Jerzy Falandysz, Magdalena Gucia, Aneta Mazur

Podobne dokumenty
Izabela Kowalewska, Leszek Bielawski, Jerzy Falandysz

Krzysztof Chudzyński, Leszek Bielawski, Jerzy Falandysz

WYBRANE PIERWIASTKI W OWOCNIKACH KOŹLARZA BABKI (LECCINUM SCABRUM) Z OKOLIC MIASTA STARACHOWICE* )

ZAWARTOŚĆ WYBRANYCH PIERWIASTKÓW W OWOCNIKACH GA SKI ZIELONKI TRICHOLOMA EQUESTRE (L.) KUMMER Z OKOLIC GMINY RZECZENICA* )

Izabela Kowalewska, Leszek Bielawski, Jerzy Falandysz

RTĘĆ W TRZECH GATUNKACH GRZYBA MAŚLAK Z NIEKTÓRYCH MIEJSC W POLSCE

SKŁADNIKI MINERALNE I WARTOŚCI WSPÓŁCZYNNIKA ICH NAGROMADZANIA W OWOCNIKACH MAŚLAKA ŻÓŁTEGO (Suillus grevillei) Z OKOLIC ZALEWU WIŚLANEGO* )

RTĘĆ W KRAJOWYCH PODGRZYBKACH BRUNATNYCH (Xerocomus badius)

ZAWARTOŚĆ I WSPÓŁCZYNNIKI NAGROMADZANIA RTĘCI PRZEZ GOŁĄBKA BRUDNOŻÓŁTEGO (Russula ochroleuca)* )

ZAWARTOŚĆ RTĘCI W GRZYBACH WIELKOOWOCNIKOWYCH Z OBSZARU WOJEWÓDZTWA ZACHODNIOPOMORSKIEGO

ZAWARTOŚĆ RTĘCI W KOŹLARZU CZERWONYM LECCINUM RUFUM Z TERENU WYSOCZYZNY BIAŁOSTOCKIEJ I WYŻYNY KIELECKO-SANDOMIERSKIEJ* )

ZAWARTOŚĆ WYBRANYCH MAKRO- I MIKROELEMENTÓW W RÓŻNYCH GATUNKACH GRZYBÓW WIELKOOWOCNIKOWYCH Z OKOLIC WOJEWÓDZTWA ŁÓDZKIEGO* )

ZAWARTOŚĆ I BIOKONCENTRACJA RTĘCI U MUCHOMORA CZERWONAWEGO (Amanita rubescens) Z POLSKI POŁNOCNEJ

Wpływ niektórych czynników na skład chemiczny ziarna pszenicy jarej

WYDAJNOŚĆ NAGROMADZANIA RTĘCI PRZEZ MUCHOMORA MGLEJARKĘ (Amanita vaginata) I RDZAWOBRĄZOWEGO (A. fulva)* )

Dorota Kalembasa*, Marcin Becher*, Dariusz Rzymowski*

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1050

Anna Spodniewska*, Dariusz Barski*, Arkadiusz Zasadowski*

Warszawa, dnia 25 lutego 2015 r. Poz. 257 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 6 lutego 2015 r. w sprawie komunalnych osadów ściekowych

a. ph, zawartości makroskładników (P, K, Mg) w 899 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 12 próbkach gleby,

a. ph, zawartości makroskładników (P, K, Mg) w 700 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 10 próbkach gleby,

a. ph, zawartości makroskładników (P, K, Mg) w 956 próbkach gleby, b. zawartości metali ciężkich (Pb, Cd, Zn, Cu, Ni i Cr ) w 14 próbkach gleby,

PRZEDMIOT ZLECENIA. Odebrano z terenu powiatu Raciborskiego próbki gleby i wykonano w Gminie Kornowac:

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

PRZEDMIOT ZLECENIA :

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 13 lipca 2010 r. w sprawie komunalnych osadów ściekowych. (Dz. U. z dnia 29 lipca 2010 r.

ZA W A RTO ŚĆ R TĘCI W G RZY BACH JA D A LN Y CH NA T E R E N IE W YŻYNY W IELUŃSKIEJ*

OCENA WYNIKÓW BADAŃ W GMINIE KUŹNIA RACIBORSKA. gleba lekka szt./ % 455/2200 0/0 119/26 53/12 280/61 3/1

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 13 lipca 2010 r. w sprawie komunalnych osadów ściekowych2), 3)

ZAWARTOŚĆ CYNKU, OŁOWIU I KADMU W PODGRZYBKU BRUNATNYM (XEROCOMUS BADIUS (FR.) E.) ZEBRANYM W SILNIE ZANIECZYSZCZONYM KOMPLEKSIE LEŚNYM

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1050

SPRAWOZDANIE Z BADAŃ Nr 94/DLS/2015

Prawdziwy rozwój człowieka, zwierzęcia i roślin zależy od gleby Hipokrates

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 274

WARTOŚĆ ODŻYWCZA WYBRANYCH PRODUKTÓW ŻYWNOŚCI TRADYCYJNEJ.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 277

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 325

ZAWARTOSC NIEKTÓRYCH METALI SLADOWYCH W ODMIANOWYCH MIODACH PSZCZELICH

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 274

0LHMVFHLURN SUyEHN UHGQLD 5R]VW S SL P +RODQGLD1LHPF\6]ZDMFDULD. 7XUFMD r

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 274

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 274

Lista badań prowadzonych w ramach zakresu elastycznego nr AB 550

Badania stężeń metali w wodach powierzchniowych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 439

10,10 do doradztwa nawozowego 0-60 cm /2 próbki/ ,20 Badanie azotu mineralnego 0-90 cm. 26,80 C /+ Egner/

Dz.U. 199 Nr 72 poz. 813

Zawartość wybranych metali ciężkich w grzybach jadalnych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1186

