Biocomposites based on PHB filled with wood or kenaf fibers

Podobne dokumenty
WPŁYW BIODEGRADACJI NA WŁAŚCIWOŚCI KOMPOZYTÓW NA OSNOWIE TERMOPLASTYCZNEJ SKROBI NAPEŁNIONEJ WŁÓKNAMI KENAFU LUB MĄCZKI DRZEWNEJ

Realizacja badań. Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

BARIERA ANTYKONDENSACYJNA

Sargent Opens Sonairte Farmers' Market

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Patients price acceptance SELECTED FINDINGS

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

THE PROPERTIES OF REINFORCED POLYPROPYLENE COMPOSITES HAVING DIFFERENT DISTRIBUTED FIBERS

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Stargard Szczecinski i okolice (Polish Edition)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

WPŁYW OBCIĄŻEŃ ZMĘCZENIOWYCH NA WYSTĘPOWANIE ODMIAN POLIMORFICZNYCH PA6 Z WŁÓKNEM SZKLANYM

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

WYKAZ DOROBKU NAUKOWEGO


A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.


Tychy, plan miasta: Skala 1: (Polish Edition)

Has the heat wave frequency or intensity changed in Poland since 1950?

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Narzędzia kosmetyczne Cosmetic and podiatry instruments

WIADRA I KASTRY BUDOWLANE BUILDING BUCKETS AND CONTAINERS

Mechanical properties of polypropylene copolymers composites filled with rapeseed straw

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2


Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

OCENA MOśLIWOŚCI ZASTOSOWAŃ WULKANICZNEGO TUFU JAKO NAPEŁNIACZA POLIMERÓW TERMOPLASTYCZNYCH

Lecture 18 Review for Exam 1

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Typ TFP FOR CRITICAL AIR CLEANLINESS AND VERY CRITICAL HYGIENE REQUIREMENTS, SUITABLE FOR CEILING INSTALLATION

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Installation of EuroCert software for qualified electronic signature

Krytyczne czynniki sukcesu w zarządzaniu projektami

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

WYKAZ PRÓB / SUMMARY OF TESTS. mgr ing. Janusz Bandel

Instrukcja obsługi. binding machine KRIS. instruction manual GDAŃSK ul. Krynicka 1 tel.: (058) fax: (058) ODDZIAŁ:

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Revenue Maximization. Sept. 25, 2018

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Konsorcjum Śląskich Uczelni Publicznych

ZELMOTOR Sp.z o.o Rzeszów; ul.przemysłowa 4a

FREZY PM; END MILLS PM

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

The Overview of Civilian Applications of Airborne SAR Systems

PRÓBY EKSPLOATACYJNE KOMPOZYTOWYCH WSTAWEK HAMULCOWYCH TOWAROWEGO

Streszczenie rozprawy doktorskiej

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

Profil Czasopisma / The Scope of a Journal

KOMPOZYTY POLIMEROWE Z ODPADAMI WŁÓKIEN POLIAMIDOWYCH

Typ VME FOR THE MEASUREMENT OF VOLUME FLOW RATES IN DUCTS

Wylewanie pianek miekkich i twardych - PUR. Pouring of soft and hard foams - PUR. TECHNOLOGIA POLIURETANÓW / POLYURETHANE TECHNOLOGY

January 1st, Canvas Prints including Stretching. What We Use

WYŁĄCZNIK CZASOWY OUTDOOR TIMER

PHYSICAL PROPERTIES OF POLYOXYMETHYLENE COMPOSITE WITH QUARTZ SAND AFTER UV AGEING

WYKAZ PRÓB / SUMMARY OF TESTS

deep learning for NLP (5 lectures)

Knovel Math: Jakość produktu

G14L LPG toroidal tank

HAPPY K04 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE! W5 W6 G1 T2 U1 U2 TZ1

