PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III



Podobne dokumenty
Katalog wymagań na poszczególne stopnie szkolne klasa 3

Wymagania na poszczególne oceny,,matematyka wokół nas. Klasa III

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Wymagania edukacyjne niezbędne do uzyskania bieżących, śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa III GIMNAZJUM

1. Wymagania edukacyjne na poszczególne oceny:

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

WYMAGANIA PROGRAMOWE NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 3 GIMNAZJUM

Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum

Matematyka Wymagania edukacyjne dla uczniów klas VIII Rok szkolny 2018/2019. Dział Ocena Umiejętności Potęgi i pierwiastki. Na ocenę dopuszczającą

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych ocen klasyfikacyjnych z matematyki klasa 8

Katalog wymagań programowych na poszczególne stopnie szkolne

Wymagania edukacyjne na poszczególne oceny klasa VIII

Wymagania edukacyjne z matematyki w klasie VIII.

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2

Wymagania edukacyjne matematyka klasa VIII

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 2. rok szkolny 2014/2015

PRZEDMIOTOWE ZASADY OCENIANIA MATEMATYKA - KLASA 3 GIMNAZJUM

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE II

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE II

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM Nr 28 im. Armii Krajowej w Gdańsku

Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:

MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

Przedmiotowe zasady oceniania i wymagania edukacyjne

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie

Kryteria oceniania z matematyki Klasa III poziom podstawowy

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

Wymagania edukacyjne z matematyki dla klasy III gimnazjum

PRZEDMIOTOWE ZASADY OCENIANIA KLASA 3 GIMNAZJALNA

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

Kryteria ocen z matematyki - klasa VIII

WYMAGANIA EDUKACYJNE

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

ZASADY OCENIANIA - MATEMATYKA KLASA 8 I. OGÓLNE ZASADY OCENIANIA UCZNIÓW 1. Ocenie podlegają: a. pisemne prace kontrolne - sprawdzian (praca

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

Matematyka klasa 7 Wymagania edukacyjne na ocenę śródroczną.

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

Statystyka opisowa i elementy rachunku prawdopodobieostwa

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

Przedmiotowe zasady oceniania z matematyki klasa VII "Matematyka z kluczem"

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

ZESPÓŁ SZKÓŁ W OBRZYCKU

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

Osiągnięcia ponadprzedmiotowe. Osiągnięcia przedmiotowe

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE 7 SZKOŁY PODSTAWOWEJ

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Wymagania edukacyjne z matematyki Klasa III zakres podstawowy

wymagania programowe z matematyki kl. III gimnazjum

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem

Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS /08

Matematyka z kluczem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Plan wynikowy klasa 3. Zakres podstawowy

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

Osiągnięcia ponadprzedmiotowe

ZASADY OCENIANIA Z MATEMATYKI DLA KLASY SZÓSTEJ

Matematyka z kluczem. Klasa 7

Kształcenie w zakresie podstawowym. Klasa 1

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH 4 6 SZKOŁY PODTSAWOWEJ W WÓLCE HYŻNEŃSKIEJ

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi:

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla uczniów klasy trzeciej gimnazjum na podstawie programu MATEMATYKA 2001

klasa I Dział Główne wymagania edukacyjne Forma kontroli

Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 2

Transkrypt:

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8

ZASADY OCENIANIA: 1. Każdy uczeń jest oceniany sprawiedliwie. 2. Uczeń ma obowiązek noszenia zeszytu, podręcznika, ćwiczenia, przyrządów geometrycznych, kalkulatora. 3. Brak zeszytu traktowany jest jak brak pracy domowej. 4. Każdy dział posiada wymagania na poszczególne oceny. 5. Sprawdzian działowy jest zapowiadany z tygodniowym wyprzedzeniem. 6. Uczeń ma prawo zgłaszać nauczycielowi wątpliwości związane z otrzymaną oceną. 7. Uczeń nieobecny na sprawdzianie działowym musi zaliczyć materiał na ocenę co najmniej dopuszczającą. 8. Ocenę niedostateczną ze sprawdzianu działowego trzeba poprawić, można poprawić również inną ocenę w ustalonym przez nauczyciela terminie. 9. Krótki sprawdzian (kartkówka) nie musi być zapowiadany. 10. Testy, sprawdziany, kartkówki oceniane są według skali: 100% - 98% celujący 97% - 86% bardzo dobry 85% - 71% dobry 70% - 50% dostateczny 49% - 30% dopuszczający 29% - 0% niedostateczny Pomiar osiągnięć uczniów odbywa się za pomocą następujących narzędzi: prace klasowe / 1 godzina lekcyjna /, sprawdziany / kartkówki, odpowiedzi ustne, prace domowe, udział w konkursach matematycznych, obserwacja ucznia: przygotowanie się do lekcji, aktywność na lekcji, praca w grupie. zadania dodatkowe wykonywane w domu. Liczba i częstotliwość pomiarów jest zależna od realizowanego programu, od zespołu klasowego oraz od liczby godzin. Na lekcjach matematyki oceniane są następujące obszary aktywności ucznia: 1. Rozumienie pojęć matematycznych i znajomość ich definicji, 2. Znajomość i stosowanie poznanych twierdzeń, 3. Prowadzenie rozumowań, 4. Rozwiązywanie zadań z wykorzystaniem poznanych metod, 5. Posługiwanie się symboliką i językiem matematyki, 6. Analizowanie tekstów w stylu matematycznym, 7. Prezentowanie wyników swojej pracy w różnych formach, 8. Aktywność na lekcjach, praca w grupach i własny wkład pracy ucznia, 9. Stosowanie wiedzy przedmiotowej w rozwiązywaniu problemów pozamatematycznych. 2/8