ZAKRES: AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1214

Stan odżywienia drzewostanów na obszarze Sudetów i Beskidu Zachodniego

METALE CIĘŻKIE W UKŁADZIE GLEBA-ROŚLINOŚĆ W ŚRODOWISKU WIELKOMIEJSKIM

ANEKS 2 Zalecane metody analiz chemicznych wody, pobieranie, przechowywanie i utrwalanie próbek

Problemy oznaczania pierwiastków w osadach i glebie Marcin Niemiec, Jacek Antonkiewicz, Małgorzata Koncewicz-Baran, Jerzy Wieczorek

BADANIE NAD PRZYDATNOŚCIĄ WYBRANYCH GATUNKÓW GRZYBÓW DO RÓWNOCZESNEJ BIOINDYKACJI OŁOWIU I KADMU

PIERWIASTKI SZKODLIWE DLA ZDROWIA W GRZYBACH JADALNYCH W POLSCE

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1525

Analiza środowiskowa, żywności i leków CHC l

Aleksandra Bielicka*, Ewa Ryłko*, Irena Bojanowska* ZAWARTOŚĆ PIERWIASTKÓW METALICZNYCH W GLEBACH I WARZYWACH Z OGRODÓW DZIAŁKOWYCH GDAŃSKA I OKOLIC

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 921

Badania biegłości w zakresie oznaczania składników mineralnych w paszach metodą AAS przykłady wykorzystania wyników

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1401

PCA Zakres akredytacji Nr AB 180 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZE. Nr AB 180

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1651

KALKULACJA CENY OFERTY Odczynniki do analiz instrumentalnych

MIKROELEMENTY W GRZYBACH JADALNYCH ZEBRANYCH W LASACH WOJEWÓDZTWA ZACHODNIOPOMORSKIEGO

monitoringu przyrody.

WPŁYW MYCIA NA ZMNIEJSZENIE ZAWARTOŚCI METALI W ROŚLINACH ZANIECZYSZCZONYCH PRZEZ EMISJE PRZEMYSŁOWE

Opłaty za przekroczenie warunków wprowadzania ścieków przemysłowych do urządzeń kanalizacyjnych

STAN WŁAŚCIWOŚCI AGROCHEMICZNYCH GLEB I ZANIECZYSZCZEŃ METALAMI CIĘŻKIMI GRUNTÓW NA UŻYTKACH ROLNYCH STAROSTWA POWIATOWEGO RACIBÓRZ W GMINIE NĘDZA

OCENA WYNIKÓW BADAŃ W GMINIE KUŹNIA RACIBORSKA

"Metale ciężkie w osadzie z wiejskiej oczyszczalni ścieków i kompoście - ocena przydatności do rolniczego wykorzystania"

OŚRODEK BADAŃ PODSTAWOWYCH PROJEKTÓW I WDROŻEŃ OCHRONY ŚRODOWISKA I BIOTECHNOLOGII "OIKOS" SP. Z O.O.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1525

IMPACT OF BIOLOGICAL WASTEWATER TREATMENT PONDS ON THE GROUND ENVIRONMENT

Dyrektywa o osadach ściekowych

MONITORING PRZEGLĄDOWY

Tabela 1. Zakres badań fizykochemicznych odpadu o kodzie w 2015 roku

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 610

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 006

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 118

Warszawa, dnia 28 czerwca 2012 r. Poz Rozporządzenie. z dnia 19 czerwca 2012 r. w sprawie wykazu laboratoriów referencyjnych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 141

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1432

CHEMOMETRYCZNA ANALIZA PODOBIEŃSTWA POMIĘDZY ZAWARTOŚCIĄ POTASU, WAPNIA, MAGNEZU, ŻELAZA, MANGANU I KADMU W EKSTRAKTACH WYBRANYCH MIESZANEK ZIOŁOWYCH

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 797

Sabina Dołęgowska, Zdzisław M. Migaszewski Instytut Chemii, Uniwersytet Humanistyczno- Przyrodniczy Jana Kochanowskiego w Kielcach

Grzegorz Zając*, Joanna Szyszlak-Bargłowicz* OCENA ZAWARTOŚCI WYBRANYCH METALI CIĘŻKICH W MĄKACH CHLEBOWYCH

Badanie zmienności stężeń metali w osadach jeziornych Examination of variability of metal s concentrations in the lake sediments

Opłaty za przekroczenie warunków wprowadzania ścieków przemysłowych do urządzeń kanalizacyjnych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 933

Wyjaśnienie treści Specyfikacji Istotnych Warunków Zamówienia

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 817

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 817

W jaki metal zamieniał przedmioty dotyk mitycznego króla Midasa? złoto. srebro. platynę

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1539

STAN WŁAŚCIWOŚCI AGROCHEMICZNYCH GLEB I ZANIECZYSZCZEŃ METALAMI CIĘŻKIMI GRUNTÓW NA UŻYTKACH ROLNYCH STAROSTWA POWIATOWEGO RACIBÓRZ

Elektrochemia - szereg elektrochemiczny metali. Zadania

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1044

Transkrypt:

