A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

Podobne dokumenty
A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v x

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Dr inż. Paulina Indyka

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków ul.reymonta 25

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v

Conception of reuse of the waste from onshore and offshore in the aspect of

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

KSZTAŁTOWANIE STRUKTURY I WŁAŚCIWOŚCI POWŁOK WĘGLIKOWYCH Cr 3

WPŁYW GNIOTU WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI POWIERZCHNI POWŁOK Z FAZ MIĘDZYMETALICZNYCH

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Hard-Margin Support Vector Machines

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

OpenPoland.net API Documentation

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

yft Lublin, June 1999


PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

T R I B O L O G I A 93

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Development of SOFC technology in IEn OC Cerel


Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Streszczenia / Abstracts 2 / 2014

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Knovel Math: Jakość produktu

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

MATERIAŁY NA OSNOWIE FAZY MIĘDZYMETALICZNEJ FeAl Z DODATKIEM 2 I 10% OBJ. Al2O3

Has the heat wave frequency or intensity changed in Poland since 1950?

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

Streszczenia / Abstracts 7/ 2012

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v

NOWE, ODPORNE NA ŚCIERANIE MATERIAŁY NA OSNOWIE FAZ MIĘDZYMETALICZNYCH Z UKŁADU Fe Al OTRZYMYWANE W PROCESIE METALURGII PROSZKÓW

WPŁYW PARAMETRÓW OBRÓBKI CIEPLNEJ TAŚM ZE STALI X6CR17 NA ICH WŁAŚCIWOŚCI MECHANICZNE I STRUKTURĘ

O NIEKTÓRYCH SKUTKACH ODDZIAŁYWANIA PROMIENIOWANIA LASERA RUBINOWEGO Z UKŁADEM CIENKA WARSTWA WĘGLIKÓW METALI NA KAPILARNO-POROWATYM PODŁOŻU

Technika jonowego rozpylenia

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

The Overview of Civilian Applications of Airborne SAR Systems

WARSZAWA LIX Zeszyt 257

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Sargent Opens Sonairte Farmers' Market

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::


The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

MIKROSTRUKTURALNA ANALIZA MECHANIZMÓW ZUŻYCIA POWŁOK MONO- I WIELOWARSTWOWYCH BAZUJĄCYCH NA SKŁADZIE TiN i a-c:h

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v x

Camspot 4.4 Camspot 4.5

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

KRYSTALIZACJA I MIKROSTRUKTURA BRