Badania porównawcze procesu kruszenia wibracyjnego w kruszarkach szczękowych

Podobne dokumenty
Zastosowanie techniki wibracyjnej w procesach kruszenia

Zastosowanie kruszarki wibracyjnej w procesach bardzo drobnego kruszenia surowców mineralnych i przemys owych odpadów ceramicznych

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

SPECJALISTYCZNE KONSTRUKCJE KRUSZAREK UDAROWYCH

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Maszyn Roboczych Ciężkich. Tylko do celów dydaktycznych.

Badania procesu rozdrabniania kryszta u górskiego w wibracyjnej kruszarce szcz kowej

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6

BADANIA PROCESU KRUSZENIA SZCZĘKAMI O RÓŻNYM PROFILU POPRZECZNYM*** 1. Wprowadzenie. Ryszard Kobiałka*, Zdzisław Naziemiec**

NOWE PODEJŚCIE DO OPTYMALIZACJI PRACY KRUSZAREK STOŻKOWYCH

Przeróbka kopalin mineralnych

Application of vibratory jaw crusher for rock salt comminution in the process of its purification

RZECZPOSPOLITA OPIS PATENTOWY

KRUSZARKI SZCZĘKOWE. duża niezawodność eksploatacyjna niskie koszty eksploatacji oraz konserwacji prosta obsługa i konserwacja

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

ROZDRABNIANIE MATERIAŁÓW BUDOWLANYCH

PRODUKCJA SUROWCÓW MINERALNYCH O WĄSKIM ZAKRESIE UZIARNIENIA W DWUSTADIALNYM ZAMKNIĘTYM UKŁADZIE ROZDRABNIANIA I KLASYFIKACJI

Najnowsze rozwiązania stosowane w konstrukcji wirówek odwadniających flotokoncentrat i ich wpływ na osiągane parametry technologiczne

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

ANALIZA PORÓWNAWCZA KRUSZAREK W WIELOSTADIALNYCH UKŁADACH ROZDRABNIANIA SKAŁ BAZALTOWYCH** 1. Wprowadzenie. Alicja Nowak*, Tomasz Gawenda*

PL B1. Sposób kątowego wyciskania liniowych wyrobów z materiału plastycznego, zwłaszcza metalu

Analiza procesu przesiewania metalurgicznych odpadów cynkowych w przesiewaczu wibracyjnym

Wydział Inżynierii Mechanicznej i Informatyki, Politechnika Częstochowska, Częstochowa **

INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT SPECJALNOŚĆ: SYSTEMY I URZĄDZENIA TRANSPORTOWE PRZEDMIOT: SYSTEMU I URZĄDZENIA TRANSPORTU BLISKIEGO

PL B1. LISICKI JANUSZ ZAKŁAD PRODUKCYJNO HANDLOWO USŁUGOWY EXPORT IMPORT, Pukinin, PL BUP 17/16. JANUSZ LISICKI, Pukinin, PL

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

TMS. Obliczenia powierzchni i wydajności przesiewania

PRZERÓBKA KOPALIN I ODPADÓW PODSTAWY MINERALURGII. Wprowadzenie

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

1.1. Dobór rodzaju kruszywa wchodzącego w skład mieszanki mineralnej

MSSB S, M MSSB AM MSSB BS

PL B1. INSTYTUT ODLEWNICTWA, Kraków, PL BUP 03/13

MODUŁ 3. WYMAGANIA EGZAMINACYJNE Z PRZYKŁADAMI ZADAŃ

Kinetyka przemiału kwarcytu przy kaskadowym ruchu złoża nadawy

Sorter pneumatyczny model SP-EG-01.

ANALIZA POZIOMU HAŁASU WYBRANYCH URZĄDZEŃ ROZDRABNIAJĄCYCH

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

TEORIA MASZYN MECHANIZMÓW ĆWICZENIA LABORATORYJNE Badanie struktury modeli mechanizmów w laboratorium.

METODY BADAŃ I KRYTERIA ZGODNOŚCI DLA WŁÓKIEN DO BETONU DOŚWIADCZENIA Z BADAŃ LABORATORYJNYCH

Sposób mielenia na sucho w młynie elektromagnetycznym. Patent nr P z dn r.

MASZYNY DO PRZETWARZANIA SUROWCÓW SKALNYCH I RECYKLINGU

Rozdrabniarki i młyny.