BROMAT. CHEM. TOKSYKOL. XL, 2007, 3, str. 249 255 Jerzy Falandysz, Magdalena Gucia, Aneta Mazur NIEKTÓRE SKŁADNIKI MINERALNE I ICH WSPÓŁCZYNNIKI BIOKONCENTRACJI W CZUBAJCE KANI (Macrolepiota procera) Z OKOLIC PONIATOWEJ W WOJ. LUBELSKIM* ) Zakład Chemii Środowiska i Ekotoksykologii Uniwersytetu Gdańskiego Kierownik: prof. dr hab. J. Falandysz Określono zawartość Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Sr, Rb i Zn w reprezentatywnej partii owocników (osobno kapeluszy i trzonów) czubajki kani oraz w wierzchniej warstwie (0 10 cm) gleby spod owocników z terenu Chodelskiego Parku Krajobrazowego w woj. lubelskim. Owocniki czubajki kani sa względnie bogate w K, P, Zn, Cu, Fe, Al i Mn, silnie nagromadzaja z podłoża Ag, Rb, Cu, Zn i Hg (BCF > 1), a wykluczaja Fe, Al, Pb, Cd (trzony), Ba, Sr, Ni i Co (BCF < 1). Hasła kluczowe: grzyby, skład mineralny, nagromadzanie, metale ciężkie. Key words: fungi, mushrooms, mineral composition, bioconcentration, heavy metals. Czubajka kania (Macrolepiota procera) (Scop.: Fr.) Sing, synonim Lepiota procera (Scop.) Quél., rodzaj: czubajka (Macrolepiota) Sing., rodzina: pieczarkowate (Agaricaceae), to gatunek pospolity na terenie Polski. Nazwy ludowe tego grzyba to kania, parasolnik lub sowa (1, 2). Jasnobrązowy kapelusz kani jest jadalny, osiąga 20 30 cm średnicy, ma miąższ biały i delikatny o smaku i zapachu orzechowym, a trzon jest niejadalny włóknisty i nieco zdrewniały (1). Wiele gatunków jadalnych grzybów rosnących w lasach i na łąkach cechuje, jak na organizmy żywe, duża lub bardzo duża, ale gatunkowo a po części też rodzajowo-zróżnicowana zawartość różnych pierwiastków metalicznych i metaloidów ważnych w żywieniu człowieka i toksykologii żywności (3 10). Inny aspekt to poznanie składu mineralnego grzybów z siedlisk jeszcze niezanieczyszczonych a w kontekście ryzyka powiększania się emisji metali do środowiska przyrodniczego ze źródeł antropogenicznych, a także interesujące jest zagadnienie właściwości bioindykacyjnych grzybów (11 14). Celem badań było określenie składu mineralnego (Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Sr, Rb i Zn) oraz ocena zdolności tego gatunku do nagromadzania lub wykluczania wymienionych pierwiastków (w oparciu o wartość współczynnika biokoncentracji; BCF) w owocnikach na terenie Chodelskiego Parku Krajobrazowego. * ) Podziękowanie: Badania wsparte finansowo przez Ministerstwo Nauki i Szkolnictwa Wyższego w ramach projektów nr 3 P06S 040 22 i DS/8250-4-0092-7.

250 J. Falandysz i inni Nr 3 MATERIAŁ I METODYKA Owocniki czubajki kani oraz glebę (15 owocników i 15 próbek podłoża glebowego warstwa 0 10 cm; masa próbek gleby ok. 100 g) z lasów na terenie gminy Poniatowa (nadleśnictwo Kraśnik) na zachodnim skraju Kotliny Chodelskiej pozyskano do badań w roku 2002. Miasteczko Poniatowa leży 40 km na południowy zachód od Lublina i wraz z gminą Poniatowa w części wchodzi w skład Chodelskiego Parku Krajobrazowego. W przypadku grzyba próbkę jednostkową stanowił pojedynczy owocnik (okaz zdrowy w pełni wyrośnięty i w dobrej kondycji o średniej wielkości typowej dla gatunku). W celu uniknięcia zbioru owocników pochodzących z tej samej grzybni oraz zapewnienia reprezentatywność próbek dla badanego terenu poszczególne okazy zbierano z miejsc przestrzennie zdecydowanie odległych od siebie. Owocniki starannie oczyszczano od piasku i liści (plastykowy nóż) bezpośrednio po pozyskaniu. Owocniki suszono w temperaturze pokojowej w przewiewnym, suchym i czystym miejscu przez kilka dni. Następnie, powietrzne suche okazy dosuszano do stałej masy w temp. 30 C w suszarce elektrycznej przez 72 godz. Dalej materiał (osobno kapelusz i trzon) ujednorodniano ucierając na proszek w moździerzu agatowym i do czasu analizy przetrzymywano woreczkach strunowych z folii polietylenowej. Próbki gleby pobrane w miejscach gdzie wyrosły grzyby oczyszczano z patyków, liści, korzeni, kamyków oraz bezkręgowców i pakowano do czystych woreczków z folii polietylenowej. Woreczki z glebą pozostawiano otwarte przez 2 3 tyg. w czystym i suchym pomieszczeniu w temperaturze pokojowej w celu wysuszenia. Tak przygotowaną powietrznie suchą glebę przesiewano przez sito ośrednicy oczek 1 mm, pakowano do fabrycznie nowych woreczków strunowych z folii polietylenowej i pozostawiano w archiwum próbek do czasu analizy. Podwielokrotność sproszkowanych próbek pojedynczych kapeluszy i trzonów (naważka 0,4 0,5 g) mineralizowano z 6 cm 3 stęż. HNO 3, zgodnie z opracowaną metodyką w kuchni mikrofalowej MARS 5 (CEM Corporation). W przypadku gleby analizowano próbki zbiorcze w tym celu trzy równoważne ilościowo próbki jednostkowe gleby z sąsiadujących ze sobą stanowisk łączono. Do analizy zawartości rtęci ogółem pobierano 3 gramowe próbki gleby, którą wstępnie mineralizowano w systemie otwartym przez 24 h na zimno z 2 cm 3 roztworu stężonego kwasu azotowego (65%, Suprapur, Merck), następnie dodawano 2 cm 3 roztworu stężonego kwasu siarkowego (98 %) i dalej mineralizowano na gorąco (3). W celu oznaczenia zawartości pozostałych pierwiastków podwielokrotność próbki zbiorczej gleby z trzech stanowisk (5 g) ługowano na zimno w zlewce kwarcowej z 20 cm 3 z roztworem (20%) kwasu azotowego (4). Zawartość Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, P, Pb, Rb, Sr, Zn oznaczano metodą atomowej spektrometrii emisyjnej z plazmą wzbudzoną indukcyjnie (ICP-AES), a rtęci ogółem techniką zimnych par bezpłomieniowej atomowej spektroskopii absorpcyjnej (CV-AAS) (3, 15). WYNIKI I ICH OMÓWIENIE Wartości średniej arytmetycznej, odchylenia standardowego oraz rozstępu stężeń badanych pierwiastków w przeliczeniu na masę wysuszonych owocników (osobno kapeluszy i trzonów) czubajki kani oraz w glebie spod owocników wraz z korespondującymi wartościami współczynnika biokoncentracji zestawiono w tab. I. Jadalne kapelusze czubajki w porównaniu z niejadalnymi trzonami przeciętnie cechowała większa zawartość K, P, Mg, Zn, Cu, Rb, Ag, Pb, Hg, Cd i Cr, a mniejsza Ca, Mn, Na, Ba, Sr, Fe, Al, Ni i Co. Wymieniona różnica jest szczególnie duża w przypadku kadmu (K Cd /T Cd = 13), a nieco mniejsza dla wapnia (T Ca /K Ca = 4,3) (tab. I). Spośród wymienionych pierwiastków kapelusze czubajki kani można uznać za względnie bogate w potas (49 ± 3 g/kg m.s.), fosfor (28 ± 1 g/kg m.s.) i magnez 2,5 ± 0,1 g/kg m.s.), ale też cynk (650 ± 36mg/kg m.s.), miedź (220 ± 33 mg/kg m.s.) czy srebro (16 ± 8 mg/g m.s.). W przypadku metali sklasyfikowanych jako toksyczne kapelusze kani szczególnie dużo zawierają ołowiu (5,9 ± 1,7 mg/kg m.s.), a nieco mniej rtęci (3,1 ± 0,9 mg/kg m.s.), kadmu (1,9 ± 1,0 mg/kg m.s.) i baru (1,3 ± 0,4 mg/kg m.s.). Do pierwiastków silnie nagromadzanych w kapeluszach (BCF > 1) przez czubajkę kanię zaliczyć można srebro (BCF 730 ± 630), potas (BCF 480 ± 170), fosfor (230 ± 42), miedź (BCF 125 ± 18) i rubid (BCF 100 ± 48), ale też cynk (BCF 59 ± 6), magnez (BCF 30 ± 7) i kadm (BCF 11 ± 6), a słabo sód (BCF 2,0 ± 1,2) i chrom (BCF 1,8 ± 0,4). Pierwiastki wykluczane (BCF < 1) w owocnikach przez kanię to żelazo, glin, ołów, bar, stront, nikiel i kobalt, a wykluczane tylko w kapeluszach to wapń i mangan.

