Propozycje zmian prawnych w zakresie oceny jakości energetycznej budynków (cz. 1)



Podobne dokumenty
WYROK W IMIENIU RZECZPOSPOLITEJ POLSKIEJ

Jak ZAPROJEKTOWAĆ charakterystykę energetyczną budynku spełniająceą aktualne wymagania prawne?

Dziennik Ustaw 31 Poz WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII

Projektowana charakterystyka energetyczna

charakterystyki energetycznej budynku spełniającą aktualne wymagania prawne? mgr inż. Jerzy Żurawski* )

mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia i kierunek dalszych prac legislacyjnych mib.gov.pl

Analizy opłacalności stosowania

Prawo budowlane cz.3. ocena energetyczna budynków

Warunki techniczne. do poprawy?

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki

Standardy energetyczne budynków w świetle obowiązujących przepisów

Optymalizacja rozwiąza. zań energooszczędnych, a oszczędno. dności eksploatacyjne

ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY 1) z dnia 6 listopada 2008 r.

Ekspercka propozycja zmiany Działu X oraz Załącznika nr 2, uwzględniająca wariantowość proponowanych rozwiązań. Dział X

1. PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Efektywność energetyczna budynków w Polsce i w Niemczech. Aktualny stan prawny w zakresie efektywności energetycznej w budownictwie

Oznaczenie budynku lub części budynku... Miejscowość...Ulica i nr domu...

Osoba sporządzająca świadectwo zobowiązana jest

Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych

Józef Frączek Jerzy Janiec Ewa Krzysztoń Łukasz Kucab Daniel Paściak

Warszawa, dnia 13 sierpnia 2013 r. Poz. 926 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 5 lipca 2013 r.

EKRAN 5. Zyski ciepła wg rozporządzenia [1]

Wymagania dla nowego budynku a

Nakłady finansowe i korzyści wynikające z budowy różnych budynków energooszczędnych w POLSCE

Zasoby a Perspektywy

ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1

Ocena Projektu Budowlanego Szkoły Pasywnej w Siechnicach.

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK20"

OCENA OCHRONY CIEPLNEJ

BUDOWNICTWO ENERGOOSZCZĘDNE W POLSCE

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK-109"

Załącznik nr 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

EKRAN 15. Zużycie ciepłej wody użytkowej

metoda obliczeniowa Oceniany budynek EU = 49,23 kwh/(m 2 rok) EP = 173,51 kwh/(m 2 rok) /(m 2 rok)

Projektowana charakterystyka energetyczna budynku

Załącznik 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

Projektowana charakterystyka energetyczna budynku

Przykłady modernizacji do stanu nzeb (przykłady głębokiej termomodernizacji z udziałem OZE) Jerzy Żurawski Dolnośląska Agencja Energii i Środowiska.

Projektowana charakterystyka energetyczna

Energia pomocnicza Energia pierwotna

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

STADIUM / BRANŻA: PROJEKT BUDOWLANY CHARAKTERYSTYKA ENERGETYCZNA TRISO PROJEKT S. C. RYNEK 4

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna budynku

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Doświadczenia ze stosowania świadectw energetycznych dla budynków w nowowznoszonych i oddanych do użytku u

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

budynek magazynowy metoda obliczeniowa Oceniany budynek EU = 81,70 kwh/(m 2 rok) EP = 116,21 kwh/(m 2 rok) /(m 2 rok)

Projektowana charakterystyka energetyczna

Przemysław Stępień Dolnośląska Agencja Energii i Środowiska

3 Posadzka na gruncie 0,80 Umax = 1,50[W/(m²K)] spełnione 4 Okna 5,60 bez wymagań spełnione

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Wpływ elementów budynku na jego charakterystykę energetyczną

Projektowana charakterystyka energetyczna

Mostki cieplne wpływ mostków na izolacyjność ścian w budynkach

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Krajowa Agencja Poszanowania Energii S.A. Warszawa, mgr inż. Dariusz Koc Krajowa Agencja Poszanowania Energii S.A.

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Dz.U ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i

Projektowana charakterystyka energetyczna budynku

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

Projektowana charakterystyka energetyczna

ProjRozp_Swiad_uzasad_ES_08.09 UZASADNIENIE

Projektowana charakterystyka energetyczna

Nowe warunki techniczne WT2017

Projektowana charakterystyka energetyczna budynku

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Wpływ instalacji grzewczych na jakość energetyczną budynku

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Projektowana charakterystyka energetyczna

Zastosowanie pomp ciepła w świetle nowych warunków technicznych w 2014, 2017 i 2021 r. oraz programu NF40 dr inż.

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

Projektowana charakterystyka energetyczna

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA Szpital w Proszowicach

Trudno być bezkrytycznym

Transkrypt:

Analiza wymagań techniczno-budowlanych dotyczących ochrony cieplnej i energooszczędności budynków wraz z określeniem minimalnych wymagań dotyczących ich charakterystyki energetycznej zgodnie z dyrektywą Parlamentu Europejskiego i Rady 2010/31/UE z dnia 19 maja 2010 r. Propozycje zmian prawnych w zakresie oceny jakości energetycznej budynków (cz. 1) Jerzy ŻURAWSKI* ) Celem tego opracowania jest przygotowanie analizy wymagań techniczno-budowlanych dotyczących ochrony cieplnej i energooszczędności budynków wraz z określeniem minimalnych wymagań dotyczących ich charakterystyki energetycznej i przedstawieniem propozycji zmian zgodnie z dyrektywą 2010/31/UE z dnia 19 maja 2010 r. w sprawie charakterystyki energetycznej budynków oraz określenie minimalnych wymagań poszczególnych elementów budynku mających wpływ na ich jakość energetyczną takich jak: przegrody zewnętrzne: ściany, dachy, podłogi na gruncie, ściany w gruncie, stolarka budowlana, przegrody przeźroczyste, sprawności systemów grzewczych, sprawności systemów chłodniczych, itp., w celu osiągnięcia poziomów optymalnych pod względem kosztów w odniesieniu do cyklu życia budynku, w oparciu o postanowienia ww. dyrektywy. W niniejszym opracowaniu dokonano szeregu ocen oraz analiz wyszczególnionych poniżej. I. Oceny stanu aktualnie obowiązujących przepisów techniczno- -budowlanych dot. ochrony cieplnej i energooszczędności budynków w Prawie budowlanym Ustawa z dnia 7 lipca 1994 r. Prawo budowlane (tj. DzU z 2006 r. nr 156, poz. 1118) [1] oraz w odpowiednich rozporządzeniach: 1. Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie szczegółowego zakresu i formy projektu budowlanego (DzU z 2008 r. nr 201, poz. 1239 ze zm.) [2]. 2. Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (DzU z 2008 r. nr 201, poz. 1238 ze zm.) [3]. 3. Rozporządzenie Ministra Infrastruktury z dnia 6 listopada 2008 r. w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i * ) mgr inż. Jerzy ŻURAWSKI Dolnośląska Agencja Energii i Środowiska wzorów świadectw ich charakterystyki energetycznej (DzU z 2008 r. nr 201, poz. 1240) [4]. II. Przeprowadzono analizę skuteczności obowiązujących przepisów techniczno-budowlanych w zakresie zapewnienia odpowiedniego standardu energetycznego i ochrony cieplnej budynków. III. Opracowano propozycję wymagań minimalnych dla charakterystyki energetycznej poszczególnych elementów budynków mających wpływ na jakość energetyczną budynku. IV. Wskazano minimalne wymagania dotyczące charakterystyki energetycznej budynków nowych i przebudowywanych oraz stopniowego ich zaostrzania w celu osiągnięcia poziomów optymalnych pod względem kosztów z uwzględnieniem warunków krajowych. V. Wskazano założenia i dane do określenia optymalnego pod względem kosztów poziomu wymagań minimalnych dotyczących charakterystyki energetycznej budynków I. Ocena stanu obowiązujących przepisów techniczno- -budowlanych dot. ochrony cieplnej i energooszczędności budynków W styczniu 2009 roku wprowadzono nowelizacje aktów prawnych dotyczących jakości energetycznej budynków. Powodem zmian był związany z koniecznością wdrożenia do polskiego prawa dyrektywy 16 Energia i Budynek

2002/91/WE z 2002 roku dotyczącej jakości energetycznej budynków (EPBD). Wprowadzono zmiany w Prawie budowlanym, rozporządzeniu w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie WT2008 [1] oraz w rozporządzeniu w sprawie szczegółowego zakresu i form projektu budowlanego-pb2008[2]. Wprowadzono również nowe rozporządzenie w sprawie metodologii obliczania charakterystyki energetycznej budynków [3]. Celem wprowadzenia nowych wymagań prawnych wynikających z dyrektywy EPBD była poprawa jakości energetycznej nowych budynków oraz istniejących, poddawanych modernizacji. Ogólne wymagania w zakresie jakości energetycznej budynku zamieszczono w Prawie budowlanym [1] oraz w następujących aktach wykonawczych: Rozporządzenie w sprawie warunków technicznych WT2008 [2] Rozporządzenie w sprawie zakresu i form projektu budowlanego [2] RPB Rozporządzenie w sprawie metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku [3] RCHE. Projekty architektoniczno-budowlane oraz budynki oddawane do użytkowania muszą spełnić podstawowe wymagania określone w Art. 5 Prawa budowlanego [1]. Wymagania podstawowe narzucają aby obiekt budowlany wraz ze związanymi z nim urządzeniami budowlanymi, biorąc pod uwagę przewidywany okres użytkowania, był zaprojektowany i wybudowany w sposób określony w przepisach, w tym techniczno-budowlanych, oraz zgodnie z zasadami wiedzy technicznej, zapewniając spełnienie następujących wymagań: a) bezpieczeństwa konstrukcji, b) bezpieczeństwa pożarowego, c) bezpieczeństwa użytkowania, d) odpowiednich warunków higienicznych i zdrowotnych oraz ochrony środowiska, e) ochrony przed hałasem i drganiami, f) Odpowiedniej charakterystyki energetycznej budynku oraz racjonalizacji użytkowania energii. Zgodnie z obowiązującym prawem realizację inwestycji należy rozpocząć od opracowania projektu architektoniczno-budowlanego, którego zakres i forma została opisana w rozporządzeniu RPB [2] oraz w rozporządzeniach [1]-WT2008 i [3]-RCHE. W obowiązujących przepisach nie dokonano nigdzie uporządkowania wymagań. Projekt architektoniczno-budowlany musi spełnić wymagania określone w Rozporządzeniu Ministra Infrastruktury w sprawie zakresu i form projektu budowlanego. W zakresie charakterystyki energetycznej w projekcie architektoniczno-budowlanym powinien spełnić następujące wymagania. Powinien zawierać zwięzły opis techniczny oraz część rysunkową, które powinny określać: kubaturę, zestawienie powierzchni, wysokość i długość. Należy poprawnie określić powierzchnię użytkową, usługową i ruchu, kubaturę Ve oraz powierzchnię przegród zewnętrznych. Na podstawie przebadanej znacznej ilości projektów stwierdzono, że aktualnie opracowywana dokumentacja prawie zawsze nie zawiera 10 (53) 2011 poprawnie określonych wskaźników powierzchniowych, które nie odpowiadają obowiązującym zasadom opisanym w normie. W związku z tym należy liczyć się, że opracowane na tej podstawie charakterystyki energetyczne zawierają informacje nieprawidłowe w zakresie geometrii budynku. Zaobserwowano również często występującą niespójność w zakresie prawidłowo określonych informacji geometrycznych: powierzchni użytkowej, usługowej oraz ruchu. Zdarza się nierzadko, że parametry geometryczne zamieszczone w projekcie architektoniczno-budowlanym oraz charakterystyką energetyczną budynku są zupełnie różne. Zaobserwowano również manipulację w zakresie geometrii, zwiększając powierzchnię użytkową, której celem jest uzyskanie korzystnej oceny energetycznej budynku. rozwiązania konstrukcyjno-materiałowe podstawowych elementów konstrukcji obiektu wewnętrznych i zewnętrznych przegród budowlanych. Opis przegród budowlanych powinien zawierać dane dotyczące budowy przegród, parametrów charakteryzujących poszczególne elementy mające wpływ na projektowaną charakterystykę energetyczną przegrody. Wymagany opis przegród najczęściej zawiera błędnie określone parametry izolacyjne przegród, oparte o wartości gwarantowane współczynników przenikania ciepła λ z pominięciem wpływu mostków punktowych oraz niejednorodności przegród budowlanych. Charakterystykę energetyczną obiektu budowlanego, opracowaną zgodnie z przepisami dotyczącymi metodologii obliczania charakterystyki energetycznej budynku i lokalu mieszkalnego lub części budynku stanowiącej samodzielną całość techniczno-użytkową oraz sposobu sporządzania i wzorów świadectw ich charakterystyki energetycznej. Oznacza to, że charakterystyka energetyczna musi być określona zgodnie z rozporządzeniem w sprawie świadectw charakterystyki energetycznej [4] i obejmuje ocenę jakości budynku w oparciu o wartość wskaźnika nieodnawialnej energii pierwotnej EP wyrażonego w kwh/m 2 rok Należy zauważyć, że jeżeli na etapie realizacji inwestycji nie wprowadzono zmian w stosunku do rozwiązań przyjętych w projekcie budowlanym to projektowana charakterystyka staje się świadectwem charakterystyki energetycznej budynku. W ramach projektu należy wyznaczyć wartość wskaźnika nieodnawialnej energii pierwotnej EP wraz ze sprawdzeniem warunków granicznych np. dla budynków mieszkalnych ogrzewanych EP EP wg WT2008. Wymagania te nie dotyczą obiektów o prostej konstrukcji takich jak: domy jednorodzinne, obiekty zabudowy inwentarskiej. Jeżeli budynek nie spełnia ww warunku nie powinien otrzymać pozwolenia na budowę oraz na użytkowanie. Praktyka projektowa jest jednak inna. Wykonane na etapie projektu projektowanej charakterystyki energetycznej budynku jest rzadkością. Częściej wykonywane są niewymagane prawem, niedostosowane do polskich warunków certyfikaty LEED lub BREEM niż wymagane polskim prawem charakterystyki energetyczne budynków. Dodatkowo nie wiadomo dlaczego rzadko podlegają weryfikacji pod względem uzyskanej wartości EP i spełnienia wymagań w tym zakresie wymagań prawnych. Dzieje się tak zarówno przy uzyskiwaniu pozwoleń na budowę, jak i przy uzyskiwaniu pozwoleń na użytkowanie. Pominięcie tego podstawowego warunku prawnego lub nie spełnienie w tym zakresie wymagań prawnych naraża użytkownika na wyższe koszty eksploatacyjne a projektanta w przypadku 17

