Instytut Agrofizyki im. B. Dobrzańskiego PAN, ul. Doświadczalna 4, Lublin

Podobne dokumenty
Ryszard Brodowski. Instytut Agrofizyki im. B. Dobrzańskiego PAN, ul. Doświadczalna 4, Lublin

ILOŚCIOWY OPIS PRZENOSZENIA GLEBY I WODY W PROCESIE EROZJI WODNEJ. J. Rejman, B. Usowicz

OCENA SKUTKÓW ZMIAN ZASILANIA W OPTOELEKTRONICZNYM SYSTEMIE POMIARU WILGOTNOŚCI GLEBY

Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, Lublin

ANALIZA STANU ZAGĘSZCZENIA WARSTWY PODORNEJ GLEBY GLINIASTEJ. Wstęp i cel

ZALEŻNOŚĆ WSPÓŁCZYNNIKA FILTRACJI W GLEBACH WYTWORZONYCH Z UTWORÓW PYŁOWYCH OD ICH FIZYCZNYCH WŁAŚCIWOŚCI

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO

PORÓWNANIE TEMPERATURY GLEBY NA UGORZE I POD MURAWĄ Anna Nieróbca

2

ZMIANY WŁAŚCIWOŚCI GLEBY W WARSTWIE ORNEJ POD WPŁYWEM NACISKÓW KÓŁ AGREGATÓW CIĄGNIKOWYCH

Prof. dr hab. inż. Józef Mosiej, Warszawa, Katedra Kształtowania Środowiska SGGW, Warszawa

WPŁYW WIELKOŚCI CZĄSTEK ROZDROBNIONEJ PSZENICY NA PARAMETRY PROCESU ZAGĘSZCZANIA

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

WPŁYW ZMIAN ZAWARTOŚCI WODY NA TWARDOŚĆ ZIARNA PSZENICY PODCZAS PRZECHOWYWANIA W SILOSIE W WARUNKACH MODELOWYCH

PODCZERWIEŃ W DYNAMICZNYCH POMIARACH WILGOTNOŚCI GLEBY W TERENIE URZEŹBIONYM Leszek Piechnik, Paweł Tomiak

ZMIENNOή PRZESTRZENNA TEMPERATURY W PRZYPOWIERZCHNIOWEJ WARSTWIE GLEBY P OWEJ NA ZBOCZU LESSOWYM. B. Usowicz, J. Rejman

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM

ODPORNOŚĆ KOROZYJNA STALI 316L W PŁYNACH USTROJOWYCH CZŁOWIEKA

ANALIZA ZUŻYWANIA LEMIESZY PŁUŻNYCH ZE STAŁĄ I WYMIENNĄ KRAWĘDZIĄ SKRAWAJĄCĄ CZĘŚCI DZIOBOWEJ

Wpływ nachylenia stoku na wskaźnik okrywy roślinnej C na erodowanej glebie 51

ElŜbieta Kusińska Katedra InŜynierii i Maszyn SpoŜywczych Akademia Rolnicza w Lublinie