Nr 3 Czubajka kania składniki mineralne 251 Tabela I Pierwiastki w kapeluszach i trzonach czubajki kani oraz w glebie (mg/kg m.s.) spod owocników i współczynniki (BCF) ich nagromadzania Table I Elements in the caps and stalks of the parasol mushroom and in soil (mg/kg d.m.) and their bioconcentration factors (BCF) Pierwiastek Kapelusz Trzon Gleba BCFK BCFT K 49000 ± 3000* 42000 52000 21000 ± 4000 12000 28000 110 ± 34 69 150 480 ± 170 280 740 190 ± 51 120 330 P 28000 ± 1000 26000 30000 13000 ± 2000 10000 16000 120 ± 24 98 150 230 ± 42 170 290 110 ± 20 84 170 Mg 2500 ± 100 2300 2700 1700 ± 200 1400 2100 89 ± 20 66 110 30 ± 7 23 39 20 ± 4 16 30 Zn 650 ± 36 560 710 310 ± 46 250 400 11 ± 1 9,7 12 59 ± 6 51 70 28 ± 4 21 40 Ca 440 ± 140 250 760 1900 ± 1100 600 4200 1300 ± 190 1100 1500 0,34 ± 0,11 0,22 0,55 1,5 ± 0,7 0,44 2,9 Cu 220 ± 33 170 320 110 ± 25 70 150 1,8 ± 0,2 1,6 1,9 125 ± 18 100 170 60 ± 13 44 89 Fe 120 ± 29 69 160 160 ± 64 73 270 780 ± 320 510 1300 0,18 ± 0,08 0,053 0,31 0,23 ± 0,14 0,057 0,51 Al 99 ± 61 24 240 115 ± 61 37 210 540 ± 70 480 620 0,19 ± 0,13 0,038 0,50 0,22 ± 0,13 0,075 0,44 Mn 85 ± 15 60 120 290 ± 170 86 630 210 ± 130 52 350 0,69 ± 0,54 0,17 1,7 2,3 ± 2,4 0,28 7,5 Rb 38 ± 7 27 53 21 ± 37 6,8 160 0,45 ± 0,21 0,25 0,71 100 ± 48 44 180 45 ± 50 12 220 Ag 16 ± 8 5,4 31 5,7 ± 2,8 1,6 11 0,031 ± 0,020 0,011 0,056 730 ± 630 130 2600 260 ± 220 28 890 Na 10 ± 7 3,2 26 21 ± 17 4,9 68 4,9 ± 1,7 2,7 7,0 2,0 ± 1,2 0,59 4,0 5,4 ± 6,1 0,89 25 Pb 5,9 ± 1,7 3,6 8,9 3,7 ± 0,9 1,9 5,5 8,6 ± 1,4 7,4 11 0,70 ± 0,20 0,38 1,1 0,43 ± 0,12 0,21 0,59 Hg 3,1 ± 0,9 1,8 4,6 1,6 ± 0,4 0,63 2,7 0,047 ± 0,010 0,035 0,063 69 ± 23 29 120 34 ± 9 10 46 Cd 1,9 ± 1,0 0,60 3,9 0,15 ± 0,21 0,01 0,69 0,17 ± 0,02 0,16 0,20 11 ± 6 3,8 25 0,85 ± 1,2 0,025 4,0 Ba 1,3 ± 0,4 0,82 2,1 4,2 ± 2,0 1,4 7,6 14 ± 2 12 17 0,098 ± 0,036 0,049 0,17 0,31 ± 0,17 0,10 0,62 Cr 1,3 ± 0,1 1,0 1,6 0,98 ± 0,22 0,75 1,6 0,76 ± 0,14 0,63 0,92 1,8 ± 0,4 1,1 2,5 1,3 ± 0,2 0,94 1,7 Sr 1,2 ± 0,3 0,90 1,9 4,4 ± 2,2 1,6 9,0 4,9 ± 0,8 4,0 5,6 0,25 ± 0,06 0,19 0,41 0,90 ± 0,40 0,29 1,7 Ni 0,29 ± 0,47 0,010 1,3 0,39 ± 0,95 0,010 3,6 0,80 ± 0,06 0,75 0,89 0,36 ± 0,59 0,0056 1,6 0,49 ± 1,2 0,0056 4,4 Co 0,22 ± 0,07 0,10 0,40 0,34 ± 0,12 0,20 0,65 0,34 ± 0,14 0,21 0,56 0,71 ± 0,29 0,18 1,2 1,2 ± 0,6 0,35 2,2 * Wszystkie wartości podane w tab. I oraz przytaczane w tekście pracy zaokra glono z dokładnościa do drugiej cyfry znacza cej, jeżeli była ona inna od zera.