roszczeń użytkowników mieszkań na nieprzewidziane i czasami bardzo przykre i kosztowne konsekwencje. Wykres przedstawiający jakość energetyczną budynku nie spełniającego aktualnych wymagań prawnych Dodatkowo praktyka nadzoru budowlanego jest niezrozumiała. Inspektorzy nadzoru budowlanego powinni stać na straży prawa budowlanego i występować w obronie interesów użytkowników mieszkań. Jednak z niewiadomego powodu przy staraniu się inwestora o pozwolenie na budowę wymagają jedynie świadectwa jako sztuki wynikającej ze specyfikacji dokumentów niezbędnych przy realizacji czynności odbiorowych, dopuszczając budynek do użytkowania w przypadku nie spełnienia warunku na odpowiednią charakterystykę energetyczną budynku. W ramach projektowanej charakterystyki energetycznej należy dodatkowo określić: a) bilans mocy urządzeń elektrycznych oraz urządzeń zużywających inne rodzaje energii, stanowiących jego stałe wyposażenie budowlano- -instalacyjne, z wydzieleniem mocy urządzeń służących do celów technologicznych związanych z przeznaczeniem budynku; b) w przypadku budynku wyposażonego w instalacje ogrzewcze, wentylacyjne, klimatyzacyjne lub chłodnicze właściwości cieplne przegród zewnętrznych, w tym ścian pełnych oraz drzwi, wrót, a także przegród przezroczystych i innych; Właściwości cieplne powinny być obliczone zgodnie z normą PN- EN 6946:2008 uwzględniając wpływ punktowych mostków cieplnych związanych z konstrukcją przegrody. Zgodnie z zapisem w pkt. d) należy sprawdzić czy przegrody spełniają wymagania szczegółowe, tj. nie mogą przekraczać wartość granicznych U U MAX ; c) parametry sprawności energetycznej instalacji ogrzewczych, wentylacyjnych, klimatyzacyjnych lub chłodniczych oraz innych urządzeń mających wpływ na gospodarkę energetyczną obiektu budowlanego; d) dane wykazujące, że przyjęte w projekcie architektoniczno-budowlanym rozwiązania budowlane i instalacyjne spełniają wymagania dotyczące oszczędności energii zawarte w przepisach techniczno-budowlanych. Wymagania określone w przepisach techniczno-budowlanych WT2008 obejmują spełnienie następujących zagadnień. Budynek i jego instalacje ogrzewcze, wentylacyjne i klimatyzacyjne, ciepłej wody użytkowej, a w przypadku budynku użyteczności publicznej również oświetlenia wbudowanego, powinny być zaprojektowane i wykonane w taki sposób, aby ilość ciepła, chłodu i energii elektrycznej, potrzebnych do użytkowania budynku zgodnie z jego przeznaczeniem, można było utrzymać na racjonalnie niskim poziomie. Wymaganie to uznaje się za spełnione dla budynku mieszkalnego, jeżeli: 1) przegrody zewnętrzne budynku oraz technika instalacyjna odpowiadają wymaganiom izolacyjności cieplnej oraz powierzchnia okien spełnia wymagania określone w załączniku 2 rozporządzenia [3], przy czym dla budynku przebudowywanego dopuszcza się zwiększenie średniego współczynnika przenikania ciepła osłony budynku o nie więcej niż 15% w porównaniu z budynkiem nowym o takiej samej geometrii i sposobie użytkowania. Oznacza to, że średnioważony współczynnik przenikania ciepła budynku może być większy o 15% od średniego współczynnika przenikania ciepła dla budynku, którego wszystkie przegrody spełniają wymagania określone w warunkach technicznych. Sprawdzenie ww wymagań jest niewystarczające ze względu na wymagania określone w rozporządzeniu [2] dotyczącego zakresu i form projektu budowlanego, które wymaga sporządzenia projektowanej charakterystyki zgodnie z rozporządzeniem w sprawie metodologii sporządzania świadectw charakterystyki energetycznej budynku, lokalu [4]. Niezbędne jest sprawdzenie warunku na EP. 2) wartość wskaźnika EP [kwh/(m 2 rok)] określającego roczne obliczeniowe zapotrzebowanie na nieodnawialną energię pierwotną do ogrzewania, wentylacji i przygotowania ciepłej wody użytkowej oraz chłodzenia jest mniejsza od wartości granicznych, a także jeżeli przegrody zewnętrzne budynku odpowiadają przynajmniej wymaganiom izolacyjności cieplnej niezbędnej dla zabezpieczenia przed kondensacją pary wodnej, przy czym dla budynku przebudowywanego dopuszcza się zwiększenie wskaźnika EP o nie więcej niż 15% w porównaniu z budynkiem nowym o takiej samej geometrii i sposobie użytkowania. Wymaganie te uznaje się za spełnione dla budynku użyteczności publicznej, zamieszkania zbiorowego, budynku produkcyjnego, magazynowego i gospodarczego, jeżeli maksymalne wartości EP rocznego wskaźnika obliczeniowego zapotrzebowania na nieodnawialną energię pierwotną do ogrzewania, wentylacji i przygotowania ciepłej wody użytkowej oraz chłodzenia, w zależności od współczynnika kształtu budynku A/V e wynoszą: 1) W budynkach mieszkalnych do ogrzewania i wentylacji oraz przygotowania ciepłej wody użytkowej (EP H+W ) w ciągu roku: a) dla A/V e 0,2; EP H+W = 73 + EP; [kwh/(m 2 rok)], b) dla 0,2 A/V e 1,05; EP H+W = 55 + 90 (A/V e + EP); [kwh/(m 2 rok)], c) dla A/V e 1,05; EP H+W = 149,5 + EP; [kwh/(m 2 rok)]. 2) W budynkach mieszkalnych do ogrzewania, wentylacji i chłodzenia oraz przygotowania ciepłej wody użytkowej (EP HC+W ) w ciągu roku: EP HC+W = EP H+W + (5 + 15 A w,e /A f ) (1 0,2 A/V e ) A f,c /A f ; [kwh/(m 2 rok)] 3) W budynkach zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych do ogrzewania, wentylacji i chłodzenia oraz przygotowania ciepłej wody użytkowej i oświetlenia wbudowanego (EP HC+W+L ) w ciągu roku: EP HC+W+L = EP H+W + (10 + 60 A w,e /A f ) (1-0,2 A/V e ) A f,c /A f ; [kwh/(m 2 rok)] 18 Energia i Budynek

