżarzania podłozy w próżni na powtarzalność odkształceń w funkcji temperatury alpha AC / ppm o C -1 alpha AC / ppm o C-1 alpha AC / ppm 10 o C-1 12,5 12,0 11,5 11,0 10,5 10,0 Podloze HSS (530 o C/6 h, vacuum) 1 wyzarzanie/air p = 2,32 % p=8 min., ampl.=10 o C, <q>=4,75 o C/min plik:sw10 12,5 12,0 11,5 11,0 10,5 10,0 Podloze HSS (530 o C/6 h, vacuum) 2. wyzarzanie/air p = 0,54 % p=8 min., ampl.=10 o C, <q>=4,75 o C/min plik:sw10 9,5 9,0 8,5 150 175 200 225 250 275 300 325 350 375 400 425 450 475 12,5 12,0 11,5 11,0 Temperatura podloza / o C Podloze HSS (530 o C/6 h, vacuum) 3. wyzarzanie/air p = 0,04 % p=8 min., ampl.=10 o C, <q>=4,75 o C/min plik:sw10 9,5 9,0 8,5 150 200 250 300 350 400 450 Temperatura podloza/ o C 10,5 10,0 9,5 9,0 8,5 150 200 250 300 350 400 450 Temperatura podloza / o C

Optymalizacja częstotliwości modulacji test powtarzalności odpowiedzi <A T > i <A L > dla częstotliwości z zakresu równowagowego

Temperatura probki / o C Wskaźnikowanie degradacji oddziaływań mechanicznych powłoki na podłoże z wykorzystaniem rejestracji zmian powierzchi pola pod krzywa alpha m AC 500 400 300 200 100 I. Wersja 0 wskażnikowania 0 10000 20000 30000 40000 50000 Czas /sek

50 45 40 SW7TiNlezak SW7CrCN1 % s 250-450 o C alpha m AC(4) /ppmo C (-1) 35 30 25 20 15 10 5 0 1 2 3 4 Po i-tym wyzarzaniu 520 o C/ 2 godz. air 50 45 SW7TiNlezak,plikSWJ12 SW7CrCN1, plikswcrcn-1 WCG25lezak,plikWCG25-1 FeG25lezak.,plikFe-TiN TiCN TiAlN % s 250-450 o C alpha m AC(4) /ppmo C (-1) 40 35 30 25 20 15 10 5 0 1 2 3 4 5 Po i-tym wyzarzaniu 520 o C/ 2 godz. air

mac / 10-6 0 C -1 II. wersja wskaźnikowania 14 3 rd heating proc. 2 nd heating proc. Fe / TiCN 13 plik: tst17 modul:2(sin10,1) 12 11 10 9 8 1 st heating proc. 200-550 = 26,89% 7 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 Temperature / o C

Opisowa ocena stabilności termicznej badanych struktur DC DIL / m DC DIL / m DC DIL / m 22,4 22,2 22,0 21,8 21,6 21,4 21,2 21,0 DELTA DC DIL = 1,18 m DC DIL Fe/TiN plik: sitea1 N320 oc, atm. Ar 46800 50400 54000 Time / sec 27,3 27,2 27,1 27,0 26,9 26,8 26,7 26,6 26,5 26,4 26,3 26,2 26,1 26,0 25,9 25,8 25,7 DC DIL plik: siteb1 N320 o C, atm Air DELTA DC DIL = 0,80 m 21600 25200 28800 Time / sec. D 24,0 23,9 23,8 23,7 DC DIL Fe/TiN plik: sitea1a N320 o C, atm. AIR 23,6 23,5 23,4 23,3 23,2 23,1 23,0 21600 25200 28800 Time / sec.

Zakres koniecznych uzgodnień metodologicznych w zakresie standardowych procedur diagnostycznych w ramach projektu 1. Ustalenie jednolitych testowych profili temperaturowych 2. Wybór sposobu wskaźnikowania degradacji oddziaływań mechanicznych powłoki na podłoże poprzez: a) rejestrację wskaźnika alpha m AC na stałym poziomie temperatury (200 o C) b) rejestrację wskaźnika alpha m AC w funkcji temperatury lub czasu w ustalonym zakresie. 3. Wybór atmosfery gazowej w czasie badań ( utleniająca lub ochronna) 4. Dane dodatkowe, np. zmiany wskaźnika alpha m AC w trakcie wyżarzania, rejestracja odkształceń podłoża DC po kolejnych procesach wyżarzania, itp. 5. Opisowa ocena stabilności.

Budapeszt, lipiec, 2007 termomechanika może zaszokować!

Politechnika Koszalińska Politechnika Koszalińska Instytut Mechatroniki, Nanotechnologii i Techniki Próżniowej Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych Badania finansowane ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka, działanie 1.3. 2007-2013

Politechnika Koszalińska Instytut Mechatroniki, Nanotechnologii i Techniki Próżniowej Instytut Mechatroniki, Nanotechnologii i Technik Próżniowych Dziękuję za uwagę Politechnika Koszalińska