252 J. Falandysz i inni Nr 3 Czubajka kania już wcześniej była obiektem badań, co do jej składu mineralnego, a dostępne dane dotyczą jednego lub większej liczby pierwiastków i często minimalnej liczby (pojedynczych) owocników z różnych miejsc w Europie. Zasadniczo brak jest w dostępnym piśmiennictwie naukowym danych o wartościach współczynnika biokoncentracji pierwiastków w owocnikach czubajki kani. Potas w ilości podobnej (27 30 g/kg m.s.), a fosfor w mniejszej (11,5 12 g/kg m.s.) w porównaniu z wykazaną w badaniach własnych (tab. I) wykrywano u czubajki kani na terenie Polski północnej oraz na Węgrzech (5, 16). W badaniach w Polsce, Finlandii i na Węgrzech magnez w kapeluszach czubajki wykrywano w mniejszym stężeniu (1200 1400 mg/kg m.s.) niż wykazano dla okazów z okolicy Poniatowej, a dla wapnia jest duża rozbieżność w podawanych wartościach stężeń: 60 (Polska), 130 (Finlandia) i 920 mg/kg m.s. (Węgry) (5, 17, 18). W innych badaniach miedź w kapeluszach lub całych owocnikach czubajki na terenach niezanieczyszczonych tym metalem wykrywano na ogół w stężeniu mniejszym niż w badaniach własnych, tj.: 130 (Polska), 19 225 (Słowenia), 120 (Finlandia), 160 i 130 180 (Czechy), 110 (Austria), 120 230 (Węgry) i 75 110 mg/kg m.s. (Włochy), a niemal w porównywalnych ilościach na terenach w rejonie oddziaływania hut miedzi na Słowacji 270 (kapelusze), 160 (trzony) i 240 260 mg/kg m.s. (całe owocniki) czy w okolicy huty rtęci tamże 230 320 mg/kg m.s. (5, 17 27). Owocniki czubajki kani w badaniach innych autorów cechowała średnio zdecydowanie mniejsza zawartość cynku: 90 (Polska), 87 91 i 380 (Słowenia), 160 (Finlandia), 95 (Czechy), 74 82 Austria), 84 91 (Włochy) i 93 96 mg/kg m.s. (Węgry) (5, 17, 18, 20 22). Z kolei żelazo gdzie indziej u kani na ogół wykrywano w podobnych ilościach jak w badaniach własnych: 80 (Polska), 130 (Finlandia), 91 i 200 260 (Czechy), 79 87 (Austria) oraz 100 120 mg/kg m.s. (Węgry) (5, 17, 18, 20, 21, 28, 29). Z porównania dostępnych danych o manganie w czubajce kani wynika, że badane okazy zawierające 85 ± 15 mg Mn/kg m.s. w kapeluszach i 290 ± 170 mg Mn/kg m.s. w trzonach można, na tle okazów z innych rejonów Europy, określić jako bardzo zasobne w ten pierwiastek. Mangan w kapeluszach lub całych owocnikach czubajki kani wykrywano w stężeniu: 14 (Polska), 17 i 45 65 (Czechy), 13 20 (Austria), 13 20 (Węgry), 7,8 13 (Słowenia), 6,9 11 (Włochy) i 8,3 mg/kg m.s. (Finlandia) (5, 17 21, 28, 23, 29). Danych o występowaniu rtęci w owocnikach czubajki kani z różnych rejonów Europy opublikowano stosunkowo dużo (3, 5, 19, 30, 31 41). Tak kapelusze jak i trzony czubajki kani na ogół cechuje duża zawartość rtęci ogółem. W kapeluszach lub całych owocnikach kani rtęć przeciętnie wykrywano w stężeniu: 0,89 1,0, 4,9 ± 3,1, 1,1 ± 0,2 i 5,3 ± 0,8 (Polska), 5,0 (Niemcy), 3,1 ± 1,5 9,0 ± 0,4 (Austria), 1,8 ± 0,1 4,7 ± 0,0 (Węgry), 2,0 6,0 (Słowenia), 0,96 (Finlandia) czy 1,5 ± 0,7 mg/kg m.s. (Hiszpania) (3, 5, 19, 30 39). Bardzo ciekawe dane o zdolności czubajki kani do nagromadzania rtęci pochodzą z Czech i Słowacji na terenach niezanieczyszczonych tym metalem w owocnikach wykrywano średnio od 3,3 ± 1,3 do 7,8 ± 0,6 oraz 5,0 ± 2,4 mg Hg/kg m.s., a 29 ± 25 mg/kg m.s. w okolicy huty miedzi (1990 1993) oraz 120 ± 71 mg/kg m.s. w okolicy huty rtęci (1990 1993) (40, 41). W innych badaniach w owocnikach kani ze stanowisk w okolicy tejże huty rtęci wykrywano 41 ± 32 (1990 1993) i 31 ± 31 mg Hg/kg m.s. (1997 1999) (26). Hymenofor (warstwa rodzajna nazywana też obłocznią, warstwą zarodnikotwórcza, hymenialną lub hymenium u owocnika), czyli blaszki czubajki kani to część, która jest bogata w rtęć (8,2 ± 11 mg/kg m.s.), a mniej zasobna jest pozostała reszta owocnika (1,6 ± 1,4 mg/kg m.s.) (42). Jak wspomniano zbadane owocniki cechowała względnie duża zawartość ołowiu (tab. I). Niemniej także i w innych krajach czubajka na terenach niezanieczyszczonych ołowiem zawierała względnie dużo tego pierwiastka, tj.: 2,1 ± 0,6 3,8 ± 0,4 (Czechy), 0,7 (Finlandia) i 5,0 ± 4,0 mg/kg m.s. (Francja) (34, 40, 43). W Polsce na terenach uprzemysłowionych Wieliczki i Jaworzna w 1987 r. u czubajki wykrywano, odpowiednio, 31 i 76 mg Hg/kg m.s. (44). Z kolei w okolicy hut miedzi i rtęci na Słowacji czubajka zawierała ołów w stężeniach, odpowiednio, 2,8 oraz 26 ± 27 mg/kg m.s. (25), a w innych badaniach w okolicy huty rtęci zawierała 62 ± 40 (1990 1993) i 30 ± 34 mg/kg m.s. (1997 1999) (26). Dyrektywą Komisji Europejskiej (KE) dopuszczalna zawartość ołowiu w grzybach z upraw wynosi 0,3 mg/kg masy mokrej co odpowiada wartości ok. 3,0 mg/kg masy suchej (45). Zatem tak w badaniach własnych jak i cytowanych autorów zawartość ołowiu w owocnikach czubajki kani pozyskanych na terenach klasyfikowanych jako niezanieczyszczone tym metalem na ogół zdecydowanie przekracza wymienioną wartość tolerancji. Kadm jest drugim pierwiastkiem, którego zawartość w grzybach jadalnych uprawowych jest limitowana na rynku europejskim do 0,2 mg Cd/kg masy mokrej (45). W świetle dyrektywy KE pojedyncze owocniki czubajki kani z okolic Poniatowej często zawierały za dużo kadmu (tab. I). Równie dużo lub więcej kadmu notowano u czubajki kani z Borów Tucholskich (1,6 ± 0,9 mg/kg m.s.),