W przepisach techniczno-budowlanych WT2008 zawarto dodatkowe wymagania szczegółowe, dotyczące parametrów mających wpływ na jakość energetyczną budynków, które muszą być również ujęte w projekcie architektoniczno-budowlanym zapewniając spełnienie warunków granicznych. 1. Spełnienie wymagań w zakresie izolacyjności termicznej wartości współczynnika przenikania ciepła U ścian, stropów i stropodachów, przegród przeźroczystych, stolarki budowlanej, obliczone zgodnie z Polskimi Normami dotyczącymi obliczania oporu cieplnego i współczynnika przenikania ciepła, nie mogą być większe niż wartości U max. W powyższych wymaganiach pominięto wpływ mostków cieplnych na izolacyjność termiczną przegród. Udział mostków cieplnych bardzo często obniża parametry izolacyjne przegród o 30% do 100%. 2. Izolacja cieplna przewodów rozdzielczych i komponentów w instalacjach centralnego ogrzewania, ciepłej wody użytkowej (w tym przewodów cyrkulacyjnych), instalacji chłodu i ogrzewania powietrznego powinna spełniać następujące wymagania minimalne określone w tabeli 1. Tabela 1. Wymagania minimalne dotyczące izolacji cieplnej przewodów rozdzielczych i komponentów w instalacjach c.o. i c.w.u. Lp. W projektach brak jest projektowych wymagań w zakresie izolacji termicznej instalacji c.o. i c.w.u. Na etapie wykonawstwa stosowane są znacznie mniejsze grubości izolacji termicznej. Straty transportu ciepła na instalacjach c.o. i c.w.u. są znacznie większe od założonych w WT2008. 3. Powierzchnia i izolacyjność termiczna przegród przeźroczystych. W budynku mieszkalnym i zamieszkania zbiorowego pole powierzchni A 0, wyrażone w m 2, okien oraz przegród szklanych i przezroczystych, o współczynniku przenikania ciepła nie mniejszym niż 1,5 W/(m 2 K), obliczone według ich wymiarów modularnych, nie może być większe niż wartość A 0max obliczone według wzoru: A 0max = = 0,15 A Z + 0,03 A W. 10 (53) 2011 Rodzaj przewodu lub komponentu Minimalna grubość izolacji cieplnej (materiał 0,035 W/(m K)*) 1. Średnica wewnętrzna do 22 mm 20 mm 2. Średnica wewnętrzna od 22 do 35 mm 30 mm 3. Średnica wewnętrzna od 35 do 100 mm Równa średnicy wewnętrznej rury 4. Średnica wewnętrzna ponad 100 mm 100 mm 5. 6. Przewody i armatura wg poz. 1-4 przechodzące przez ściany lub stropy, skrzyżowania przewodów Przewody c.o. wg poz. 1-4 ułożone w komponentach budowlanych między ogrzewanymi pomieszczeniami różnych użytkowników ½ wymagań z poz. 1-4 ½ wymagań z poz. 1-4 7. Przewody wg poz. 6 ułożone w podłodze 6 mm 8. Przewody ogrzewania powietrznego (ułożone wewnątrz izolacji cieplnej budynku) 40 mm 9. Przewody ogrzewania powietrznego (ułożone na zewnątrz izolacji cieplnej budynku) 80 mm 10. 11. Przewody instalacji wody lodowej prowadzone wewnątrz budynku** Przewody instalacji wody lodowej prowadzone na zewnątrz budynku** 50% wymagań z poz. 1-4 100% wymagań z poz. 1-4 * Przy zastosowaniu materiału izolacyjnego o innym współczynniku przenikania ciepła, niż podano w tabeli, należy odpowiednio skorygować grubość warstwy izolacyjnej **Izolacja cieplna wykonana jako powietrznoszczelna Stolarka budowlana o różnych wymiarach, funkcji i podziale charakteryzuje się zmiennymi parametrami izolacyjnymi. Projekty budowlane nie zawierają analizy w zakresie spełnienia wymagań na A 0max, wymagania w zakresie izolacyjności termicznej są podawane w sposób niepełny lub wadliwie i dotyczą najczęściej szyby. Inne parametry związane z przegrodami przeźroczystymi nie są opisywane zgodnie z obowiązującym prawem. 4. Przepuszczalność energii całkowitej przez przegrody przeźroczyste. We wszystkich rodzajach budynków współczynnik przepuszczalności energii całkowitej okna oraz przegród szklanych i przezroczystych g c liczony według wzoru: g c = f c g g 0,5 a w przypadku, gdy f G = F G /(F S + F G ) > 50%, g c f G 0,25 5. Wymagania dotyczące powierzchniowej kondensacji pary wodnej. W odniesieniu do przegród zewnętrznych budynków mieszkalnych, zamieszkania zbiorowego, użyteczności publicznej i produkcyjnych, rozwiązania przegród zewnętrznych i ich węzłów konstrukcyjnych powinny charakteryzować się współczynnikiem temperaturowym f Rsi o wartości nie mniejszej niż wymagana wartość krytyczna, obliczona zgodnie z Polską Normą dotyczącą metody obliczania temperatury powierzchni wewnętrznej koniecznej do uniknięcia krytycznej wilgotności powierzchni i kondensacji międzywarstwowej: f Rsi f Rsi min = 0,72 Wartość współczynnika temperaturowego charakteryzującego zastosowane rozwiązanie konstrukcyjno-materiałowe należy obliczać według Polskiej Normy: dla przegrody oraz dla miejsc występowania mostków cieplnych. 6. Kondensacja pary wodnej. Dopuszcza się kondensację pary wodnej wewnątrz przegrody w okresie zimowym, o ile struktura przegrody umożliwi wyparowanie kondensatu w okresie letnim i nie nastąpi przy tym degradacja materiałów budowlanych przegrody na skutek tej kondensacji. Spełnienie wymagań związanych ze zjawiskami transportu wilgoci w przegrodzie ma istotny wpływ na konstrukcję przegród zwłaszcza w miejscach mostków termicznych oraz na izolacyjność termiczną przegród. W aktualnie wykonywanych projektach brak jest niezbędnych analiz w zakresie spełnienia wymagań w zakresie f Rsi min, kondensacji międzywarstowej, kondensacji na wewnętrznej powierzchni przegrody. 7. Szczelność na przenikanie powietrza. Wymagana szczelność wynosi: 1) budynki z wentylacją grawitacyjną n50 3,0 h -1 ; 2) budynki z wentylacją mechaniczną n50 1,5 h -1. W budynku mieszkalnym, zamieszkania zbiorowego, budynku użyteczności publicznej, a także w budynku produkcyjnym przegrody zewnętrzne nieprzezroczyste, złącza między przegrodami i częściami przegród oraz połączenia okien z ościeżami należy projektować i wykonywać pod kątem osiągnięcia ich całkowitej szczelności na przenikanie powietrza. W budynku mieszkalnym, zamieszkania zbiorowego i budynku użyteczności publicznej współczynnik infiltracji powietrza dla otwieranych okien i drzwi balkonowych powinien wynosić nie więcej niż 0,3 m 3 /(m h dapa 2/3 ). Projekty nie zawierają wymagań w zakresie szczelności budynków, na etapie realizacji inwestycji nie wykonuje się prób szczelności. 8. Wykorzystanie odnawialnych źródeł energii. W stosunku do budynku o powierzchni użytkowej, większej niż 1 000 m 2, określonej zgodnie 19