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

ROZPRAWY NR 128. Stanis³aw Mroziñski

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

NEW WELTED 6" BLACK S3 REF

Zbiorniki ze stali nierdzewnych / Stainless steel tanks Usługi podwykonawcze / Subcontracting services

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

OpenPoland.net API Documentation

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Zbiorniki ze stali nierdzewnych / Stainless steel tanks

Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2

Transkrypt:

1 POLIMERY 11, 56,nr3 STANIS AW KUCIEL, ANETA LIBER-KNEÆ Tadeusz Kosciuszko Cracow University of Technology Institute of Applied Mechanics and Biomechanics al. Jana Paw³a II 37, 31-6 Kraków e-mail: stask@mech.pk.edu.pl, aliber@pk.edu.pl Biocomposites based on PHB filled with wood or kenaf fibers Summary In this paper, possibilities of processing biocomposites based on polyhydroxybutyrate (PHB) filled with 5 and wt. % of wood flour or kenaf fibers are presented. Mechanical properties (tensile strength, modulus of elasticity) under three testing temperatures, a absorption and its influence on properties, the process of biodegradation in the garden compost as well as SEM images of fractured composites are discussed. Modulus of elasticity and tensile strength increased with rising content of wood flour and kenaf fibres. The results show that PHB filled with kenaf fibers has higher mechanical properties, even despite higher ability to absorb. Tested biocomposites absorb and their mechanical properties decrease after exposure to. It is caused by beginning of biodegradation process and resolving a biodegradable biopolymer in. This property can be interesting for packaging especially for fresh produce like fruit or vegetables and for industrial products with short-time life cycles. Keywords: biocomposites, kenaf fiber, wood flour, mechanical properties. KOMPOZYTY NA OSNOWIE PHB NAPE NIANE W ÓKNAMI NATURALNYMI Streszczenie Wytworzono biokompozyty na podstawie polihydroksymaœlanu (PHB) nape³niane dodatkiem 5 lub % m¹czki drzewnej b¹dÿ w³ókien kenafu. Zbadano ich w³aœciwoœci mechaniczne w statycznej próbie rozci¹gania (tabela 1), ch³onnoœæ wody (rys. ), oceniono tak e wp³yw temperatury (rys. 3 6) oraz kompostowania na w³aœciwoœci otrzymanych kompozytów (tabela ). Zaobserwowano 5-krotny wzrost modu³u sprê ystoœci oraz 1,5-krotny wzrost wytrzyma³oœci na rozci¹ganie kompozytów PHB z dodatkiem % w³ókien kenafu. Kompozyty PHB nape³niane w³óknami kenafu, pomimo wiêkszej zdolnoœci do wch³aniania wody, charakteryzuj¹ siê lepszymi w³aœciwoœciami mechanicznymi ni nape³niane m¹czk¹ drzewn¹. Obrazy SEM przedstawiaj¹ pêkniête, prostopadle do p³aszczyzny rozci¹gania, w³ókna kenafu (rys. 7) oraz bardziej wzd³u przekroju popêkane w³ókna m¹czki drzewnej (rys. ). Biodegradacja wytworzonych kompozytów przebiega stosunkowo wolno i po dniach inkubacji w kompoœcie zmiany w³aœciwoœci mechanicznych s¹ niewielkie (nie przekraczaj¹ 1 % ich pocz¹tkowych wartoœci). Predysponuje to takie biokompozyty do zastosowañ na opakowania owoców i jarzyn (³ubianki, koszyki, skrzynki etc.) lub na elementy ogrodowe b¹dÿ rolnicze (s³upki, wsporniki). S³owa kluczowe: biokompozyty, w³ókna kenafu, m¹czka drzewna, w³aœciwoœci mechaniczne. Biopolymers are attracting more and more attention being seen as environmentally friendly (biopolymers are produced from renewable resources with lower energy consumption and can be designed to be biodegradable). Yet the biopolymers market is still relatively small compared to traditional petroleum polymers. Biopolymers can be mainly classified as agro-polymers (starch, cellulose) and biodegradable polyesters [polyhydroxyalkanoates obtained by microbiological production, poly(lactic acid) chemically synthesized using monomers obtained from agro-resources, etc.] [1]. Polyhydroxybutyrate (PHB) is an isotactic, linear homopolyester built of 3-hydroxy butyric acid behaving as a conventional thermoplastic material []. It is a biopolymer which is present in all living organisms (many bacteria produce PHB in large quantities as a storage material). It can be processed into pellets that can be handled on plastics machines in the same way as traditional plastics produced from oil. PHB has attracted much attention as biodegradable thermoplastic polyester and has high potential as an environmentally degradable plastic as it can degrade through various types of bacteria and fungi application into carbon dioxide and through secreting enzymes [3, ]. PHB serves as nutrient and provides conditions which are present in compost (when phosphates, nitrogen, salts, humidity, and heat allow the microorganisms to grow). Therefore articles made of PHB stay unharmed for years [5]. It can also be degraded through