Nr 3 Czubajka kania składniki mineralne 253 okolic Gubina (3,2 ± 2,4 mg/kg m.s.), Mierzei Wiślanej (12±6 mg/kg m.s.), Jaworzna (19 mg/kg m.s.) i Wieliczki (7,2 mg/kg m.s.) w kraju (44, 46). Za granicą u czubajki kani wykrywano kadm w równie zróżnicowanych ilościach jak w kraju: 1,8 ± 1,9; 0,61 ± 0,15 i 1,0 ± 0,1 (Czechy), 1,8 (Austria), 2,0 (Węgry), 2,0 (Niemcy), 1,2 mg/kg m.s. (Finlandia) (22, 34, 40, 47, 48). Na Słowacji w okolicy hut miedzi i rtęci u czubajki wykrywano kadm w ilości: 2,1; 5,9; 27 ± 8 (1990 1993) i 11 ± 13 mg/kg m.s. (1997 1999), a na terenach uprzemysłowionych w Słowenii od 5,7 do 11 mg/kg m.s. (19, 25, 26). Chrom u czubajki kani za granicą wykrywano w ilościach podobnych jak w badaniach własnych (tab. I), tj.: 0,14 ± 0,04 (Czechy), 0,42 (Austria), 0,60 2,7 (Węgry) i 0,53 0,76 mg/kg m.s. (Włochy) (20, 21, 49). Czubajka kanie w badaniach innych autorów była bardziej zasobna w nikiel niż okazy z okolic Poniatowej (tab. I). W okolicy Jaworzna i Wieliczki kanie zawierały, odpowiednio, 1,1 i 2,0 mg Ni/kg m.s. (44); w Czechach 0,8 ± 0,8; w Austrii 2,4; na Węgrzech 0,94 7,2, a we Włoszech 1,4-3,4 mg Ni/kg m.s. (18, 20, 21, 30, 49). Także kobalt na ogół w większym stężeniu notowano u kani w badaniach innych autorów: 0,27 ± 0,37 i 1,4 1,9 (Czechy), 0,44 (Austria) i 0,73 1,1 mg/kg m.s. (Włochy) (20, 21, 30, 50). W przypadku niektórych spośród oznaczanych pierwiastków dostępne dla porównania są jedynie dane dla czubajki kani z pojedynczych stanowisk w Europie. Sód w kapeluszach czubajki ze stanowiska w okolicy wsi Buszkowy Górne w Polsce północnej wykrywano w stęż. 69 ± 46 (39 120) mg/kg m.s. (5); glin na Węgrzech w stęż. 36 42 mg/kg m.s., stront w 2,0 6,1 mg/kg m.s., a bar w 2,0 4,0 mg/kg m.s. (18); srebro na Słowenii w 1,2 mg/kg m.s. (51). Jadalne kapelusze czubajki kani z Chodelskiego Parku Krajobrazowego na tle dostępnych danych dla okazów z innych rejonów Polski oraz Europy cechowała szczególna zasobność w magnez, fosfor, miedź, cynk i mangan. Badane owocniki cechowała także względnie duża zawartość (ponad aktualnie obowiązujące w Unii Europejskiej normy sanitarne) dla grzybów uprawowych ołowiu i kadmu. J. Falandysz, M. Gucia, A. Mazur SOME MINERAL ELEMENTS AND THEIR BIOCONCENTRATION FACTORS IN PARASOL MUSHROOM (MACROLEPIOTA PROCERA) FROM THE REGION OF PONIATOWA IN THE LUBELSKIE VOIEVODESHIP Summary Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Sr, Rb and Zn have been quantified in the caps and stalks of Parasol Mushroom and underlying soil substrate collected at the Chodelski Landscape Parc in Lubelskie Voievodeship in 2002. The edible caps of Parasol Mushroom, when compared to the inedible stalks, on the average contained higher quantities of K, P, Mg, Zn, Cu, Rb, Ag, Pb, Hg, Cd and Cr, and lower quantities of Ca, Mn, Na, Ba, Sr, Fe, Al, Ni and Co. The caps of Parasol Mushroom were relatively rich in potassium (49 ± 3 g/kg d.m.), phosphorous (28 ± 1 g/kg d.m.) and magnesium 2.5 ± 0.1 g/kg d.m.), but also in zinc (650 ± 36 mg/kg d.m.), copper (220 ± 33 mg/kg d.m.) or silver (16 ± 8 mg/g d.m.). As to elements classified as toxic, the caps of Parasol Mushroom were relatively abundant in lead (5.9 ± 1.7 mg/kg d.m.), and less in mercury (3.1 ± 0.9 mg/kg d.m.), cadmium (1.9 ± 1.0 mg/kg d.m.) and barium (1.3 ± 0.4 mg/kg d.m.). The elements that easily accumulate (BCF > 1) in the caps of Parasol Mushroom include silver (BCF 730 ± 630), potassium (BCF 480 ± 170), phosphorous (230 ± 42), copper (BCF 125 ± 18) and rubidium (BCF 100 ± 48), but also zinc (BCF 59 ± 6), magnesium (BCF 30 ± 7) and cadmium (BCF 11 ± 6), and, to a smaller extent, sodium (BCF 2.0 ± 1.2) and chromium (BCF 1.8 ± 0.4). The elements excluded (BCF < 1) from the fruiting bodies of the Parasol Mushroom were iron, aluminum, lead, barium, strontium, nickel and cobalt, while calcium and manganese were excluded only from the caps.