WPŁYW WILGOTNOŚCI GLEBY NA JEJ ZAGĘSZCZENIE KOŁEM CIĄGNIKA

WPŁYW GŁĘBOKOŚCI ROBOCZEJ GLEBOGRYZARKI SADOWNICZEJ NA EFEKTYWNOŚĆ NISZCZENIA CHWASTÓW W SADACH

WPŁYW ZABIEGÓW AGROTECHNICZNYCH NA RETENCJONOWANIE WODY W GLEBIE

WŁAŚCIWOŚCI GEOMETRYCZNE I MASOWE RDZENI KOLB WYBRANYCH MIESZAŃCÓW KUKURYDZY. Wstęp i cel pracy

BADANIA ODKSZTAŁCEŃ DYNAMICZNYCH ROLNICZYCH OPON NAPĘDOWYCH NA GLEBIE LEKKIEJ

WPŁYW OBRÓBKI TERMICZNEJ ZIEMNIAKÓW NA PRĘDKOŚĆ PROPAGACJI FAL ULTRADŹWIĘKOWYCH

Stanisław Skonecki, Janusz Laskowski

WPŁYW ZRYWKI DREWNA NA WYBRANE WŁAŚCIWOŚCI FIZYKO-MECHANICZNE GLEBY LEŚNEJ

WPŁYW RODZAJU BIEŻNIKA I JEGO ZUŻYCIA NA ZAGĘSZCZENIE GLEBY PIASZCZYSTEJ

SPITSBERGEN HORNSUND

Relationship between rainfall and runoff and slope wash on plots of varying land use (Guciów Central Roztocze Region)

WPŁYW PRZYDATNOŚCI ROLNICZEJ GLEB PŁOWYCH WYTWORZONYCH Z GLIN ZWAŁOWYCH NA ICH STRUKTURĘ AGREGATOWĄ. Jan Paluszek

SPITSBERGEN HORNSUND

POLITECHNIKA WROCŁAWSKA INSTYTUT TECHNIKI CIEPLNEJ I MECHANIKI PŁYWNÓW ZAKŁAD SPALANIA I DETONACJI Raport wewnętrzny

SPITSBERGEN HORNSUND

CHARAKTERYSTYKA OPADÓW ATMOSFERYCZNYCH NA TERENIE WOJEWÓDZTWA WARMIŃSKO-MAZURSKIEGO W LATACH

SPITSBERGEN HORNSUND

OCENA EROZJI WODNEJ GLEBY LESSOWEJ NA UPRAWACH BURAKA CUKROWEGO I PSZENICY JAREJ NA PODSTAWIE BADAŃ POLETKOWYCH

ODDZIAŁYWANIE GĘSTOŚCI I SKŁADU GLEBY NA OCENĘ STANU JEJ ZAGĘSZCZENIA

SKUTKI ULEWNYCH DESZCZÓW W ZLEWNI LESSOWEJ ZABUDOWANEJ MAŁYMI ZBIORNIKAMI RETENCYJNYMI. Magdalena Patro

Zagęszczanie gruntów.

BADANIE CIEPLNE LAMINATÓW EPOKSYDOWO-SZKLANYCH STARZONYCH W WODZIE THERMAL RESERACH OF GLASS/EPOXY LAMINATED AGING IN WATER

2 Chmiel Polski S.A., ul. Diamentowa 27, Lublin

Rozkład prędkości statków na torze wodnym Szczecin - Świnoujście

Wykorzystanie eksperymentu terenowego w badaniach erozji wodnej gleb w zlewni Chwalimskiego Potoku ( Pojezierze Drawskie, górna Parsęta )

