Elektryczne źródła światła Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Widmo promieniowania elektromagnetycznego By narząd wzroku spełniał swoją funkcję, potrzebne jest światło. Światło (promieniowanie widzialne) jest to ta część widma elektromagnetycznego, która powoduje bezpośrednio wraŝenia wzrokowe. W widmie światła widzialnego moŝna wydzielić przedziały długości fal, które oko ludzkie odbiera jako wraŝenie róŝnych barw: 380-436 nm fiolet, 436-495 nm niebieski, 495-566 nm zielony, 566-589 nm Ŝółty, 589-627 nm pomarańczowy, 627-780 nm czerwony.
Podstawowe wielkości Podstawowymi wielkościami oświetleniowymi są: - strumień świetlny Φ wyraŝany w lumenach [lm], - światłość I wyraŝana w kandelach [cd], - natęŝenie oświetlenia E wyraŝane w luksach [lx], - luminancja L wyraŝana w [cd/m ]. - sprawność oprawy ηo w [%]
Elektryczne źródła światła: Lampy żarowe (żarówki), w których wykorzystuje się świecenie nagrzanego drutu wolframowego. Lampy halogenowe, w których wykorzystuje się świecenie nagrzanego drutu wolframowego w atmosferze halogenków. Lampy fluorescencyjne (świetlówki), w których wykorzystuje się zjawisko fluorescencji, tj. świecenia pewnych substancji chemicznych pod wpływem działania promieni ultrafioletowych i elektronów. Lampy wyładowcze (rtęciowe, sodowe, neonowe, ksenonowe), w których wykorzystuje się świecenie gazu pod wpływem wyładowań elektrycznych (przepływu prądu elektrycznego przez gaz).
Lampy o świetle mieszanym, w których w celu otrzymania światła wykorzystuje się dwa zjawiska fizyczne świecenie gazu pod wpływem wyładowań elektrycznych i świecenie ciał stałych pod wpływem wysokiej temperatury (lampy rtęciowo-żarowe, lampy łukowe). Lampy LED, wykorzystujące wysokoenergetyczne diody świecące LED.
Lampy żarowe. Elementem świecącym w żarówce jest żarnik z drutu wolframowego, rozgrzany do temperatury 2100 2800 C i umieszczony w bańce z wytworzoną próżnią lub napełnioną mieszaniną gazu szlachetnego (argon, krypton, ksenon) z azotem. Do lamp żarowych zaliczamy też lampy halogenowe, czyli takie, których bańka jest napełniona halogenem. Mają one wyższą trwałość (mniejsze zużycie żarnika) i lepszą skuteczność świetlną od tradycyjnych żarówek żarowych. Żarówki mają 2 podstawowe rodzaje trzonków: gwintowy (E27 i E14) oraz bagnetowy (B22). Podstawowymi parametrami żarówek są: napięcie, moc i prąd. Rezystancja żarówek jest nieliniowa i zależy między innymi od ich
temperatury. W żarówkach ok. 90% energii jest zużywane na wytwarzanie energii cieplnej. Podczas montażu oprawek żarówkowych prądu przemiennego należy pamiętać, że na krążek stykowy podajemy przewód fazowy, a na gwint przewód neutralny. Wyłącznik zawsze montujemy na przewodzie fazowym. Żarówek halogenowych nie powinno się dotykać gołymi rękami. Rozgrzanej bańce ze szkła kwarcowego szkodzi pot z rąk.
Rodzaje żarników: a) jednoskrętkowy; b) dwuskrętokwy. Budowa żarówki. 1-bańka szklana, 2-gaz lub próżnia, 3-żarnik wolframowy, 4-elektrody niklowe, 5-podpórki molibdenowe, 6-pręcik szklany, 7- łopatka szklana, 8-trzonek, 9-gwint, 10-krążek stykowy Rodzaje trzonków: a) gwintowy; b) bagnetowy
Żarówka halogenowa dwutrzonkowa
Lampy rtęciowe. Ich zasada działania opiera się na świeceniu sprężonych par rtęci o ciśnieniu 100 Pa. Elementem wytwarzającym światło jest jarznik - rurka ze szkła kwarcowego wypełniona argonem i rtęcią. Poza jarznikiem panuje próżnia. Trwałość wynosi 6000 godzin. Wadą jest długi czas, który musi upłynąć między wyłączeniem lampy a jej ponownym załączeniem.
Budowa i schemat włączenia lampy rtęciowej 1-bańka zewnętrzna z luminoforem, 2-rezystor, 3-bańka ze szkła kwarcowego, 4-argon, 5-kropla rtęci, 6-elektrody główne, 7-elektroda zapłonowa, D-dławik, C k -kondensator do poprawy współczynnika mocy, L-przewód fazowy N-przewód neutralny
Lampy rtęciowo-żarowe. Konstrukcja zbliżona do lampy rtęciowej. Oprócz jarznika posiada żarnik wykonany z wolframu, będący dodatkowym źródłem światła. Żarnik świeci od razu po załączeniu lampy. Rozruch trwa 4 minuty. Lepiej oddają barwy oświetlanych przedmiotów. Trwałość około 4000 godzin
Budowa i schemat włączenia lampy rtęciowo-żarowej 1-bańka zewnętrzna z luminoforem, 2-rezystor, 3-bańka ze szkła kwarcowego, 4-argon, 5-kropla rtęci, 6-elektrody główne, 7-elektroda zapłonowa, 8-żarnik wolframowy, D-dławik, C k -kondensator do poprawy współczynnika mocy, L-przewód fazowy N-przewód neutralny
Lampy sodowe. Działanie podobne, jak lampy rtęciowej. Jej jarznik jest wykonany z tlenku glinu, a jego wnętrze wypełnia neon oraz sód w postaci metalicznej. Świecą pary neonu i sodu. Dają żółte, kontrastowe światło. Stosowane do oświetlania dróg. Trwałość około 4000 godzin.
Schemat budowy i układ zasilania lampy sodowej 1-bańka zewnętrzna, 2-próżnia, 3-rura wypełniona neonem, argonem i małą ilością sodu, 4-elektroda, 5-trzonek, Atr-autotransformator rozproszeniowy, C k -kondensator do poprawy współczynnika mocy.
Lampy bezelektrodowe
Lampy fluorescencyjne. Świetlówka jest lampą rtęciową niskoprężną. Wykorzystuje ona wyładowania elektryczne w parze rtęci o ciśnieniu ok. 1 Pa. Między elektrodami jarznika, do których jest przyłożone napięcie, płynie prąd, poruszają się ładunki (elektrony i jony dodatnie) zderzające się z atomami rtęci. Wzbudzone atomy rtęci są źródłem promieniowania o dużej energii i małej długości fali. Promieniowanie to padając na luminofor, którym pokryta jest wewnętrzna powierzchnia jarznika, powoduje wzbudzenie jego cząsteczek, a w rezultacie ich świecenie.