3/8

Wydzielone zostały następujące poziomy wymagań programowych: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D), wykraczające (W). Poziom wymagań Wymagania konieczne określają: wiadomości i umiejętności, które umożliwiają uczniowi świadome korzystanie z lekcji i wykonywanie prostych zadań z życia codziennego. Wymagania podstawowe określają: wiadomości i umiejętności stosunkowo łatwe do opanowania, użyteczne w życiu codziennym i absolutnie niezbędne do kontynuowania nauki na wyższym poziomie. Wymagania rozszerzające określają: wiadomości i umiejętności średnio trudne, wspierające tematy podstawowe, rozwijane na wyższym etapie kształcenia. Wymagania dopełniające określają: wiadomości i umiejętności złożone lub o charakterze problemowym. K K P K P R K P R D Wymagania wykraczające określają: wiadomości i umiejętności pogłębiające podstawę programową, często związane ze szczególnymi zainteresowaniami ucznia z danej dziedziny. K P R D W Na ocenę dopuszczający uczeń powinien opanować umiejętności z pierwszej części tabeli; na ocenę dostateczny umiejętności z pierwszej i drugiej części; na ocenę dobry z pierwszej, drugiej i trzeciej; na ocenę bardzo dobry z czterech pierwszych części; na ocenę celujący wszystkie umiejętności z tabeli. 4/8

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 3 CZEŚĆ PIERWSZA I. POTĘGI Uczeń: Umiejętności Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości potęg o wykładniku ujemnym i całkowitej podstawie. Oblicza wartość dwuargumentowego wyrażenia arytmetycznego zawierającego potęgi o wykładniku całkowitym. Stosuje regułę mnożenia lub dzielenia potęg o tym samym wykładniku ujemnym. Stosuje regułę mnożenia lub dzielenia potęg o tej samej podstawie i wykładniku całkowitym. Stosuje regułę potęgowania potęgi o wykładnikach całkowitych. Przedstawia iloczyn i iloraz potęg o wykładniku całkowitym w postaci potęgi. Przedstawia potęgę potęgi o wykładniku całkowitym za pomocą potęgi o wykładniku naturalnym. Stosuje notację wykładniczą do przedstawiania bardzo małych liczb. Przekształca proste wyrażenia algebraiczne, np. z jedną zmienną, z zastosowaniem potęgowania o wykładniku całkowitym. Wykorzystuje kalkulator do potęgowania. Stosuje łącznie wzory dotyczące mnożenia, dzielenia, potęgowania potęg o wykładniku całkowitym do obliczania wartości prostego wyrażenia. Przedstawia potęgę o wykładniku całkowitym w postaci iloczynu potęg lub ilorazu potęg, lub w postaci potęgi. Wyraża za pomocą notacji wykładniczej o wykładniku całkowitym podstawowe jednostki miar. Wskazuje liczbę najmniejszą i największą w zbiorze liczb zawierającym potęgi o wykładniku całkowitym. Podaje definicję potęgi o wykładniku całkowitym. Stosuje łącznie wszystkie twierdzenia dotyczące potęgowania o wykładniku całkowitym do obliczania wartości złożonych wyrażeń. Rozwiązuje zadania tekstowe z zastosowaniem notacji wykładniczej wyrażającej bardzo małe liczby. Szacuje wartość potęgi o wykładniku całkowitym. Porównuje wartości potęg o wykładnikach całkowitych. Porządkuje w ciąg, np. rosnący, zbiór potęg o wykładniku całkowitym. Rozwiązuje złożone zadania tekstowe z zastosowaniem potęg o wykładnikach całkowitych. Zapisuje wszystkie wzory z działu Potęgi o wykładniku całkowitym oraz opisuje je poprawnym językiem matematycznym. Oszacowuje bez użycia kalkulatora wartości złożonych wyrażeń zawierających działania na potęgach o wykładniku całkowitym. Rozwiązuje zadania-problemy, np. dotyczące badania podzielności liczb podanych w postaci wyrażenia zawierającego potęgi o wykładniku całkowitym. 5/8