WYKORZYSTANIE METODY TDR DO CIĄGŁEGO POMIARU ZMIAN WARUNKÓW WILGOTNOŚCIOWYCH I TERMICZNYCH W PROFILU GLEBOWYM

STATYSTYKA MATEMATYCZNA

ODWZOROWANIE MATEMATYCZNE PROCESU OBRÓBKI TERMICZNEJ PROSA W PIECU KONWEKCYJNYM. Streszczenie

WPŁYW OBRÓBKI TERMICZNEJ NA SIŁĘ CIĘCIA I SIŁĘ ŚCISKANIA ZIEMNIAKÓW

NORMALNE SUMY OPADÓW ATMOSFERYCZNYCH W WYBRANYCH STACJACH LUBELSZCZYZNY. Szczepan Mrugała

S. SZEWRAŃSKI MATERIAŁY I METODY

GLOBALNE OCIEPLENIE A EFEKTYWNOŚĆ OPADÓW ATMOSFERYCZNYCH. Agnieszka Ziernicka

BŁĘDY OKREŚLANIA MASY KOŃCOWEJ W ZAKŁADACH SUSZARNICZYCH WYKORZYSTUJĄC METODY LABORATORYJNE

OCENA WYNIKÓW POMIARÓW WILGOTNOŚCI GLEBY WYKONANYCH METODĄ SUSZARKOWO-WAGOWĄ ORAZ METODĄ TDR W DOLINIE ODRY

Wykonanie warstwy odsączającej z piasku

Acta Agrophysica, 2009, 14(2),

SPITSBERGEN HORNSUND

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

WPŁYW UGNIATANIA KOŁAMI CIĄGNIKA DWÓCH GLEB PIASZCZYSTEJ I PYŁOWEJ NA ICH WŁAŚCIWOŚCI RETENCYJNE

SPITSBERGEN HORNSUND

ZMIENNOŚĆ ŚREDNIEJ TEMPERATURY POWIETRZA W OKRESACH MIĘDZYFAZOWYCH PSZENICY OZIMEJ NA ZAMOJSZCZYŹNIE. Andrzej Stanisław Samborski

CHARAKTERYSTYKA WARUNKÓW METEOROLOGICZNYCH W REJONIE DOŚWIADCZEŃ ŁĄKOWYCH W FALENTACH

2 Centrum Badań Kosmicznych Polskiej Akademii Nauk, ul. Bartycka 18A, Warszawa

Analiza wyników sprawdzianu w województwie pomorskim latach

METODA OKREŚLANIA CZASÓW OBRÓBKI CIEPLNEJ PRÓBEK ZIARNA NA PRZYKŁADZIE PROSA Zbigniew Oszczak, Marian Panasiewicz

ANALIZA ZMIENNOŚCI WARUNKÓW PLUWIOTERMICZNYCH OD KWIETNIA DO LIPCA W OKOLICACH KRAKOWA ( )

NIEDOBORY I NADMIARY OPADÓW NA TERENIE WOJEWÓDZTWA WARMIŃSKO-MAZURSKIEGO W LATACH

NOWE METODY BADANIA KONSYSTENCJI MIESZANKI BETONOWEJ

Wpływ intensywności użytkowania łąki na glebie torfowo-murszowej na wielkość strumieni CO 2 i jego bilans w warunkach doświadczenia lizymetrycznego

ZMIENNOŚĆ SORPCYJNOŚCI BETONU W CZASIE

Streszczenie. Słowa kluczowe: towary paczkowane, statystyczna analiza procesu SPC

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

WPŁYW SUMY I ROZKŁADU OPADÓW NA PLONOWANIE PSZENŻYTA OZIMEGO UPRAWIANEGO NA RÓŻNYCH KOMPLEKSACH GLEBOWO-ROLNICZYCH W ŚRODKOWEJ CZĘŚCI POLSKI

WPŁYW ENERGII ZAGĘSZCZANIA NA ZMIANY ZWIĘZŁOŚCI GLEBY

Jarosław Kaszubkiewicz, Dorota Kawałko, Paweł Jezierski

OCENA PRZEMIESZCZENIA GLEBY POD WPŁYWEM ORKI GŁĘBOKIEJ Jerzy Rejman 1, Jan Paluszek 2

SPIS TREŚCI. 1.Wstęp 2.Charakterystyka terenu prac 3.Warunki gruntowe i wodne w podłożu 4.Uwagi końcowe. Załączniki tekstowe

STUDIUM DAWKOWANIA SYSTEMU PROROAD NA PODSTAWIE RADOM (ZYCO)

SPITSBERGEN HORNSUND

WPŁYW STABILIZACJI CEMENTEM LUB SILMENTEM NA WYTRZYMAŁOŚĆ I MROZOODPORNOŚĆ GRUNTU PYLASTEGO

METODA WYZNACZANIA LOKALIZACJI PRZEGRÓD PIĘTRZĄCYCH WODY OPADOWE W WARUNKACH OBIEKTU OLSZANKA

Korozja drutów ortodontycznych typu Remanium o zróŝnicowanej średnicy w roztworze sztucznej śliny w warunkach stanu zapalnego