Skład chemiczny luminoforu pozwala regulować barwą światła świetlówki. Aby ochronić świetlówkę przed uszkodzeniem na skutek zbyt dużego prądu, w szereg z nią włącza się statecznik układ ograniczający wartość prądu. Najczęściej w roli statecznika wykorzystuje się dławik. Ze względu na niekorzystny wpływ dławika na współczynnik mocy dodaje się kompensujący go kondensator. Zapłonnik lampowy do świetlówki: a) budowa; b) schemat 1-bańka szklana wypełniona neonem, 2-blaszka bimetalowa, 3-styk, 4-kondensator przeciwzakłóceniowy
Napięcie robocze świetlówki jest zbyt małe, żeby doprowadzić do jej samoczynnego zapłonu. Dlatego też podczas zapłonu między elektrody przykłada się napięcie kilkakrotnie większe od napięcia roboczego. Zapłonem świetlówki steruje zapłonnik (starter). Po załączeniu lampy płynie mały prąd w obwodzie: dławik 6 elektroda 4 zapłonnik 1 elektroda 5. Całe napięcie przypada na zapłonnik tj. na małą lampę tlącą, w której rozpoczyna się wyładowanie. Lampa ta ogrzewa bimetal, który wygina się zwierając obwód. W tej chwili w obwodzie zaczyna płynąć wysoki prąd, nagrzewając elektrody świetlówki. W tym samym czasie zapłonnik stygnie (zwarta lampa tląca) i po kilku sekundach bimetal rozwiera obwód. Nagłe przerwanie prądu płynącego między innymi przez dławik, powoduje pojawienie się na nim SEM samoindukcji. Między nagrzanymi elektrodami pojawia się
przepięcie powodujące zapoczątkowanie wyładowania w rurze świetlówki. Jeśli do zapłonu nie doszło, cały proces zaczyna się od początku. Jeśli zapłon nastąpił, napięcie na rurze spada, a jednocześnie napięcie na lampie tlącej w zapłonniku jest za małe, by zaczęła świecić i podgrzewać bimetal. Zamiast zapłonnika tradycyjnego coraz częściej stosuje się zapłonnik elektroniczny. Pozwala on na miniaturyzację i co za tym idzie znalazł zastosowanie w tzw. świetlówkach kompaktowych, zwanych też żarówkami energooszczędnymi.
Świetlówka kompaktowa Światło świetlówki w odróżnieniu od żarówek żarowych, jest światłem migającym z częstotliwością 100 Hz. Tętnienie to nie jest dostrzegalne gołym okiem, ale stwarza tzw. efekt stroboskopowy. W przypadku oświetlania elementów wirujących z częstotliwością zbliżoną do częstotliwości tętnień, możemy mieć wrażenie, że części wirujące stoją w miejscu. To z kolei może być przyczyną wypadków. Dlatego też w pomieszczeniach przemysłowych stosuje się układy antystroboskopowe
polegające na instalowaniu w jednej oprawie dwu świetlówek których migotanie jest przesunięte w fazie. Innym rozwiązaniem jest zastosowanie opraw z trzema świetlówkami z których każda zasilana jest z innej fazy.
śarówka LED
Oprawy oświetleniowe słuŝą: Oprawy oświetleniowe
Podział opraw: Ze względu na sposób mocowania oprawy dzielimy na: 1) stałe 2) przenośna 3) nastawne
RozróŜniamy 5 klas oświetlenia: I - kierują cały strumień w dół (zast. w wysokich halach i do oświeltenia miejscowego), II i III - stosowane w pomieszczeniach niŝszych o średnio jasnych ścianach i sufitach (biura, sklepy), IV i V - światło odbite od sufitu, (zast. w mieszkaniach, hotelach, pomieszczenaich powszechnego uŝytku). Sprawność oprawy:
Właściwości opraw oświetleniowych w zależności od klasy Klasa I II III IV V Charakter oświetlenia bezpośrednie przeważnie bezpośrednie mieszane przeważnie pośrednie pośrednie Strumień wysyłany do dolnej półprzestrzeni 90 100% 60 90% 40 60% 10 40% 0 10% Orientacyjna krzywa rozsyłu światłości Oprawy do żarówek i rtęciówek Oprawy do świetlówek
Obliczanie oświetlenia wnętrz
NaleŜy określić: Obliczanie oświetlenia zewnętrznego Sposoby rozmieszczenia źródeł światła: - środkowe - jednostronne - dwustronne - naprzemianległe
Literatura: J.Nowicki Podstawy elektrotechniki i elektroniki dla ZSN WSiP 1999 G.Bartodziej, E.Kałuża Aparaty i urządzenia elektryczne WSiP 1997 W.Kotlarski, J.Grad Aparaty i urządzenia elektryczne WSiP