II. PODOBIEŃSTWO FIGUR Uczeń: Umiejętności Wskazuje figury podobne na rysunku lub w swoim otoczeniu. Określa skalę podobieństwa dwóch figur proste przypadki. Wskazuje figury przystające i określa ich skalę podobieństwa. Rysuje figury podobne w skali 2 i 2 1. Rozpoznaje trójkąty prostokątne podobne. Wyznacza stosunki długości odpowiednich boków w wielokątach podobnych. Zapisuje w postaci równania stosunki długości odpowiednich boków w trójkątach prostokątnych podobnych. Stosuje cechy podobieństwa trójkątów prostokątnych podobnych do rozwiązywania prostych zadań. Oblicza długości boków wielokątów podobnych przy podanej skali. Rysuje figury podobne w dowolnej skali. Oblicza skalę podobieństwa, mając dane obwody figur podobnych. Stosuje cechy podobieństwa trójkątów podobnych do rozwiązywania prostych zadań. Oblicza skalę podobieństwa, mając dane pola figur podobnych. Oblicza pole figury podobnej przy danej skali podobieństwa. Rozwiązuje złożone zadania dotyczące podobieństwa trójkątów. Stosuje poznane wiadomości i umiejętności, związane z podobieństwem figur, w sytuacjach problemowych. 6/8

III. BRYŁY OBROTOWE Uczeń: Umiejętności Wskazuje bryły obrotowe wśród przedmiotów życia codziennego. Wskazuje przekroje osiowe brył obrotowych. Wyróżnia wśród innych brył walec, stożek i kulę. Wskazuje na modelach elementy brył obrotowych. Oblicza pola powierzchni walca, stożka i kuli, stosując odpowiednie wzory. Oblicza objętości walca, stożka i kuli, stosując odpowiednie wzory. Rysuje bryły obrotowe powstałe przez obrót prostokąta, trójkąta, koła. Odróżnia przekrój poprzeczny od przekroju osiowego walca i stożka. Przekształca wzory na pole powierzchni i objętość walca, stożka i kuli. Zamienia jednostki pola i objętości. Rysuje siatkę walca i stożka. Formułuje własnymi słowami definicje walca, stożka i kuli. Oblicza pole powierzchni i objętość walca, stożka i kuli z zastosowaniem własności tych brył. Projektuje siatki walca i stożka, np. mając dane pole powierzchni bocznej. Wyprowadza wzory na pole powierzchni i objętość walca i stożka. Rozwiązuje złożone zadania z zastosowaniem własności brył obrotowych. Stosuje poznane wiadomości i umiejętności, związane z bryłami obrotowymi, w sytuacjach problemowych. 7/8

IV. ELEMENTY RACHUNKU PRAWDOPODOBIEŃSTWA Uczeń: Umiejętności Rozpoznaje doświadczenia losowe. Przedstawia wyniki doświadczeń losowych w postaci tabel liczebności i histogramów. Określa zdarzenie elementarne w prostych doświadczeniach losowych, np. jednokrotnym rzucie kostką, rzucie monetą. Określa zbiór zdarzeń elementarnych w prostych doświadczeniach losowych, np. jednokrotnym rzucie kostką, rzucie monetą. Rozpoznaje zdarzenia sprzyjające danemu zdarzeniu doświadczenia losowego proste przypadki. Rozpoznaje zdarzenie pewne i niemożliwe danego zdarzenia w doświadczeniu losowym i zna wartości ich prawdopodobieństwa proste przypadki. Oblicza prawdopodobieństwo zdarzenia prostego doświadczenia losowego. Podaje przykłady doświadczeń losowych. Przedstawia wyniki doświadczeń losowych w postaci diagramów procentowych. Określa zbiór zdarzeń elementarnych w doświadczeniach losowych, np. rzucie kostką, rzucie monetą. Określa zbiór zdarzeń sprzyjających danemu zdarzeniu w doświadczeniach losowych opisanych wyżej. Określa zdarzenie pewne i niemożliwe dla danego zdarzenia w doświadczeniach losowych opisanych wyżej. Oblicza prawdopodobieństwo dla danego zdarzenia w doświadczeniach losowych opisanych wyżej. Przedstawia wyniki doświadczeń losowych w postaci drzewa. Określa zbiór zdarzeń elementarnych w doświadczeniach losowych, np. wyciąganiu losów, układaniu liczb z kilku cyfr. Określa zbiór zdarzeń sprzyjających danemu zdarzeniu w doświadczeniach losowych opisanych wyżej. Określa zdarzenie pewne i niemożliwe dla danego zdarzenia w doświadczeniach losowych opisanych wyżej. Oblicza prawdopodobieństwo dla danego zdarzenia w doświadczeniach losowych opisanych wyżej. Opisuje doświadczenie losowe na podstawie zbioru jego zdarzeń elementarnych. Określa zbiór zdarzeń sprzyjających danemu zdarzeniu w różnych doświadczeniach losowych. Oblicza prawdopodobieństwo dla danego zdarzenia w różnych doświadczeniach losowych. Stosuje poznane wiadomości i umiejętności, związane rachunkiem prawdopodobieństwa, w sytuacjach problemowych. 8/8