SPITSBERGEN HORNSUND

ANALIZA TRAKCYJNYCH WŁAŚCIWOŚCI OPON W UPROSZCZONYCH TECHNOLOGIACH UPRAWY

D O K U M E N T A C J A G E O T E C H N I C Z N A. Obiekt: Droga powiatowa Kowalewo Pomorskie - Wąbrzeźno

PROPOZYCJA UPROSZCZENIA MODELU USLE DLA OBSZARU MAŁEJ ZLEWNI ROLNICZEJ

SPITSBERGEN HORNSUND

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

OPTYMALIZACJA PARAMETRÓW PRACY PNEUMATYCZNEGO SEPARATORA KASKADOWEGO

ZNACZENIE OBORNIKA JAKO ŹRÓDŁA S i Mg WE WSPÓŁCZESNYCH SYSTEMACH NAWOśENIA

Stanisław Rolbiecki, Roman Rolbiecki, Czesław Rzekanowski

WPŁYW WIELKOŚCI NASION NA NIEZBĘDNĄ DŁUGOŚĆ PRZEWODU PNEUMATYCZNEGO W PROCESIE EKSPANDOWANIA NASION

Określenie wpływu dodatku bentonitu na polepszenie właściwości geotechnicznych osadów dennych Zbiornika Rzeszowskiego.

SPŁYW WODY I EROZJA GLEBY NA PIASZCZYSTYM STOKU W OBSZARZE MŁODOGLACJALNYM POMIARY POLETKOWE (POJEZIERZE SUWALSKIE, POLSKA NE)

Charakterystyka głównych składowych bilansu wodnego

WŁAŚCIWOŚCI OKSYDOREDUKCYJNE ERODOWANYCH GLEB LESSOWYCH W DOLINIE CIEMIĘGI Piotr Gliński 1, Zofia Stępniewska 2

ANALIZA WYBRANYCH WŁAŚCIWOŚCI TRAKCYJNYCH CIĄGNIKA NEW HOLLAND TG 255

( ) ( ) Frakcje zredukowane do ustalenia rodzaju gruntu spoistego: - piaskowa: f ' 100 f π π. - pyłowa: - iłowa: Rodzaj gruntu:...

Transkrypt:

Acta Agrophysica, 2004, 4(3), 619-624 OKREŚLENIE WPŁYWU WILGOTNOŚCI I STANU POWIERZCHNI GLEBY WYTWORZONEJ Z PIASKU GLINIASTEGO NA SPŁYW POWIERZCHNIOWY I ZMYW GLEBY Ryszard Brodowski, Jerzy Rejman Instytut Agrofizyki im. B. Dobrzańskiego PAN, ul. Doświadczalna 4, 20-290 Lublin e-mail: ryszardb@demeter.ipan.lublin.pl S t r e s z c z e n i e. W badaniach przeprowadzonych na glebie wytworzonej z piasku gliniastego określono wpływ wilgotności i stanu powierzchni na spływ powierzchniowy. Stwierdzono, Ŝe spływ inicjowany był bezpośrednio po rozpoczęciu symulowanego opadu deszczu we wszystkich kombinacjach warunków początkowych. Porównując poszczególne cykle pomiarowe zaobserwowano róŝnice w szybkości wzrostu intensywności spływu i porównywalny poziom stabilizacji. W zaleŝności od warunków początkowych stwierdzono znaczne zróŝnicowanie w ilości zmywanej gleby. Uzyskane wyniki wskazują na duŝą podatność badanej gleby na powstawanie spływu powierzchniowego oraz zmyw gleby i związane z tym zagroŝenia środowiskowe. S ł o wa k l u c z o we: erozja, spływ powierzchniowy, zmyw gleby, wilgotność początkowa, piasek gliniasty WSTĘP Spływ powierzchniowy reprezentuje tę część wody dostarczonej przez opad deszczu do powierzchni gleby, która nie moŝe być wchłonięta przez glebę ani zgromadzona na jej powierzchni. PrzewaŜnie spływ powierzchniowy rozpoczyna się jako spływ laminarny (erozja powierzchniowa), który miejscami przechodzić moŝe w spływ skoncentrowany (erozja liniowa Ŝłobinowa, wąwozowa) [6,14]. ZłoŜoność procesu jakim jest spływ powierzchniowy wynika z jego zaleŝności od bardzo wielu czynników, do których zaliczyć moŝna intensywność i czas trwania opadu, rodzaj gleby, wilgotność początkową, przewodnictwo wodne gleby w strefie nasyconej, zagęszczenie i zaskorupienie powierzchni gleby, rodzaj okrywy roślinnej, cechy topograficzne, nachylenie i jego długość. Z tego względu badania nad powstawaniem i przebiegiem spływu powierzchniowego dotyczą wpływu przynajmniej niektórych z tych czynników [1,2,5,8,9,11,13,15].