ANALIZA ENERGOCHŁONNOŚCI PROCESÓW ROZDRABNIANIA KRUSZYW MINERALNYCH

od 80 t/h do 250 t/h w zależności od materiału

SHREDDER WIELOWAŁOWY

Wpływ mikrocementu na parametry zaczynu i kamienia cementowego

O NOWYCH ELEMENTACH MECHANIKI PROCESU KRUSZENIA PROBLEM OBCIĄŻEŃ (NA PRZYKŁADZIE KRUSZARKI DŹWIGNIOWEJ BLAKE A)

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 17/09

BADANIA PROCESU FLOTACJI WIELOSTRUMIENIOWEJ WĘGLA** 1. Wprowadzenie. Jolanta Marciniak-Kowalska*, Edyta Wójcik-Osip*

1.1. Dobór rodzaju kruszywa wchodzącego w skład mieszanki mineralnej

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 04/15

Koncepcja rozdrabniacza karp korzeniowych do rewitalizacji upraw roślin energetycznych

ANALIZA EFEKTÓW ROZDRABNIANIA W GRANULATORZE STOŻKOWYM W ZALEŻNOŚCI OD WIELKOŚCI UZIARNIENIA NADAWY I JEGO OBCIĄŻENIA

Porównawcze badania laboratoryjne wpływu uziarnienia i obciążenia nadawą na skuteczność osadzarkowego procesu wzbogacania

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2016 CZĘŚĆ PRAKTYCZNA

POLISH HYPERBARIC RESEARCH 3(60)2017 Journal of Polish Hyperbaric Medicine and Technology Society STRESZCZENIE

Przenośnik wibracyjny. Przenośnik wibracyjny. Dr inż. Piotr Kulinowski. tel. (617) B-2 parter p.6

ZAKŁAD TRANSPORTU. Oferta usług badawczych

dr inż. Paweł Strzałkowski

Dane techniczne Stabilizator doczepny WS 220 i WS 250

Co proponuje firma Testchem? Bartłomiej Poślednik

REJESTRACJA WARTOŚCI CHWILOWYCH NAPIĘĆ I PRĄDÓW W UKŁADACH ZASILANIA WYBRANYCH MIESZAREK ODLEWNICZYCH

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

Technologie w produkcji kruszyw foremnych

PORÓWNANIE METOD ROZDRABNIANIA BIOMASY DLA APLIKACJI W PRZEMYSLE ENERGETYCZNYM ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ROZDRABNIANIA

ZIARNA HYDROFILOWE W PRZEMYSŁOWYM PROCESIE FLOTACJI WĘGLI O RÓŻNYM STOPNIU UWĘGLENIA

Konstrukcja odsiewacza składa się z następujących zespołów: - układu napędowego złożonego z podstawy wraz z obudową łożysk, w której osadzony jest wał

Przenośnik zgrzebłowy - obliczenia

Odsiewacze produkowane są w wersjach: bez ramy A z ramą. 1 - wlot produktu 2 - wyloty poszczególnych frakcji

ODKSZTAŁCALNOŚĆ BLACH PERFOROWANYCH

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

Systemy regeneracji osnowy zużytych mas formierskich, jako sposoby optymalnego zagospodarowania odpadu

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2017 CZĘŚĆ PRAKTYCZNA

Kruszarki odśrodkowe w procesach drobnego kruszenia

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2016 CZĘŚĆ PRAKTYCZNA

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

Technologia Materiałów Drogowych ćwiczenia laboratoryjne

Przesiewacz do przypraw

Materiały Drogowe Laboratorium 1

Temat: Badanie Proctora wg PN EN

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

PRZEGLĄD KONSTRUKCJI JEDNOFAZOWYCH SILNIKÓW SYNCHRONICZNYCH Z MAGNESAMI TRWAŁYMI O ROZRUCHU BEZPOŚREDNIM

OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO

Badania wybranych właściwości kruszyw z odpadów ceramicznych oraz betonu wytworzonego z ich udziałem

RAPORT Z POMIARÓW PORÓWNAWCZYCH STĘŻENIA RADONU Rn-222 W PRÓBKACH GAZOWYCH METODĄ DETEKTORÓW PASYWNYCH

WPŁYW PARAMETRÓW ZASILACZA ZBIEŻNOKANAŁOWEGO NA ZAPOTRZEBOWANIE ENERGII PROCESU BRYKIETOWANIA W PRASIE WALCOWEJ

PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 05/18. WOJCIECH SAWCZUK, Bogucin, PL MAŁGORZATA ORCZYK, Poznań, PL

WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN

Nasyp budowlany i makroniwelacja.