254 J. Falandysz i inni Nr 3 PIŚMIENNICTWO 1. Gumińska B., Wojewoda W.: Grzyby i ich oznaczanie. PWRiL, Warszawa, 1985. 2. http://grzyby.strefa.pl/indexp.html. 3. Falandysz J., Chwir A.: The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wiślana sand-bar, Northern Poland. Sci. Total Environ. 1997; 203: 221-228. 4. Falandysz J., Danisiewicz D.: Bioconcentration factors (BCF) of silver in wild Agaricus campestris. Bull. Environ. Contam. Toxicol. 1995; 55: 122-129. 5. Falandysz J., Szymczyk K., Ichihashi H., Bielawski L., Gucia M., Frankowska A., Yamasaki S.: ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit. Contam. 2001; 18: 503-513. 6. Gucia M., Falandysz J.: Total mercury content in parasol mushroom Macrolepiota procera from various sites in Poland. J. Phys. IV France, 2003; 107: 581-584. 7. Falandysz J., Kubota R., Kunito T., Bielawski L., Brzostowski A., Gucia M., Jędrusiak A., Lipka K., Tanabe S.: Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland. J. Phys. IV France, 2003; 107: 443-446. 8. Malinowska E., Szefer P., Falandysz J.: Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chemistry, 2004; 84: 405-416. 9. Falandysz J.: Mercury in mushrooms and soil of the Tarnobrzeska Plain, south-eastern Poland. J. Environ. Sci. Health. 2002; 37A: 343-352. 10. Falandysz J., Gucia M., Kawano M., Brzostowski A., Chudzyński K.: Mercury in mushrooms and soil from the Wieluńska Upland in South-central Poland. J. Environ. Sci. Heath. 2002; 37A: 1409-1420. 11. Nikkarinen M., Mertanen E.: Impact of geological origin on trace element composition of edible mushrooms. J. Food Compost. Anal. 2004; 17: 301-310. 12. Falandysz J., Lipka K., Gucia M., Kawano M., Strumnik K., Kannan K.: Accumulation factors of mercury in mushrooms from Zaborski Landscape Park, Poland. Environment International, 2002; 28: 421-427. 13. Zimmermannova K., Svoboda L., Kalać P.: Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated middle Spiś region, Slovakia. Ekológia, 2001; 20: 440-446. 14. Falandysz J., Lipka K., Kawano M., Brzostowski A., Dadej M., Jędrusiak A., Puzyn T.: Mercury content and its bioconcentration factors at Łukta and Morąg, Northeastern Poland. J. Agric. Food Chem. 2003; 51: 2835-2836. 15. Chudzyński K., Bielawski L., Falandysz J.: Składniki mineralne i wartości współczynnika ich nagromadzania w owocnikach maślaka żółtego (Suillus grevillei) z Beskidu Zachodniego. Bromat. Chem. Toksykol. 2007; 40: 159-166. 16. Vetter J.: Kallium-Gehalt von eßbaren Wildpilzen. Z. Lebensm. Unters. Forsch. 1994; 198: 33-35. 17. Hinneri S.: Mineral elements of macrofungi in oak-rich forests on Lenholm Island, inner archipelago of SW Finland. Ann. Bot. Fennici, 1975; 12; 135-140. 18. Vetter J.: Mineral element content of edible and poisonous macrofungi. Acta Alim. 1990; 19: 27-40. 19. Byrne A.R., Ravnik V.: Trace elemant concentrations in higher fungi. Sci. Total Environ. 1976; 5: 65-78. 20. Kalač P., Wittingerová M., Stašková I.: Obsah sedmi biogennich stopových prvk u v jedlých houbách. Potrav. Vedy, 1989; 7: 131-136. 21. Mutsch F., Horak O., Kinzel H.: Spurenelemente in höheren Pilzen. Z. Pflanzenphysiol. 1979; 94: 1-10. 22. Meisch H.U., Schmitt J., Reinle W.: Schwermetalle in höheren Pilzen: Cadmium, Zink und Kupfer. Z. Naturforsch. 1977; 32c: 172-181. 23. Santoprete G., Innocenti G.: Indagini sperimentali sul contenuto di oligoelementi nei funghi del bolognese e di alter provenienze. Rev. Micol. Ital. 1984; 13: 11-28. 24. Drbal K., Kalač P., Šeflová A., Šefl J.: Obsath mědi v některých druzich jedlých houb. Česká Mykol. 1975; 29: 184-186. 25. Kalač P., Nižanská M., Bevilaqua D., Stašaková I.: Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci. Total Environ. 1996; 177: 251-258. 26. Svoboda L., Zimmermannová K., Kalač P.: Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Sci. Total Environ. 2000; 246: 61-67. 27. Zimmermannová K., Svoboda L., Kalač P.: Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spiš region, Slovakia. Ekológia (Bratislava), 2001; 20: 440-446. 28. Schmitt J., Meisch H.U., Reinle W.: Schwermetalle in höheren Pilzen, II. Mangan und Eisen. Z. Naturforsch. 1977; 32c: 712-723. 29. Drbal K., Kalač P., Šeflová A., Šefl J.: Obsath stopových prvk u želaza a manganu v některých druzich jedlých hub. Česká Mykol. 1975; 29: 110-114. 30. Falandysz J., Brzostowski A., Nosewicz M., Danisiewicz D., Frankowska A., Apanasewicz D., Bielawski L.: Rtęć w grzybach jadalnych z terenu Trójmiejskiego parku Krajobrazowego. Bromat. Chem. Toksykol. 2000; 33: 177-182. 31. Falandysz J., Marcinowicz A., Chwir A.: Rtęć w jadalnych grzybach z terenu lasów kościerskich i Mierzei Wiślanej. Roczn. PZH. 1996; 47: 205-210. 32. Falandysz J., Kryszewski K.: Rtęć w jadalnych gatunkach grzybów w rejonie Gubina. Bromat. Chem. Toksykol. 1996; 29: 27-29. 33. Falandysz J.,