620 R. BRODOWSKI, J. REJMAN Generalnie przyjmuje się, Ŝe gleby wytworzone z utworów pyłowych są najbardziej podatne na erozję i występowanie spływu powierzchniowego. Stosunkowo mniejsza rola przypisywana jest glebom wytworzonym z utworów piaszczystych [1,7,10]. Celem przeprowadzonych badań z symulatorem opadów było określenie wpływu początkowej wilgotności gleby o składzie piasku gliniastego oraz stanu jej powierzchni na spływ powierzchniowy i zmyw gleby. MATERIAŁ I METODY Badania prowadzono na próbie glebowej pobranej z warstwy ornej gleby płowej (piasek gliniasty mocny pylasty) (tab. 1). Glebę powietrznie suchą, po przesianiu przez sita o średnicy oczek 1 cm umieszczano w pojemniku (50x50x25 cm) uzyskując gęstość 1,44 g cm -3. Pojemnik wyposaŝony w sondy do pomiaru wilgotności (objętościowej) metodą reflektometrii czasowej (TDR) ustawiano pod nachyleniem 9%. Glebę poddawano wstępnemu deszczowaniu o intensywności 28 mm h -1 przez 150 minut (cykl R0). Energia kinetyczna opadu wynosiła 19,3 J m -2 mm -1, co stanowi około 85% energii kinetycznej opadu naturalnego o tej samej intensywności [3,4]. Po 2 dobach spulchniano powierzchnię gleby do głębokości 8 cm otrzymując mikrorelief nieukierunkowany. Następnie stosowano opad o intensywności 28 mm h -1 przez 60 minut na glebie o powierzchni: wilgotnejniezaskorupionej (cykl R1), wilgotnej-zaskorupionej (cykl R2) i wysuszonejzaskorupionej (cykl R3). Badania prowadzono w 3 powtórzeniach. Początkowa wilgotność i stan powierzchni gleby przed deszczowaniem wynikały bezpośrednio z zastosowanych wcześniej opadów (intensywność i czas trwania) oraz przerw pomiędzy poszczególnymi cyklami (R0 2 doby i spulchnienie R1 1 doba R2 5 dób i osuszanie R3). Tabela 1. Charakterystyka badanej gleby Table 1. Characteristics of the investigated soil Skład granulometryczny Granulometric composition (mm, %) 1-0,1 0,1-0,05 0,05-0,02 0,02-0,005 0,005-0,002 < 0,002 Próchnica Humus (%) ph KCl 40,3 8,7 31,0 13,0 3,0 4,0 1,33 6,6 W celu określenia gęstości gleby w powierzchniowej warstwie (0-5 cm) pobrano próbki gleby przed cyklem R1 (1,28 g cm -3 ) oraz po deszczowaniu R3 (1,64 g cm -3 ). Przed cyklami R2 i R3, aby nie naruszyć deszczowanej powierzchni, nie pobierano gleby do wyznaczenia gęstości. Dla cyklu R1 początkowa wilgotność (zmierzona na głębokości 1,5 cm) wyniosła 0,23, dla R2 0,28, zaś dla