POLIMERY 11, 56, nr3 19 nonenzymatic hydrolysis. The advantageous properties of PHB and its copolymers are biodegradability and biocompatibility (meaning it is a metabolite normally present in blood [1]) with the present drawbacks of poor thermostability and relatively low impact resistance. Brittleness and slow crystallization of PHB reduce its processability [6]. Despite high prices, there are many places where PHB is used. The US Navy opted to use PHB cups, which can be easily thrown overboard after use and degrade in the sea. In Japan, PHB is being used for manufacture of women s disposable razors. Over the longer term, PHB producers believe the material will be suitable for food packaging such as yoghurt cups and beverage bottles. However, a big obstacle is obtaining food contact approvals. Due to the many substances present in the residual biomass, food-approval testing is prohibitively expensive. Suppliers such as Biomer are putting food-approval effort on hold until it can secure a commitment from a large food processor [1]. For certain applications, biopolyesters cannot be fully competitive against conventional thermoplastics since some of their properties are too weak. Therefore, into order extend their applications, these biopolymers have been filled with natural fillers such as wood flour, kenaf, flax, jute, hemp, sisal and kapok, which could bring an improvement of some properties such as stiffness or thermal stability. Natural fibers are biodegradable and renewable resource-based bioplastics can be designed to be either biodegradable or not, according to the specific demands of a given application. Biocomposites can supplement and eventually replace petroleum-based composite materials in several applications such as packaging, automotive industry, construction materials, furniture and consumer goods. Kenaf fiber composites are increasingly used for making automotive interior trim parts because of their excellent strength and renewability. An illustrative example is the use of kenaf fiber instead of glass fiber in making automotive headliner. With blast fibers, such as kenaf, the fiber needs to be removed from the plant core (decortication) and extracted from the natural plant polymer (retting) before it can be used for composite manufacture. Pretreatment with some chemicals will increase the penetration and bonding efficiencies of the polymer matrix [7]. The aim of our was processing and estimation of properties of new biocomposites based on PHB, thermoplastic and biodegradable polymer of natural origin filled with commonly used wood flour and kenaf fiber. Materials EXPERIMENTAL The research has been done for biocomposites based on polyhydroxybutyrate (PHB) filled with two types of natural fibers (wood and kenaf). As a matrix, polyhydroxybutyrate Biomer P6 was used, biodegradable polyester produced by German company Biomer. Wood flour CB 1 produced by J. Rettenmaier & Söhne and kenaf fiber produced by Kenaf Eco Fibers Italy were used as a filler. The wood flour CB 1 is produced from pine, has fibrous structure and the length of particles is about 7 15 m. Lignocel is a natural fiber which is ready-to-use for direct processing at extrusion facilities and injection-molding machinery [ 11]. The kenaf fiber derived from processing the bark of the kenaf plant is pale yellow in color and is the most highly valued natural product. It has a degree of purity from wood debris and pectins equal to 99 % and is highly appreciated in the construction of mats with thermoset for the automotive industry and technical applications. The fibers after grinding in our laboratory on Retsch ZM mill machine have approximately the length about 3 m and the diameter about 5 m. Sample preparation Standard dumbbell specimens were produced by injection molding in the laboratory of University of Technology and Life Sciences in Bydgoszcz (Poland), using an injection molding machine Wh Ap with double cavity mould. The injection process was done under following conditions: temperatures 1 C, 1 C and 15 C, a speed of screw rotation 1 min -1, an injection time 3 s, a holding pressure time 7 s, a cooling time s. Additionally, for preparing and better homogenization of PHB granulates with the fillers, rolling and extrusion processes were carried out. The roll stand machine (the roll length 3 mm and the diameter mm) was used. Composites were rolled under the following conditions: a temperature 1 C, a rotational speed and 5 min -1, a slot between the rollers 1,5 mm. The weight of the charge (3 g) was readjusted to provide continuous flow of polymer at the length of the slot. Then the sheet was granulated and extruded using an extruder W3 (L/D = 5). The extruder barrel temperature zones were: 13 C, 16 C, 175 C and 1 C, a speed of screw rotation 3 min -1. The weight content of fibers in composites was 5 and % of wood flour and kenaf fibers (specimens indicated 5W, W and 5K, K). Methods of testing The injection-molded specimens were tested at 1 C and 65 % RH on an universal testing machine (Instron type 65) according to the PN-EN ISO 57 standard. The test was carried out with the constant crosshead speed of 5 mm/min. Five specimens were tested for each composite and the mean value and the range of the specific modulus of elasticity, specific ultimate tensile strength and strain at break was measured. The tensile