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1397

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

WPŁYW TECHNICZNEGO UZBROJENIA PROCESU PRACY NA NADWYŻKĘ BEZPOŚREDNIĄ W GOSPODARSTWACH RODZINNYCH

Zastosowania frezarek bębnowych

Recykling mineralnych materiałów odpadowych

PROBLEMY PRZY POBIERANIU I POMNIEJSZANIU PRÓBEK KRUSZYW MINERALNYCH

Zasada działania przesiewaczy zataczających EFJ jest praktycznie taka sama jak w przypadku przesiewania ręcznego.

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Przenośniki Układy napędowe

Wydajność kruszarki zależy od ustawień maszyny, materiału, rozmiaru nadawy, szybkości załadunku...

Transkrypt:

MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 67, 1, (2015), 62-66 www.ptcer.pl/mccm Badania porównawcze procesu kruszenia wibracyjnego w kruszarkach szczękowych Jan Sidor*, Marcin Mazur** AGH Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie, Wydział Inżynierii Mechanicznej i Robotyki, Katedra Maszyn Górniczych, Przeróbczych i Transportowych, al. A. Mickiewicza 30, 30-059 Kraków e-mail: * jsidor@agh.edu.pl, ** mamazur@agh.edu.pl Streszczenie Badania procesu rozdrabniania kamienia wapiennego i diabazu o uziarnieniu 0-40 mm przeprowadzono w dwóch wibracyjnych kruszarkach szczękowych o kinematycznym i bezwładnościowym wymuszeniu ruchu drgającego szczęk oraz w typowej kruszarce szczękowej. Kamień wapienny pochodził z Kopalni Czatkowice w Krzeszowicach, natomiast diabaz z Kopalni Niedźwiedzia Góra w Tenczynku. Celem badań było wyznaczenie wpływu szczeliny wylotowej na uziarnienie produktu kruszenia i wydajność kruszarki. Najkorzystniejsze wyniki badań: stopnie rozdrobnienia i 50 i i 90, udziały klas ziarnowych 0-1,0 mm i 0-2,0 mm oraz efektywności technologiczne, otrzymano w kruszarkach wibracyjnych. Słowa kluczowe: rozdrabnianie, kruszenie wibracyjne, kruszarka wibracyjna, kamień wapienny, diabaz COMPARATIVE STUDIES OF VIBRATORY CRUSHING PROCESS PERFORMED IN JAW CRUSHERS Research of the crushing process of limestone and diabase was carried out in two vibrating jaw crushers: one of kinematic and one of inertial actuation of the oscillating motion of jaws, and in a typical jaw crusher. The grain size of the crushed material was in the range of 0-40 mm. Limestone came from Czatkowice Mine in Krzeszowice while diabase from Bear Mountain Mine in Tenczynek. The best results concerning degrees of fragmentation: i 50 and i 90, outputs of grain classes of 0-1.0 mm and 0-2.0 mm, and technological efficiency were obtained in the vibratory crushers. Keywords: Comminution, Vibratory crushing, Vibratory crusher, Limestone, Diabase 1. Wprowadzenie Prace dotyczące nowej technologii rozdrabniania, a właściwie kruszenia wibracyjnego, zapoczątkowano w Akademii Górniczo Hutniczej w Krakowie w latach siedemdziesiątych. Rozpoczęto je w Instytucie Maszyn Górniczych, Przeróbczych i Automatyki AGH, w którym opracowano dwa prototypy kruszarki wibracyjnej wyposażone w dwie ruchome szczęki, napędzane dwumasowymi wibratorami bezwładnościowymi. Kruszarki te różniły się miejscem zawieszenia szczęk. Jedna posiadała górne zawieszenie szczęk, a druga dolne [1, 2]. Wyniki badań procesu kruszenia przeprowadzone w tych kruszarkach wykazały ich bardzo dobre możliwości technologiczne [3]. Uzyskano w nich od 3 do 6 razy większy stopień rozdrobnienia i 50 oraz od 4 do 7 razy większą efektywność procesu kruszenia w stosunku do klasycznych kruszarek szczękowych. W latach osiemdziesiątych w Instytucie Maszyn Hutniczych i Automatyki AGH obecnie Katedra Systemów Wytwarzania opracowano prototyp nowej konstrukcji szczękowej kruszarki wibracyjnej z dolnym zawieszeniem szczęk napędzanych wibratorami kinematycznymi [3]. Kruszarkę tę zastosowano do bardzo drobnego kruszenia fryt emalierskich w Instytucie Szkła i Ceramiki Filia w Krakowie. W 1992 roku w Katedrze Urządzeń Technologicznych i Ochrony Środowiska AGH (obecnie Katedra Systemów Wytwarzania) opracowano nową kruszarkę wibracyjną KW 40/1, wyposażoną w wibratory kinematyczne z mechanizmem regulacji mimośrodów, co zapewniło możliwość regulacji skoku szczęk. Ważną zaletą technologiczną tej kruszarki była eliminacja wpływu uziarnienia nadawy na stopnie rozdrobnienia produktu kruszenia, co sprawiało kłopoty w kruszarkach z bezwładnościowym wymuszeniem ruchu drgającego szczęk. Przeprowadzono szereg badań procesu kruszenia wibracyjnego w tej kruszarce głównie o charakterze technologicznym w zakresie bardzo drobnego kruszenia materiałów o bardzo zróżnicowanych właściwościach wytrzymałościowych oraz abrazyjności. Wyniki te wykazały jej pełną przydatność technologiczną, zwłaszcza przy kruszeniu materiałów ceramicznych o dużej wytrzymałości na ściskanie, takich jak żelazokrzem, azotek glinu, węglik tytanowo-krzemowy [4], odpadów ceramicznych [5-7] i surowców mineralnych o bardzo zróżnicowanych własnościach fizycznych, w tym materiałów ceramicznych o wytrzymałości na ściskanie powyżej 1000 MPa i twardości 5-9 w skali Mohsa [8, 9]. W badaniach uzyskiwano duże stopnie rozdrobnienia (i 90 oraz i 50 ) w jednym stadium rozdrabniania materiałów. Wyniki badań umożliwiły dobór najkorzystniejszych parametrów 62