OKREŚLENIE WPŁYWU WILGOTNOŚCI I STANU POWIERZCHNI GLEBY 621 R3 0,11 cm 3 cm -3. W trakcie kaŝdego opadu prowadzono w odstępach 5 minutowych pomiary spływu powierzchniowego oraz wilgotności gleby na głębokościach 1,5; 5 i 10 cm. Ilość wyerodowanej gleby (zmywu) oznaczano poprzez zwaŝenie, wysuszonej w temperaturze 105ºC frakcji stałej spływu powierzchniowego, którą uprzednio rozdzielono od fazy ciekłej przez przesączenie. WYNIKI Zastosowana metodyka doświadczenia pozwoliła uzyskać odmienne warunki wilgotnościowe i zagęszczenia badanej gleby dla wszystkich 3 cykli. W cyklach R1, R2 i R3 spływ zaczynał się bezpośrednio po rozpoczęciu symulowanego opadu (rys. 1). Hydrografy poszczególnych cykli opadów uszeregować moŝna według szybkości wzrostu wielkości spływu następująco: R2>R1>R3. Najszybciej stabilizował się spływ podczas cyklu R2 (po 10 min), następnie podczas R1 (20 min) i R3 (25 min). Poziom stabilizacji spływu był zbliŝony dla wszystkich trzech cykli, a jego wartość średnia wyniosła 23,3 mm h -1 z odchyleniem standardowym 0,5 mm h -1. 30 25 Spływ - Runoff (mm h -1 ) 20 15 10 5 Intensywność Intensity R1 R2 R3 0 0,00 0,17 0,33 0,50 0,67 0,83 1,00 Czas - Time (h) Rys. 1. Spływ powierzchniowy podczas symulowanego opadu (wartości średnie i odchylenia standardowe) Fig. 1. Runoff during simulated rainfall (mean values and standard deviations) Całkowity spływ powierzchniowy przyjął maksymalną wartość 22,7 mm w cyklu R2, natomiast w R1 i R3 odpowiednio 20,6 i 20,3 mm. W wyniku zastosowanych deszczowań najmniejszą wartość całkowitego zmywu gleby stwierdzono przy największym spływie i wynosiła ona 242 g m -2 (w cyklu R2). W pozostałych cyklach R1 i R3, wartości całkowitego zmywu były zbliŝone i wyniosły odpowiednio 370 i 365 g m -2.