POLIMERY 11, 56,nr3 test in higher temperatures ( and 6 C) was carried out by putting specimens in the temperature chamber (Instron) mounted between the jaws of tensile machine. The specimens were conditioned in the temperature of test for 3 minutes before the tensile test. Three-point bending test was done according to PN-EN ISO 17:6 standard using bending machine BPG 5/, Charpy impact test was done on Zwick pendulum machine HIT5.5P according to PN-EN ISO 179 standard. The absorption of composites was measured after immersion in distilled in 3 C for 7 and 9 days according to PN-EN ISO 6: standard. The specimens were dried and weighted with accuracy of,1 g. The density was measured using immersion method according to PN-9/C-935 (ISO 113) on the WAS X. The images of structure were taken from samples after tensile test using scanning electron microscope SEM (JEOL 551LV low vacuum) with an accelerating voltage of 1 kv at the Institute of Material Engineering, Cracow University of Technology. To estimate the influence of biodegradation process on the properties of tested materials, the specimens were placed in the garden compost for days and then tested on the tensile machine. Mechanical properties RESULTS AND DISCUSSION In Table 1, changes of basic mechanical properties after immersion in (7 and 9 days) and in the garden compost ( days) were presented. In case of unfilled biopolymer, mechanical properties change insignificantly under influence of and the garden compost. Biopolymers filled with kenaf fibers show higher values of modulus of elasticity and tensile strength than wood flour composites. The effect of the matrix reinforcement is decreasing due to long time of incubation in and in the garden compost, which is the effect of partial biodegradation of the material. For biocomposites the is the agent which increases the degradation effect. Adding fibers caused reduction of the elongation at break, 1 9 7 6 5 3 1 PHB 5K K 5W W Fig. 1. Comparison of Charpy impact strength for PHB and biocomposites with wood flour or kenaf Charpy impact strength, kj/m comparable for both types of the filler. For biocomposites Charpy impact strength stayed at the same level as for pure PHB (Fig. 1). T a b l e. Density and mechanical properties of the composites and PHB obtained in bending test for dry and incubated in the garden compost specimens* ) density g/cm 3 g Dry E g f mm g Compost E g f mm PHB 1.3 13. 59 6.5 13. 59 6.6 5K 1.7 16.5 1. 13. 1969.1 K 1.3 19.6 516 1.3 19.6 19 1. 5W 1.6 15. 119.5 13. 176.3 W 1.3 15.7 77 1.7 1.7 1.9 ) g bending strength, E g bending modulus of elasticity, f deflection at break. Density of tested composites maximally increased by approx. 5 % in the case of % weight content of the filler (Table ). Biocomposites filled with kenaf fibers have higher values of bending modulus than wood flour composites. After placing in the garden compost ( days), pure PHB measured properties didn t change, but adding natural fiber caused decrease of bending mechanical properties by approx. 1 %. T a b l e 1. Mechanical properties of the composites and PHB after various time of immersion in and incubation in the garden compost* ) Symbol of specimen dry 7 days in z, E, z,% 9 days in days in compost dry 7 days in 9 days in days in compost dry 7 days in 9 days in days in compost PHB 1.6.1 19. 19.3 175 1 1 167.5 5.7.. 5W 3.7 19.6 1.9.3 39 5 63 33 1. 1. 1.9 1.5 5K 6.3 3. 15. 3.9 56 519 35 51 1.3 1.. 1.1 W. 19. 1. 1.5 6 56 3 5.5 1.1.5 1. K..7 1. 1.9 1 591 36 5739.7.5..6 ) z tensile strength, E modulus of elasticity, z strain at break.