Badania porównawcze procesu kruszenia wibracyjnego w kruszarkach szczękowych kruszarki i procesu rozdrabniania oraz dostarczyły zbioru informacji w zakresie możliwości wyznaczania podatności materiałów na kruszenie wibracyjne, która jest niezbędna do poprawnego doboru parametrów procesu kruszenia wibracyjnego oraz projektowania przemysłowych kruszarek wibracyjnych. W literaturze znaleźć można kilkanaście patentów dotyczących kruszarek wibracyjnych, ale przemysłowe szczękowe kruszarki wibracyjne o wydajności 1,5-300 Mg/h i mocy 22-100 kw produkowane są tylko w Rosji [10, 11]. Artykuł zawiera wyniki badań porównawczych możliwości technologicznych wibracyjnych kruszarek szczękowych o kinematycznym i bezwładnościowym wymuszeniu ruchu drgającego oraz klasycznej kruszarki szczękowej, dwurozporowej. 2. Cel i metoda badań Celem badań było określenie wpływu wielkości szczeliny wylotowej e na uziarnienie produktu kruszenia podczas rozdrabniania kamienia wapiennego z kopalni Czatkowice w Krzeszowicach oraz diabazu z Kopalni Niedźwiedzia Góra w Tenczynku. Zbadano zawartość dolnych, zewnętrznych klas ziarnowych 0-2 mm i 0-1 mm, wyznaczono wydajności całkowitą i badanych klas ziarnowych) oraz efektywności technologiczne kruszarki (ET 50 i ET 90 ) w funkcji wielkości szczeliny wylotowej kruszarki. Dodatkowo dokonano porównania możliwości technologicznych wibracyjnych kruszarek szczękowych i dwurozporowej kruszarki szczękowej. Efektywności technologiczne procesu kruszenia ET 50 i ET 90 obliczano z wyrażeń: ET 50 = Q c i 50, ET 90 = Q c i 90 [Mg/h] (1) gdzie ET 50, ET 90 efektywność technologiczna dla stopni rozdrobnienia i 50, oraz i 90, [Mg/h],Q C wydajność całkowita, [Mg/h], i 50, i 90 stopnie rozdrobnienia odpowiednio 50% i 90%. Badania przeprowadzono w wibracyjnych kruszarkach szczękowych o kinematycznym KW 40/1 i bezwładnościowym wymuszeniu ruchu drgającego KWB-d oraz w klasycznej kruszarce szczękowej o prostym ruchu szczęki KS. Do badań pobierano próbki kamienia wapiennego i diabazu o masie 1 kg oraz takim samym uziarnieniu mieszczącym się w przedziale 0-40 mm. W przypadku kruszarki wibracyjnej KW 40/1 oraz dla kruszarki wibracyjnej KWB-d próby kruszenia wykonywano dla trzech wartości szczeliny wylotowej: 1,5 mm, 2,5 mm i 5,0 mm. Kruszarka szczękowa KS posiadała minimalną szczelinę wylotową e równą 5,0 mm. Nadawę do procesu kruszenia w przypadku wszystkich kruszarek podawano ręcznie, starając się, aby strefa kruszenia była wypełniona do wysokości około 50%; przy takim wypełnieniu kruszarki uzyskiwały największe wydajności. Podczas zasilania kruszarki KS, zgodnie z wymaganiami eksploatacyjnymi, komora kruszenia była zasypana prawie w całej wysokości. Każdą próbę powtarzano dwukrotnie a końcowe wyniki stanowią średnią arytmetyczną z tych prób. Analizę sitową nadawy i produktu kruszenia wykonywano na sucho zgodnie z normą PN C 04501:1971. Wydajność kruszarek wyznaczono wykorzystując pomiar czasu kruszenia od rozpoczęcia procesu do jego zakończenia. 3. Opis stanowisk badawczych Schematy budowy i działania kruszarek przedstawiono na Rys. 1, 2 i 3. W skład stanowisk badawczych wchodziły: zespół zasilania i regulacji prędkości obrotowej silników kruszarek przetwornik częstotliwości, układ pomiaru poboru mocy watomierz rejestrujący, układ pomiaru częstotliwości drgań, układ odpylania i oczyszczania powietrza oraz przesiewacz wibracyjny z kompletem sit, waga laboratoryjna, stoper i komplet szczelinomierzy. Zespół roboczy kruszarki przedstawionej na Rys. 1 stanowią dwie ruchome szczęki (1) zamocowane wahliwie u dołu. Układy sprężyste (3) dociskają obie szczęki do rolek napędowych wibratorów kinematycznych (2). Jedna ze szczęk ma mechanizm regulacji szczeliny wylotowej (4). Oba wały wibratora sprzężone są przekładnią łańcuchową (5), napę- Rys. 1. Schemat budowy i działania wibracyjnej kruszarki szczękowej KW 40/1 o kinematycznym wymuszeniu ruchu drgającego szczęk. Fig. 1. Scheme of the vibratory jaw crusher KW 40/1 with kinematic actuation of jaws. Rys. 2. Schemat budowy i działania wibracyjnej kruszarki szczękowej KWB-d o bezwładnościowym wymuszeniu ruchu drgającego. Fig. 2. Scheme of the vibratory jaw crusher KWB-d with inertial actuation of jaws. MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 67, 1, (2015) 63