z Polskimi Normami dotyczącymi właściwości użytkowych w budownictwie oraz określania i obliczania wskaźników powierzchniowych i kubaturowych analizę możliwości racjonalnego wykorzystania pod względem technicznym, ekonomicznym i środowiskowym, odnawialnych źródeł energii, takich jak: energia geotermalna, energia promieniowania słonecznego, energia wiatru, a także możliwości zastosowania skojarzonej produkcji energii elektrycznej i ciepła oraz zdecentralizowanego systemu zaopatrzenia w energię w postaci bezpośredniego lub blokowego ogrzewania. W projektach bardzo rzadko wykonywane są rzetelne analizy możliwości wykorzystania odnawialnych źródeł energii oraz produkcji skojarzonej energii. Zazwyczaj w projektach zagadnienie to jest analizowane w celu odrzucenia konieczności stosowania odnawialnych źródeł energii. II. Analiza skuteczności obowiązujących przepisów techniczno-budowlanych w zakresie zapewnienia odpowiedniego standardu energetycznego i ochrony cieplnej budynków Celem wprowadzenia systemu certyfikacji energetycznej budynku było wykorzystanie podobnie jak dla urządzeń AGD, mechanizmów rynkowych do rozwoju energooszczędnego budownictwa. Wprowadzony w 2009 roku system oceny energetycznej budynków, nie spełnił celów określonych dyrektywie EPBD. Zdaniem wielu ekspertów spowodował nawet pogorszenie jakości energetycznej nowoprojektowanych budynków. Przyczyn jest wiele. Do najważniejszych należą: brak świadomości i oczekiwań inwestorów w zakresie certyfikacji energetycznej budynków i jakości energetycznej budynku; brak umiejętności projektowych kadry inżynierskiej w zakresie projektowania budynków o odpowiedniej jakości energetycznej i fizyki budowli; antyreklama ustawodawcy, który przy wdrożeniu dyrektywy poinformował, że certyfikacja energetyczna budynku jest obowiązkiem jaki narzuca UE, jednak rząd nie widzi celowości jej wdrożenia; brak kampanii promocyjno-edukacyjnej certyfikacji energetycznej budynków, a co za tym idzie brak poparcia społecznego; brak systemu kontroli świadectw. Odpowiedzialność jest iluzoryczna, świadczy o tym najlepiej koszt ubezpieczenia, które dla członków izby inżynierów budownictwa wynosi tylko 17 zł/rok (oszacowane ryzyko jest niewielkie) oraz koszt świadectwa dla domu jednorodzinnego 150-200 zł oznacza, że świadectwa charakterystyki energetycznej budynku muszą być opracowywane nierzetelnie; świadectwa charakterystyki energetycznej traktowane są jako dodatkowy podatek "audytora" konieczny do zapłat przy uzyskiwaniu pozwolenia na budowę. Z tego powodu nie decyduje rzetelność sporządzenia świadectwa tylko cena. Zdarza się bardzo często, że świadectwo wydane przez osobę uprawnioną jest fikcyjne i nie ma nic wspólnego z budynkiem, dla którego zostało wystawione; błędy prawne oraz niespójności zapisów w przyjętych rozporządzeniach; osoby upoważnione do sporządzania świadectw charakterystyki energetycznej nie posiadają odpowiedniej wiedzy. Inżynierowie budownictwa oraz architekci, którzy otrzymali uprawnienia ze względu na pełniony zawód nie uzupełnili niezbędnej wiedzy i nie posiedli odpowiednich umiejętności aby ocenę energetyczną sporządzić w sposób rzetelny i prawidłowy. Osoby z wykształceniem nietechnicznym, które zdobyły uprawnienia przez ukończenie studiów podyplomowych lub kursów w większości nie posiadły odpowiedniej umiejętności, nie potrafią nawet poprawnie czytać rysunków i uzyskiwać informacji zgromadzonych podczas realizacji inwestycji; przez pomniejszenie wagi tego dokumentu nie osiąga się zakładanych celów w obrębie bezpieczeństwa energetycznego, poprawy jakości powietrza, zakładanej redukcji CO 2 ; wśród autorów wyrobiła się umiejętność żonglowania parametrami w celu osiągnięcia pozytywnej oceny energetycznej; nieczytelny dla rynku sposób prezentacji wyników w postaci suwaka. W związku z tym wdrożony w 2009 roku system oceny energetycznej budynku przez sporządzanie charakterystyk energetycznych oraz świadectw charakterystyki energetycznej dla budynków nowowznoszonych działa wadliwie a dla budynków i lokali istniejących podlegających zbyciu lub najmowi praktycznie nie obowiązuje. Aktualnie budowane budynki charakteryzują się większą energochłonnością w stosunku do budynków przed zmianą prawa. Tabela 2. Ceny ciepła w 2011 oraz realny wzrost cen nośników energii w okresie 2011 do 2020 przy założonych stałych wartościach s=5% oraz r = 3% w okresie 2011 do 2020 roku Rok 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Gaz ziemny 59 60,69 62,42 64,20 66,04 67,92 69,86 71,86 73,91 76,03 Olej/propan 98 100,8 103,7 106,6 109,7 112,8 116 119,4 122,8 126,3 Węgiel - ciepłownia 45 46,29 47,61 48,97 50,37 51,81 53,29 54,81 56,38 57,99 Węgiel/drewno domy jednorodzinne 33 33,94 34,91 35,91 36,94 37,99 39,08 40,19 41,34 42,52 Elektrociepłownia 54 55,54 57,13 58,76 60,44 62,17 63,94 65,77 67,65 69,58 Pompa ciepła elektryczna 39,5 40,63 41,79 42,98 44,21 45,47 46,77 48,11 49,48 50,9 Pompa ciepła gazowa 36,1 37,14 38,2 39,3 40,42 41,57 42,76 43,98 45,24 46,53 Energia elektryczna 147 151,2 155,5 160 164,5 169,2 174,1 179 184,2 189,4 Biomasa pelets 40,3 41,47 42,66 43,88 45,13 46,42 47,75 49,11 50,52 51,96 Biomasa zrębki 37 38,06 39,14 40,26 41,41 42,6 43,81 45,07 46,35 47,68 20 Energia i Budynek