POLIMERY 11, 56, nr3 1 Water absorption Composites absorb moisture in humid environments and undergo dilatational expansion. The presence of moisture and the stresses associated with moisture-induced expansion may cause lower damage tolerance and structural durability [1]. 16 1 1 1 6 PHB 5K K 5W W Fig.. Comparison of absorption by PHB and biocomposites with wood flour or kenaf: samples soaked for hours, samples soaked for 7 days, samples soaked for 9 days The absorption, % The level of absorbed of tested composites was shown in Fig.. The weight of soaked specimens was measured after one day, one week and 9 days. We can observe that adding wood flour and kenaf fibers to PHB caused an increase of absorbed by composites. As it can be seen, composites filled with % of kenaf fibers have higher content of absorbed but still their tensile strength is higher than for wood flour composites (see Table 1). Natural fiber composites can be used in many applications owing to various desirable properties including high specific strength, high specific stiffness [13]. Unfortunately, natural composites especially those based on thermoplastic biopolymers are more sensitive to heat and moisture when operating in a changing environment and varying conditions of usage. Influence of temperature When a polymer specimen is tension tested at elevated temperatures, its modulus of elasticity and strength decrease with increasing temperature because of thermal softening. In a polymeric matrix composite, the matrix-dominated properties are more affected by increasing temperature than the fiber-dominated properties [1]. It is especially important for composites based on thermoplastic PHB with thermal properties like for Biomer P6 (T g approx. 9 C, melting point approx. 175 C, TMV approx. 53 C). In Figure 3, the comparison of elongation curves for PHB and its composites with kenaf fibers and wood flour tested in higher temperature ( C) is presented. We can 16 1 3 1 1 3 5 6 7 Strain, % Fig. 3. Comparison of tensile curves (stress-strain) for PHB filled with wood flour or kenaf fiber determined in C: 1 PHB, PHB filled with wood flour, 3 PHB filled with kenaf fiber Stress, z, 3 5 15 1 5 PHB 5K K 5W W Fig.. Comparison of tensile strength of biocomposites with wood flour or kenaf, determined at various temperatures: 3 C, C, 6 C E, 1 1 6 PHB 5K K 5W W Fig. 5. Comparison of modulus of elasticity of biocomposites with wood flour or kenaf, determined at various temperatures: 3 C, C, 6 C 7 6 5 3 1 PHB 5K K 5W W Fig. 6. Comparison of strain at break of biocomposites with wood flour or kenaf, determined at various temperatures: 3 C, C, 6 C z,%