J. Sidor, M. Mazur Rys. 3. Schemat budowy i działania kruszarki szczękowej KS o prostym ruchu szczęki. Fig. 3. Scheme of the jaw crusher KS with simple jaw movement. dzaną silnikiem elektrycznym. Ruch obu szczęk zachodzi w sposób przeciwsobny, to znaczy jednocześnie szczęki zbliżają się do siebie lub od siebie oddalają. Szczęki kruszarki posiadają wymienną, gładką wykładzinę stalową, jednakże istnieje możliwość zamocowania wykładzin ceramicznych. Kruszarka ma możliwość regulacji skoku obu szczęk. typu KW 40/1 są następujące: wymiary wlotu 100 mm 160 mm, zakres regulacji szczeliny 0,5-10 mm, częstotliwość drgań szczęk 8-25 Hz, moc silnika 2,2 kw, maksymalne ziarno nadawy 40 mm, wymiary 840 mm 420 mm 980 m, masa 145 kg, wydajność 50-500 kg/h. Strefa kruszenia wibracyjnej kruszarki szczękowej KWB-d (Rys. 2) jest podobna do kruszarki KW 40/1 (Rys. 1). Podstawową różnicą jest sposób wymuszania ruchu drgającego szczęk. W kruszarce KWB-d ruch szczęk (1) powodują bezwładnościowe wibratory dwumasowe (2), połączone są ze sobą za pomocą przekładni (5). Kruszarka ta posiada mechanizm regulacji szczeliny wylotowej (4). Układ zasilania silnika elektrycznego zapewnia bezstopniową regulację prędkości obrotowej wałów wibratorów, a tym samym częstotliwości drgań szczęk obydwu kruszarek. typu KWB-d są następujące: wymiary wlotu 120 150 mm, zakres regulacji szczeliny 1-20 mm, częstotliwość drgań szczęk 22-32 Hz, moc silnika 2,9 kw, maksymalne ziarno nadawy 40 mm, wymiary 825 mm 480 mm 770 mm, masa 200 kg, wydajność 50-800 kg/h. Kruszarka szczękowa KS (Rys. 3) o prostym ruchu szczęki zbudowana jest ze szczęki ruchomej (1) i szczęki nieruchomej (2). Szczęka ruchoma wprawiana jest w ruch dwoma płytami rozporowymi (4). Wał mimośrodowy (3) napędzany jest przekładnią pasową (4) z silnika (5). Ruch wahliwy szczęki (1) oraz jej zabezpieczenie zapewnia mechanizm (7), który tworzą dwie płyty rozporowe oraz cięgło, którego jeden koniec połączony jest ze szczęka, a drugi posiada sprężynę zapewniającą stały kontakt szczęki (1) z płytami rozporowymi. typu KS są następujące: wymiary wlotu 100 mm 50 mm, zakres regulacji szczeliny 5-20 mm, moc silnika 1,7 kw, maksymalne ziarno nadawy 40 mm, wymiary 1050 mm 470 mm 1500 mm, masa 200 kg, wydajność 50-400 kg/h. Tabela 1. Program i wyniki badań kruszenia kamienia wapiennego. Table 1. The program and results of crushing limestone. Parametr Kruszarka KW 40/1 Kruszarka KWB-d Kruszarka KS Wymiar szczeliny wylotowej e [mm] 1,5 2,5 5,0 1,5 2,5 5,0 5,0 Wydajność całkowita [kg/h] 71,7 97,3 108,9 104,6 131,1 108,2 208,0 Wydajność klasy 0-2,0 mm [kg/h] 57,7 54,9 32,8 49,0 56,2 24,7 35,6 Wydajność klasy 0-1,0 mm [kg/h] 43,9 28,9 19,7 31,9 35,5 13,6 22,0 Stopień rozdrobnienia i 50 [-] 30,0 10,8 8,8 12,2 9,1 5,6 3,8 Stopień rozdrobnienia i 90 [-] 14,0 7,2 4,7 6,6 6,0 4,0 2,3 Efektywność technologiczna ET 50 [Mg/h] 2,2 1,1 1,0 1,3 12,2 0,6 0,8 Efektywność technologiczna ET 90 [Mg/h] 1,0 0,7 0,5 0,7 0,8 0,4 0,5 Tabela 2. Program i wyniki badań kruszenia diabazu. Table 2. The program and results of crushing diabase. Parametr Kruszarka KW 40/1 Kruszarka KWB-d Kruszarka KS Wymiar szczeliny wylotowej e [mm] 1,5 2,5 5,0 1,5 2,5 5,0 5,0 Wydajność całkowita [kg/h] 71,7 97,3 109,2 60,2 78,1 115,4 240,1 Wydajność klasy 0-2,0 mm [kg/h] 57,7 54,9 32,2 21,4 26,5 26,3 66,5 Wydajność klasy 0-1,0 mm [kg/h] 43,9 28,9 19,9 12,4 15,2 14,5 16,6 Stopień rozdrobnienia i 50 [-] 13,6 11,6 8,0 10,4 5,2 5,0 3,4 Stopień rozdrobnienia i 90 [-] 6,1 5,3 4,5 5,2 4,1 3,8 2,2 Efektywność technologiczna ET 50 [Mg/h] 1,0 1,1 0,9 0,6 0,4 0,6 0,8 Efektywność technologiczna ET 90 [Mg/h] 0,4 0,5 0,5 0,3 0,3 0,4 0,5 64 MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 67, 1, (2015)