III. Propozycja minimalnych wymagań charakterystyki energetycznej dla poszczególnych elementów budynków mających wpływ na jakość energetyczną budynku Propozycję zmian ujęto w znowelizowanej Dyrektywie 2010/31/UE z dnia 19 maja 2010 r. w sprawie charakterystyki energetycznej budynków, która narzuca szereg obostrzeń. Głównie zmiany: wszystkie budynki wybudowane po 31 grudnia 2020 r. będą musiały spełniać wysokie standardy energooszczędności (zero lub bliskie zeru energetycznemu) i być zasilane w dużej mierze przez energię odnawialną (budynki użyteczności publicznej do 31 grudnia 2018). Wskazanie rozwiązań minimalnych powinno dotyczyć wszystkich elementów budynku mających wpływ na zużycie energii. Niezbędne jest wskazanie wartości optymalnych, wyznaczonych w oparciu o racjonalne kryteria. Metodologia wyznaczania odpowiedniej wartości granicznej powinno odbywać się z uwzględnieniem wzrostu cen nośników energii, utraty wartości pieniądza w czasie oraz czasu użytkowania danego elementu, przy czym określenie czasu użytkowania elementu jest zmienne i zależne od trwałości poszczególnych elementów a nie całości budynku. Niezbędne jest też aby metoda wyznaczania wartości optymalnej była niezależna od stanu początkowego. Za taką można uznać metodę maksymalnej wartości NPV w ustalonym okresie ekspozycji wyników. Wartość NPV należy wyznaczać zgodnie ze wzorem: gdzie. I 0 nakłady początkowe; ΔE 0 oszczędności kosztów wynikające z wprowadzonego ulepszenia; i czas ekspozycji; r średnia utrata wartości pieniądza w czasie (stopa dyskonta); s średni wzrost cen energii ponad inflację. Wyznaczenie parametrów minimalnych jest zadaniem bardzo złożonym. Wykorzystanie tej metody dla określenia wartości granicznych jest możliwe, jednak należy przyjąć odpowiednie założenia: i czas ekspozycji należy przyjąć w zależności od trwałości przegrody lub od czasu remontu. Można przyjąć i = 10 lat; r średnia utrata wartości pieniądza w czasie (stopa dyskonta) w okresie 10 lat należy przyjąć 5 %; s średni wzrost cen energii ponad inflację 3%. Tabela 3. Wyniki optymalizacji przy kosztach ciepła 33 zł/gj Grubość docieplenia [cm] ΔR [m 2 * K/W] U 1 [W/m 2 * K] ΔU [W/m 2 * K] N U [zł/m 2 ] NPV [zl/m^2] 2 0,65 0,73 0,67 14 47,85 3 0,97 0,59 0,81 17 58,86 4 1,29 0,50 0,90 19 65,63 5 1,61 0,43 0,97 21 69,91 6 1,94 0,38 1,02 23 72,61 7 2,26 0,34 1,06 25 74,24 8 2,58 0,30 1,10 28 75,13 9 2,90 0,28 1,12 30 75,47 10 3,23 0,25 1,15 32 75,39 11 3,55 0,23 1,17 34 74,99 12 3,87 0,22 1,18 36 74,33 13 4,19 0,20 1,20 39 73,48 14 4,52 0,19 1,21 41 72,45 15 4,84 0,18 1,22 43 71,29 Parametry zoptymalizowanej przegrody: 9 2,90 0,28 1,12 30 75,47 Tabela 4. Wyniki optymalizacji przy kosztach ciepła 98 zł/gj Grubość docieplenia [cm] ΔR [m 2 * K/W] U 1 [W/m 2 * K] ΔU [W/m 2 * K] N U [zł/m 2 ] NPV [zl/m^2] 11 3,55 0,23 1,17 34 296,67 12 3,87 0,22 1,18 36 299,15 13 4,19 0,20 1,20 39 301,02 14 4,52 0,19 1,21 41 302,39 15 4,84 0,18 1,22 43 303,34 16 5,16 0,17 1,23 45 303,95 17 5,48 0,16 1,24 47 304,26 18 5,81 0,15 1,25 50 304,33 19 6,13 0,15 1,25 52 304,18 20 6,45 0,14 1,26 54 303,85 21 6,77 0,13 1,27 56 303,36 22 7,10 0,13 1,27 58 302,72 23 7,42 0,12 1,28 61 301,96 24 7,74 0,12 1,28 63 301,10 Parametry zoptymalizowanej przegrody: 18 5,81 0,15 1,25 50 304,33 Tabela 5. Wyniki optymalizacji przy kosztach ciepła 35 zł/gj Grubość docieplenia ΔR U 1 ΔU N U NPV [cm] [m 2 * K/W] [W/m 2 * K] [W/m 2 * K] [zł/m 2 ] [zl/m^2] 3 0,97 0,59 0,81 17 63,44 4 1,29 0,50 0,90 19 70,74 5 1,61 0,43 0,97 21 75,42 6 1,94 0,38 1,02 23 78,41 7 2,26 0,34 1,06 25 80,28 8 2,58 0,30 1,10 28 81,36 9 2,90 0,28 1,12 30 81,85 10 3,23 0,25 1,15 32 81,89 11 3,55 0,23 1,17 34 81,60 12 3,87 0,22 1,18 36 81,04 13 4,19 0,20 1,20 39 80,27 14 4,52 0,19 1,21 41 79,32 15 4,84 0,18 1,22 43 78,22 16 5,16 0,17 1,23 45 77,00 Parametry zoptymalizowanej przegrody: 10 3,23 0,25 1,15 32 81,89 Ze względu na zmienność cen energii cieplnej uzyskiwanej z różnych nośników energii wyniki wyznaczenia wartości minimum będą różne. Dla przykładu optymalna izolacyjność termiczna ścian zewnętrznych dla budynku ogrzewanego węglem kamiennym (cena ciepła 33 zł/gj) przy powyższych założeniach wynosi U=0,28 W/m 2 K. 10 (53) 2011 21