622 R. BRODOWSKI, J. REJMAN Najszybszy wzrost spływu i największa jego wartość całkowita (R2) towarzyszyły bardzo małym przyrostom wilgotności w zakresie od 0,006 do 0,011 cm 3 cm -3. Całkowity przyrost wilgotności badanej gleby przedstawiono na rysunku 2. Całkowity przyrost wilgotności gleby Total increment of soil moisture (cm 3 cm -3 ) 0,15 0,1 0,05 0 Głębokość Depth 1.5 cm Głębokość Depth 5 cm Głębokość Depth 10 cm R1 R2 R3 Rys. 2. Całkowity przyrost wilgotności gleby na trzech głębokościach (przy róŝnych wilgotnościach początkowych: 0,23 (R1), 0,28 (R2) i 0,11 cm 3 cm -3 (R3)) Fig. 2. Total increment of soil moisture in profile of soil sample profile (at different initial moisture content: 0.23 (R1), 0.28 (R2) i 0.11 cm 3 cm -3 (R3)) DYSKUSJA Występujące podczas opadu deszczu: spływ powierzchniowy, infiltracja i zaskorupienie powierzchni gleby są ściśle ze sobą powiązane. Wysoka podatność na zaskorupienie moŝe prowadzić do redukcji infiltracji, jeŝeli powierzchnia gleby poddana jest uderzeniom kropel opadu, które niszczą jej strukturę. Wynikające stąd obniŝenie zdolności infiltracyjnych gleby zwiększa prawdopodobieństwo wystąpienia spływu powierzchniowego i jego wielkość [6]. Z przeprowadzonych badań wynika, podobnie jak u innych autorów, Ŝe większa wilgotność początkowa prowadziła do szybszego wzrostu spływu powierzchniowego [6,8,16]. Wartość osiąganego poziomu stabilizacji była zbliŝona we wszystkich trzech cyklach. Kontrastuje to z rezultatami badań Wangemann i Molumeli [16], gdzie większa wilgotność początkowa związana była z mniejszym współczynnikiem infiltracji, a tym samym ze stabilizacją spływu na większym poziomie. Efekt ten przypisywany jest szybszemu rozpadaniu się wilgotnych agregatów glebowych i w efekcie rozwojowi zaskorupienia powierzchni gleby. Otrzymane róŝnice wynikać mogą z odmiennej metodyki doświadczenia, poniewaŝ Wangemann i Molumeli [16] zastosowali jako zmienną jedynie wilgotność początkową, zaś w prezentowanej pracy, wilgotność początkowa wynikała z sekwencji deszczowań, którym towarzyszył wzrost zagęszczenia gleby.

OKREŚLENIE WPŁYWU WILGOTNOŚCI I STANU POWIERZCHNI GLEBY 623 W cyklach R1 i R3 wielkość całkowitego przyrostu wilgotności malała wraz z głębokością, natomiast w cyklu R2 wystąpiła tendencja odwrotna (rys. 2). Taki wzrost całkowitego przyrostu wilgotności wraz z głębokością (R2), świadczy o istotnym spowolnieniu wchłaniania wody opadowej górnych warstw gleby dzięki mniejszemu gradientowi wilgotności i osiągnięciu wilgotności bliskiej wilgotności nasycenia. W wyniku tego górne warstwy próby glebowej były bardziej odpowiedzialne za transport wody w głąb gleby niŝ za jej wchłanianie. Z porównania wielkości całkowitego spływu ze zmywem dla gleby początkowo wilgotnej (R2) i suchej (R3) stwierdzić moŝna, Ŝe z większą wielkością spływu dla gleby początkowo wilgotnej wiąŝe się mniejsza ilość wyerodowanej gleby. Podobne zaleŝności otrzymali Rudolph i in. [12] w swoich badaniach na glinie piaszczystej i pyle gliniastym. Rezultat taki przypisać moŝna ochronnemu działaniu (przed uderzeniami kropel opadu) wzrastającej głębokości wody w zagłębieniach mikroreliefu i spływu. Wydaje się jednak, Ŝe otrzymany tu efekt zmniejszenia zmywu gleby przy zwiększonej wielkości spływu zaleŝny jest od skali. W innych warunkach (większe nachylenie i długość zbocza oraz szybkość spływu i jego głębokość) nad ochronnym wpływem głębokości wody przewaŝać moŝe niszczące strukturę powierzchni gleby napręŝenie ścinające spływu powierzchniowego [11,12]. WNIOSKI Badania przeprowadzone z symulatorem opadów na glebie o składzie piasku gliniastego wykazały, Ŝe: 1. Spływ powierzchniowy inicjowany był bezpośrednio po rozpoczęciu symulowanego opadu deszczu bez względu na wilgotność początkową i zagęszczenie powierzchniowej warstwy gleby. 2. Najszybszy wzrost wielkości spływu wystąpił w warunkach największej początkowej wilgotności gleby i zgęszczeniu jej powierzchni 1-krotnym deszczowaniem. 3. Osiągnięta maksymalna i stała wartość spływu powierzchniowego była porównywalna dla wszystkich trzech kombinacji warunków początkowych. 4. Badana gleba jest w duŝym stopniu podatna na powstawanie spływu powierzchniowego. PIŚMIENNICTWO 1. Borowiec S., Woźniczak S., Skrzyczyński T.: Badania modelowe nad wpływem nachylenia na infiltrację, spływ i zmyw na róŝnych glebach uprawnych bez okrywy roślinnej. Zesz. Nauk. AR w Szczecinie, 48, 39-47, 1974. 2. De Roo A.P.J., Riezebos H.Th.: Infiltration experiments on loess soil and their implications for modelling surface runoff and soil erosion. Catena, 19, 221-239, 1992.