POLIMERY 11, 56,nr3 observe the effect of increasing stiffness as a result of adding natural fibers to PHB matrix in higher temperature. In Figures 6, comparison of tensile strength, modulus of elasticity and strain at break determined at various temperatures (3 C, C and 6 C) is presented. Adding natural fiber caused an increase of tensile strength for PHB composites in higher temperature compared to pure polymer (Fig. ). The addition of natural fiber, especially kenaf, improved up to three times modulus of elasticity consequently in increasing temperatures (Fig. 5). Strain at break increased only for pure PHB under higher temperatures, for composites it stayed at the same level (Fig. 6). The interface in any fiber-matrix composite system is responsible for transmitting stresses from polymer to the fibers. This stress transfer efficiency largely depends on the fiber-matrix interface and mechanical properties of the fiber and polymer [15]. Fig. 7 and Fig., show a comparison of an effect of filling thermoplastic matrix Biomer P6 with % of wood flour and kenaf fibers. We can observe that the differences between morphology of chosen natural fibers longer and more stiffness kenaf fiber seem to be more coherent and breaks perpendicularly to the polymer matrix. On the fractured surfaces after elongation test, we can observe that some fibers are pulled out from the matrix, but most of them are still tightly linked to the matrix. It is an effect of developed surface of fibres and good adhesion and that is a reason of increased strength of composite. CONCLUSIONS This study has shown that biocomposites based on thermoplastic biodegradable PHB filled with natural fibers, both from renewable material, can be an interesting alternative to conventional polymeric material based on gas or oil modified by hand-made fiber like glass or carbon. In case of adding kenaf fiber (without special aperture) to PHB we can observe improvement of mechanical properties compared to wood flour which has special preparation. It is confirmed by increasing modulus of elasticity up to five-times and 3-proportional increase of tensile strength for PHB filled with % of kenaf fiber. The increase of tensile strength and SEM images observations confirm good adhesion between natural fibers and PHB. In comparison to composites based on thermoplastic starch, this increase is lower [16, 17]. However, the advantage of composites based on PHB is the higher stability of properties under the garden compost treatment and in, which can create new opportunities of applications. It seems that these biocomposites can be processed with classical plastic machines like injection molding machine or conventional extruders. It is important that it requires less electric energy with the same efficiency of processing because melting temperature of thermoplastic biopolymers like PHB is lower than polyolefines or other traditional plastic (PCV, PS or PA). REFERENCES 5 m Fig. 7. SEM image of fracture at ambient temperature after elongation of PHB filled with wt. % of kenaf fiber 5 m Fig.. SEM image of fracture at ambient temperature after elongation of PHB filled with wt. % of wood flour 1. Platt D. K.: Biodegradable Polymers, Market Report, Smithers Rapra Limited, 6.. Felix J. M., Gatenholm P.: J. Appl. Polym. Sci. 1993, 5, 699. 3. Karlsson J. O. et al.: Polym. Compos. 1996, 17, 3.. Zini E., Scandola M., Gatenholm P.: Biomacromolecules 3,, 1. 5. www.biomer.de 6. Frollini E., Leao A. L., Mattoso L. H. C.: Natural polymers and agrofibres based composites, Embrapa, San Carlos, S. P. Brazil,. 7. Rashdi A. A. A., Sapuan S. M., Ahmad M. M. H. M., Khalina A.: Polimery 9,, 777.. Liber-Kneæ A., Kuciel S., Dziadur W.: Polimery 6, 1, 571. 9. Kuciel S., Liber-Kneæ A., Tomaszewska J., Zajchowski S.: Composites on the base of polypropylene filled by kenaf fiber, 7th Global WPC and Natural Fibre Composites Congress and Exhibition, Kassel/Germany. 1. Kuciel S., Liber A., Gajewski J.: Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, Spain, mat. conf., vol., pp. 1799 19. 11. Zheng Q., Morgan R. J.: J. Compos. Mater. 1993, 7, 165. 1. Kuciel S., Liber A.: Polimery 5,, 36.