Tabela 6. Wyniki optymalizacji przy kosztach ciepła 35 zł/gj Grubość docieplenia ΔR U 1 ΔU N U NPV [cm] [m 2 * K/W] [W/m 2 * K] [W/m 2 * K] [zł/m 2 ] [zl/m^2] 0 0,00 1,00 0,00 0 0,00 1 0,28 0,78 0,22 3 18,60 2 0,56 0,64 0,36 6 29,49 3 0,83 0,55 0,45 9 36,17 4 1,11 0,47 0,53 12 40,30 5 1,39 0,42 0,58 15 42,77 6 1,67 0,37 0,63 18 44,10 7 1,94 0,34 0,66 21 44,62 8 2,22 0,31 0,69 24 44,53 9 2,50 0,29 0,71 27 43,98 10 2,78 0,26 0,74 30 43,06 11 3,06 0,25 0,75 33 41,87 12 3,33 0,23 0,77 36 40,44 13 3,61 0,22 0,78 39 38,82 Parametry zoptymalizowanej przegrody: 7 1,94 0,34 0,66 21 44,62 Przy ogrzewaniu z oleju opałowego (cena ciepła 98 zł/gj) i przy tych samych założeniach i,r,s jak wyżej wartość optymalna U wynosi U=0,15 W/m 2 K. Wyznaczenie wartości granicznych-maksymalnych parametrów izolacyjnych powinno opierać się o najniższą cenę ciepła z uwzględnieniem kosztów eksploatacyjnych. Wyznaczenie wartości granicznych wartości U max dopuszczalnych prawem dla poszczególnych przegród budowlanych wyznaczono w oparciu o wskaźnik NPV przy i=10 lat i cenie ciepła 35 zł/gj zamieszczono w tabeli poniżej. Analizy wykonano dla ścian, dachu oraz stolarki budowlanej Tabela 7. Wyniki optymalizacji stolarki budowlanej (przeźroczystej )przy kosztach ciepła 35 zł/gj oraz i=10 lat oraz i =20 lat U [W/m 2 K] 1,6 1,4 1,2 1,1 1 0,95 0,9 0,85 0,8 A [m 2 ] 1 1 1 1 1 1 1 1 1 Sd [stopniodni] 3686 3686 3686 3686 3686 3686 3686 3686 3686 NPV 10-161,9-144,9-132,9-139,4-135,9-247,4-253,2-298,9-319,7 NPV 20 359,1 359,1 540,3 571,8 613,4 334,2 347,5 320,8 319,0 Ściany tabela 5. Dach tabela 6. Stolarka budowlana ze względu na wielozadaniowość w budynku ma duży wpływ na jakość energetyczną budynków. Aktualnie dostępne rozwiązania pod względem ekonomicznym przy cenie ciepła 35 zł/gj są nieopłacalne. Wartość NPV przy założonych warunkach jest ujemna. Szczegóły w tabeli 7. Zgodnie z wartościami przedstawionymi w tabeli 7 trudno jest wskazać wartość ekonomicznie uzasadnioną. Maksymalna, choć ujemna wartość NPV 10 = 132,9 zł/m 2. Ze względu na niewielkie różnice oraz dużą wrażliwość ceny stolarki zależną od producenta optymalne rozwiązania mieszczą się w przedziale U=1,4 W/m 2 K do U=1,0 W/m 2 K. Ze względu na politykę UE proponuje się przyjęcie wartości 1,3 W/m 2 K dla strefy termicznej I i II oraz 1,2 W/m 2 K dla strefy termicznej III i IV oraz 1,0 W/m 2 K dla strefy termicznej V. Zapisy dyrektywy UE w sprawie jakości energetycznej budynków przewidują konieczność poszukiwania rozwiązań racjonalnych ekonomicznie. Zapisy Prawa budowlanego wymagają wykonania racjonalizacji na etapie projektu budowlanego i wskazania rozwiązań optymalnych. Niestety z powodu uproszczeń procesu projektowego określono co rozumie się za działania racjonalne. Uznano zupełnie błędnie, że racjonale to takie, które spełniają wymagania szczegółowe (nie przekraczają wartości maksymalnych U) lub spełniają wymagania ogólne. Stwierdzenie takie powoduje, że budowa budynków energooszczędnych, niskoenergetycznych, pasywnych a nawet zeroenergetycznych jest realizowana sporadycznie, głównie na wyraźne życzenie inwestora. Powstają próby Tabela 8. Maksymalne współczynniki przenikania ciepła U max dla różnych typów przegród budowlanych i różnych rodzajów budynków Typ przegrody mieszkalny i zamieszkania zbiorowego użyteczności publicznej produkcyjny i magazynowy 1. Ściany zewnętrzne U max [W/m 2 K] U max [W/m 2 K] U max [W/m 2 K] ti > 16 C 0,25 0,25 0,25 2. Dachy i stropodachy, stropy nad nieogrzewanymi poddaszami lub nad przejazdami ti > 16 C 0,25 0,25 0,25 3. Stropy nad nieogrzewanymi kondygnacjami podziemnymi 4. Okna i drzwi balkonowe ti > 16 C ti > 16 C 0,45 0,45 0,8 strefa I,II, 1,3 1,3 1,3 Strefa III i IV 1,2 1,2 1,2 Strefa V 1,1 1,1 1,1 5. Okna połaciowe (dla bud. użyteczności publicznej i świetliki) ti > 16 C Strefa I i II 1,2 1,2 1,2 Strefa III i IV i V 1,0 1,0 1,0 11. Drzwi zewnętrzne, drzwi i wrota w przegrodach zewnętrznych ti > 16 C Strefa I i II 1,8 1,8 1,8 Strefa III, IV, V 1,5 1,5 1,5 22 Energia i Budynek