624 R. BRODOWSKI, J. REJMAN 3. Dębicki R., Pawłowski M., Rejman J., Link M.: A new approach to the design of a nozzletype rainfall simulator. Int. Agrophysics, 7, 197-201, 1993. 4. Epema G.F., Riezebos H.Th.: Fall velocity of water-drops at different heights as a factor influencing erosivity of simulated rain. Catena Supplement, 4, 1-18, 1983. 5. Helming K., Römkens M.J.M., Prasad S.N.: Surface roughness related processes of runoff and soil loss: a flume study. Soil Sci. Soc. Am. J., 62, 243-250, 1998. 6. Hillel D.: Environmental Soil Physics. Academic Press, 1998. 7. Józefaciuk Cz., Józefaciuk A., Naklicki J.: Przyczynek do badań nad podatnością gleb na erozję wodną. Pam. Puławski, 71, 155-166, 1979. 8. Le Bissonnais Y., Renaux B., Delouche H.: Interaction between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena, 25, 33-46, 1995. 9. Le Bissonnais Y., Singer M.J.: Seal formation, runoff, and interrill erosion from seventeen California soils. Soil Sci. Soc. Am. J., 57, 224-229, 1993. 10. Nowocień E., Podolski B., Wawer R.: Badania ilościowe podatności róŝnych gatunków gleb na erozję wodną w warunkach symulowanego deszczu. Zesz. Probl. Post. Nauk Roln., 487, 175-180, 2002. 11. Rejman J. Link M., Dębicki R.: Podatność na erozję gleby lessowej w badaniach z symulowanym opadem deszczu. Rocz. AR w Poznaniu 266(14), 227-232, 1994. 12. Rudolph A., Helming K., Diestel H.: Effect of antecedent soil water content and rainfall regime on microrelief changes. Soil Technology, 10, 69-81, 1997. 13. Schmid B.H.: Critical rainfall duration for overland flow from an infiltrating plane surface. Journal of Hydrology, 193, 45-60, 1997. 14. Toy T. T., Foster G.R., Renard K.G.: Soil erosion: processes, prediction, measurement, and control. John Wiley & Sons, Inc., New York, 2002. 15. Wallach R., Grigorin G., Rivlin (Byk) J.: The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth. Journal of Hydrology, 200, 243-259, 1997. 16. Wangemann S.G., Molumeli P.A.: Infiltration and percolation influenced by antecedent soil water content and air entrapment. Transaction of the ASAE, 43(6), 1517-1523, 2000. EFFECT OF SOIL MOISTURE CONTENT AND SURFACE CONDITIONS ON RUNOFF AND WASH ON LOAMY SAND Ryszard Brodowski, Jerzy Rejman Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 20-290 Lublin e-mail: ryszardb@demeter.ipan.lublin.pl Ab s t r a c t. Effect of different initial soil moisture content and surface status was studied with rainfall simulator on soil developed from loamy sands. Studies showed that runoff was started almost directly from beginning of rainfall simulation and independently on initial soil conditions. Despite differences at the beginning of simulation, runoff achieved a comparable steady-rate level in all cycles of measurements. In contrast to this, large variation of wash among different cycles was observed. Conducted studies showed that loamy sand was very susceptible to runoff and wash processes. K e y wo r d s : erosion, runoff, wash, initial soil moisture content, loamy sand