POLIMERY 11, 56, nr3 3 13. Kerr J. R., Haskins J. F.: AIAA Journal 199,, 96. 1. Niska O. K., Sain M.: Wood-polymer composites. Mechanical properties of wood-polymer composites, Woodhead Publishing Limited, Cambridge, England, Vol. 5, pp. 11 117. 15. Kuciel S., Liber-Kneæ A.: J. Biobased Mater. Bioenergy 9, 3 (3), 6. 16. Kuciel S., Liber-Kneæ A., Zajchowski S.: Polimery 9, 55, 77. 17. Jankowski G.: Biokompozyty na osnowie termoplastycznej skrobi i polikwasu mas³owego nape³niane w³óknami naturalnymi, praca dyplomowa, Politechnika Krakowska, Kraków 9. Received 5 II 1. INSTYTUT IN YNIERII MATERIA ÓW POLIMEROWYCH I BARWNIKÓW W TORUNIU ODDZIA ZAMIEJSCOWY FARB I TWORZYW W GLIWICACH zaprasza do udzia³u w IX Miêdzynarodowej Konferencji pt. ADVANCES IN PLASTICS TECHNOLOGY (POSTÊPY W TECHNOLOGII TWORZYW POLIMEROWYCH) która odbêdzie siê w dniach 15 17 listopada 11 r. na terenie Miêdzynarodowych Targów Katowickich, Katowice, ul. Bytkowska 1b. Przewodnicz¹cy Komitetu Naukowego prof. dr hab. in. Marian enkiewicz, Instytut In ynierii Materia³ów Polimerowych i Barwników w Toruniu. Przewodnicz¹ca Komitetu Organizacyjnego mgr in. Anna Paj¹k, Instytut In ynierii Materia³ów Polimerowych i Barwników w Toruniu, Oddzia³ Zamiejscowy Farb i Tworzyw w Gliwicach. Tematyka Konferencji obejmuje: Nowoœci w zakresie bazy surowcowej dla tworzyw (polimery, pigmenty, nape³niacze, œrodki pomocnicze i modyfikatory) Osi¹gniêcia w zakresie przetwórstwa tworzyw i ich stosowania Nowoczesne rozwi¹zania dotycz¹ce maszyn i oprzyrz¹dowania w przetwórstwie tworzyw Ochronê œrodowiska naturalnego, recykling, regulacje prawne Zagadnienia badawcze i rozwojowe oraz kontrolno-pomiarowe Badania rynku Jêzykiem konferencji bêdzie jêzyk angielski z symultanicznym t³umaczeniem na jêzyk polski. Czas prezentacji referatu wynosi ok. 3 minut (wraz z dyskusj¹). Wszystkie materia³y, tj.: skrót referatu lub plakatu (do 1 s³ów), biografia autora (do 5 s³ów), pe³ny tekst referatu lub plakatu (do 1 stron formatu A), powinny byæ dostarczone w jêzyku angielskim w terminie do 3 maja 11 r. na adres: Instytut In ynierii Materia³ów Polimerowych i Barwników, Oddzia³ Zamiejscowy Farb i Tworzyw w Gliwicach, Komitet Organizacyjny Konferencji APT 11, mgr in. Anna Paj¹k, ul. Chorzowska 5A, -1 Gliwice. Koszt udzia³u w konferencji dla osoby wyg³aszaj¹cej referat lub prezentuj¹cej poster wynosi euro (brutto). Bêdzie mo liwoœæ promocji firmy w formie wk³adki reklamowej, plakatu lub stanowiska promocyjnego w czasie trwania konferencji. Informacje o konferencji mgr in. Anna Paj¹k, tel. + (3) 31 93; fax: + (3) 31 67; e-mail: a.pajak@impib.pl, www.impib.pl