Badania porównawcze procesu kruszenia wibracyjnego w kruszarkach szczękowych Rys. 4. Krzywe składu ziarnowego nadawy i produktu kruszenia kamienia wapiennego dla różnych szczelin wylotowych w kruszarkach wibracyjnych KWB-d (a) i KW 40/1 (b). Fig. 4. Curves of grain size distribution of feed and crushing product of limestone for selected outlet gaps: a) KWB-d crusher, and b) KW 40/1 crusher. Rys. 5. Krzywe składu ziarnowego nadawy i produktu kruszenia diabazu dla różnych szczelin wylotowych w kruszarkach wibracyjnych KWB-d (a) i KW 40/1 (b). Fig. 5. Curves of grain size distribution of feed and crushing product of diabase for selected outlet gaps: a) KWB-d crusher, and b) KW 40/1 crusher. Rys. 6. Krzywe składu ziarnowego nadawy i produktów kruszenia diabazu (a) i kamienia wapiennego (b) uzyskane przy wartości szczeliny wylotowej e = 5,0 mm w zastosowanych do badań kruszarkach szczękowych. Fig. 6. Curves of grain size distribution of feed and crushing product of diabase (a) and limestone (b) obtained at outlet gap of 5,0 mm in studied jaw crushers. MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 67, 1, (2015) 65