Nr 3 Czubajka kania składniki mineralne 255 Hałaczkiewicz J.: Zawartość rtęci w grzybach jadalnych na terenie Wyżyny Wieluńskiej. Roczn. PZH. 1999; 50: 253-259. 34. Kuusi T., Laaksovirta K., Liukkonen-Lilja H., Lodenius M., Piepponen S.: Lead, cadmium and Mercury in fungi in the Helsinki area and in unpolluted control areas. Z. Lebensm. Unters. Forsch. 1981; 173: 261-267. 35. Lasota W., Witusik M.: Zawartość rtęci w grzybach dziko rosnących i w podłożu. Prob. Hig. 1987; 32: 125-134. 36. Vetter J., Berta E.: Mercury content of some edible mushrooms. Z. Lebensm. Unters. Forsch. 1997; 205: 316-320. 37. Seeger R.: Quicksilbergehalt der Pilze. Z. Lebensm. Unters. Forsch. 1978; 160: 303-312. 38. Zurera G., Rincón F., Arcos F., Pozo-Lora R.: Mercury content in mushroom species in the Cordova area. Bull. Environ. Contam. Toxicol. 1986; 36: 662-667. 39. Aichberger K.: Untersuchungen über den Quecksilbergehalt österreichischer Speisepilze und seine Beziehungen zum Rohproteingehalt der Pilze. Z. Lebensm. Unters. Forsch. 1977; 163: 35-38. 40. Cibulka J., Šišák L., Pulkrab K., Miholová D., Száková J., Fučiková A., Slámová A., Sěhulová I., Barláková S.: Cadmium, lead, mercury and caesium levels in wild mushrooms and forest berries from different localities of the Czech Republic. Sci. Agric. Bohem. 1996; 27: 113-129. 41. Kalač P., Ślapetová M.: Mercury contents in fruiting bodies of wild growing edible mushrooms. Potrav. Vëdy, 1997; 15: 405-410. 42. Alonso J., Salgado M.J., Garcia M.A., Melgar M.J.: Accumulation of mercury in edible macrofungi: Influence of some factors. Arch. Environ. Contam. Toxicol. 2000; 38: 158-162. 43. Kirchner G., Daillant O.: Accumulation of 210 Pb, 226 Ra and radioactive cesium by fungi. Sci. Total Environ. 1998; 222: 63-70. 44. Grzybek J., Janczyk B.: Ilościowe oznaczanie ołowiu, kadmu i niklu za pomocą spektroskopii absorpcji atomowej w suchych owocnikach grzybów wielkoowocnikowych w Polsce. I. Acta Mycol. 1990; 26: 17-23. 45. Commission regulation (EC) No 466/2001 of 8 March 2001 setting maximum levels for certain contaminants in foodstuffs (Text with EEA relevance) (OJ L 77, 16.3.2001,p.1). Consolidated text produced by the CONSLEG system of the Office for Official Publications of the European Communities, CONSLEG: 2001R0466-05/05/2004. Office for Official Publications of the European Communities. 46. Falandysz J., Frankowska A., Gucia M., Piszczek M., Malinowska E., Bielawski L., Lipka K., Brzostowski A., Apanasewicz D., Strunnik K., Szefer P.: Kadm w grzybach wielkoowocnikowych z wybranych stanowisk w Polsce. Zesz. Nauk. Komitetu Człowiek i Środowisko PAN. 2000; 26: 285-291. 47. Vetter J.: Data on arsenic and cadmium contents of some common mushrooms. Toxicon, 1994; 32: 11-15. 48. Seeger R.: Cadmium in Pilzen. Z. Lebensm. Unters. Forsch. 1978; 166: 23-34. 49. Vetter J.: Chromium and nickel content of some edible mushroom species. Acta Alim. 1997; 26: 163-170. 50. Drbal K., Kalač P.: Obsath kobaltu v některých druzich jedlých hub. Česká Mykol. 1976; 30, 24-26. 51. Byrne A.R., Dermelj M., Vakselj T.: Silver accumulation by fungi. Chemosphere, 1979; 10: 815-820. Adres: 80-952 Gdańsk, ul. Sobieskiego 18.