Tabela 9. Optymalne parametry grzewcze dla paliwa stałego, cena ciepła 60 zł/gj określone za pomocą wskaźnika NPV przy różnym czasie korzystania z efektów Okres korzystania z efektów 10 lat 20 lat 30 lat Typ przegrody U opty [W/m 2 K] U opty [W/m 2 K] U opty [W/m 2 K] Ściany zewnętrzne ti > 16 C 0,20 0,15 0,13 Dachy i stropodachy, stropy nad nieogrzewanymi poddaszami lub nad przejazdami ti > 16 C 0,25 0,18 0,16 Tabela 10. Optymalne parametry grzewcze dla paliwa gazowego, cena ciepła 100 zł/gj określone za pomocą wskaźnika NPV przy różnym czasie korzystania z efektów Okres korzystania z efektów 10 lat 20 lat 30 lat Typ przegrody U opty [W/m 2 K] U opty [W/m 2 K] U opty [W/m 2 K] Ściany zewnętrzne ti > 16 C 0,15 0,11 0,1 Dachy i stropodachy, stropy nad nieogrzewanymi poddaszami lub nad przejazdami ti > 16 C 0,19 0,15 0,12 budowy budynków pasywnych, jednak stanowią znikomą część nowowznoszonych budynków i pełnią rolę głównie pokazowo-prestiżową lub edukacyjno-badawczą. Wyznaczenie parametrów optymalnych przegród budowlanych można obliczyć wykorzystując dynamiczny wskaźnik NPV przy założeniu różnych czasów ekspozycji n. 10, 20 i maksymalnie 30 lat oraz przy założeniu stałej średniej inflacji w okresie ekspozycji 4-6%, średnio 5% i wzroście cen nośników energii od 5 do 8%, średnio 6,6% (dane z GUS z ostatnich 10 lat). Czas ekspozycji powinien zależeć do trwałości poszczególnych elementów budynku. Wartości optymalne zależą jeszcze od cen nośników energii. Rozróżniono trzy grupy nośników energii: paliwo stałe węgiel i biomasa: cenę ciepła przyjęto 35 zł/gj; paliwo gazowe gaz ziemny: cenę ciepła przyjęto 60 zł/gj; paliwo płynne olej opałowy, gaz propan: cenę ciepła przyjęto 100 zł/gj. Przykład obliczenia parametrów optymalnych izolacyjności wybranych przegród budowlanych zamieszczono w tabelach 9 i 10. Prezentowane analizy wykonano w programie Agnes. Cz. 2 artykułu w kolejnym numerze EiB Zrzeszenie Audytorów Energetycznych oraz Miesięcznik Energia i Budynek zapraszają do pawilonu 3a na stanowisko nr 130 10 (53) 2011 23