J. Sidor, M. Mazur 4. Program, realizacja i wyniki badań Program badań obejmował określenie wpływu wielkości szczeliny wylotowej na następujące parametry procesu kruszenia: uziarnienie produktów kruszenia, wydajność całkowitą kruszarki, wydajność zewnętrznych klas ziarnowych 0-2 mm i 0-1 mm, efektywność technologiczną procesu kruszenia dla dwóch stopni rozdrobnienia i 50 oraz i 90. W badaniach kruszarki wibracyjnej KW 40/1 przyjęto trzy wartości szczeliny wylotowej e: 1,5 mm, 2,5 mm i 5,0 mm oraz jedną częstotliwość drgań szczęk kruszarki 18 Hz. Dla kruszarki wibracyjnej KWB-d również przyjęto trzy wartości szczeliny wylotowej e: 1,5 mm, 2,5 mm i 5,0 mm oraz częstotliwość drgań szczęk 32 Hz. Wydajność zewnętrznych klas ziarnowych 0-2 mm i 0-1 mm obliczano z iloczynu wydajności całkowitej i procentowej zawartości tych klas w produkcie kruszenia. Stopnie rozdrobnienia i 50 i i 90 wyznaczono jako ilorazy odpowiednich wymiarów ziaren z krzywych uziarnienia nadawy i produktu kruszenia. Program badań z niektórymi wynikami badań podano w Tabelach 1 i 2. Na Rys. 4, 5 i 6 przedstawiono krzywe uziarnienia produktów kruszenia i nadawy rozdrabnianych materiałów, obrazujące wpływ szczeliny wylotowej oraz rodzaju kruszarki na parametry produktu kruszenia. 5. Podsumowanie Wyniki badań wskazują, że w szczękowych kruszarkach wibracyjnych proces kruszenia zachodzi znacząco intensywniej niż w kruszarce klasycznej. Ziarna produktów kruszenia w kruszarkach wibracyjnych w przeważającej ilości cechowały się kształtem regularnym (kubicznym), przy czym w nadawie dominowały ziarna słupkowe i płytkowe. Jest to bardzo pożądana zaleta technologiczna, zwłaszcza podczas produkcji kruszyw. Największe stopnie rozdrobnienia, zarówno i 50 (30) jak i i 90 (14), otrzymano w wibracyjnej kruszarce szczękowej o kinematycznym wymuszeniu ruchu drgającego (KW 40/1), przy szczelinie wylotowej e = 1,50 mm. Stopnie rozdrobnienia uzyskiwane w kruszarce KW 40/1 były wyższe niż te uzyskane w kruszarce KWB-d dla obydwu materiałów i całego zakresu badanych szczelin wylotowych. Można to wytłumaczyć faktem, że w kruszarce wibracyjnej kinematycznej szczelina wylotowa jest stała w czasie procesu rozdrabniania, natomiast w kruszarce KWB-d może się w pewnym zakresie zmieniać. Konsekwencją tego jest dużo większy wpływ uziarnienia nadawy na uziarnienie produktu kruszenia dla tej kruszarki, co skutkuje gorszymi parametrami uziarnienia produktu kruszenia. Jest to pewna wada konstrukcji tego typu. Natomiast niewątpliwą zaletą bezwładnościowego sposobu wymuszenia ruchu drgającego szczęk jest całkowite zabezpieczenie kruszarki przed uszkodzeniem przez dostanie się do przestrzeni roboczej materiału niezkruszalnego (np. kawałka metalu). W tych kruszarkach w przypadku dostania się do strefy kruszenia bryły metalu, następuje niemal całkowity zanik amplitudy drgań szczęk oraz niestety wstrzymanie procesu rozdrabniania, ale bez żadnego negatywnego wpływu na konstrukcję maszyny. Kruszarki wibracyjne o wymuszeniu kinematycznym ruchu drgającego zabezpieczane są przed taką ewentualnością w inny sposób. Kruszarki laboratoryjne [12] przez podlegający zniszczeniu kołek łączący bierne koło pasowe z piastą, a kruszarki przemysłowe na drodze elektrycznej [6]. Wydajność całkowita kruszarek zwiększała się wraz ze wzrostem wielkości szczeliny wylotowej. Wyższe wartości wydajności uzyskano dla kruszarki wibracyjnej KWB-d nawet przy mniejszych wielkościach szczeliny wylotowej. Uzyskane wydajności kruszarek wibracyjnych należy traktować jako orientacyjne ze względu na przyjętą metodę wyznaczania wydajności. W kilku próbach przy pracy ciągłej kruszarki uzyskano wydajność większą o około 50%. Dla mniejszych wartości szczeliny wylotowej wyższe efektywności technologiczne posiada kruszarka wibracyjna o wymuszeniu kinematycznym. Dla szczelin większych efektywności technologiczne w obu kruszarkach uzyskano zbliżone rezultaty. Wyniki badań przeprowadzonych w klasycznej (handlowej) kruszarce szczękowej KS przy najmniejszej (konstrukcyjnie) szczelinie wylotowej e = 5,0 mm zamieszczono w celu porównania jej możliwości technologicznych z kruszarkami wibracyjnymi. Jak należało oczekiwać uzyskano w niej największą wydajność całkowitą przy najmniejszych wydajnościach klas 0-2,0 mm oraz 0-1,0 mm. Konsekwencją tego były znacząco mniejsze stopnie rozdrobnienia i efektywności technologiczne. Ponadto produkt kruszenia z tej kruszarki zawierał znaczną ilość ziaren płaskich. Literatura [1] Banaszewski, T., Wibracyjna kruszarka szczękowa, Patent PRL nr 62930, 1971. [2] Banaszewski, T., Wibracyjna kruszarka szczękowa, Patent PRL nr 69 785, 1974. [3] Drzymała, Z., Sidor, J., Kaczmarczyk, S., Maćków, E. i inni,1986, Kruszarka wibracyjna, Patent PRL nr 133 128, 1986. [4] Sidor, J., Niektóre wyniki badań procesu bardzo drobnego kruszenia w kruszarce wibracyjnej, IX Konferencja Problemy Rozwoju Maszyn Roboczych, z. 3, Zakopane, 1996, s. 169 176. [5] Sidor, J., Possible use of vibration jaw crusher for process of preparating the recycling and utilization of ceramic waste product, Polish Journal of Environmental Studies, vol. 16, No 3B, 2007, p. 451-454. [6] Sidor, J., Preliminary investigations of industrial line of mechanical processing wastes for recycling, Polish Journal of Environmental Studies, vol. 17, No 3A, 2008, p. 507-510,. [7] Sidor, J.: Sposoby rozdrabniania przemysłowych odpadów i poużytkowych wyrobów ceramicznych w kruszarkach wibracyjnych, Powder & Bulk Materiały Sypkie i Masowe; 2013 nr 6, s. 42 47. [8] Sidor, J., Mazur M., Niektóre wyniki badań procesu kruszenia wibracyjnego surowców mineralnych, Przegląd Górniczy, t. 67 nr 11, 2011, s. 106 111. [9] Sidor, J., Mazur M., Wpływ wybranych parametrów kruszarki wibracyjnej na proces kruszenia kwarcytu i diabazu, Górnictwo Odkrywkowe nr 6, 2012, s. 31-40. [10] www.stroyteh.ru/wiki [11] www.mekhanobr.ru [12] Sidor, J., Krawczyk, K., 2010, Instrukcja Eksploatacyjna Laboratoryjnej Wibracyjnej Kruszarki Szczękowej KWj-4, ZSP Kraków 2009 (niepubl.). Otrzymano 15 września 2014, zaakceptowano 28 listopada 2014. 66 MATERIA Y CERAMICZNE /CERAMIC MATERIALS/, 67, 1, (2015)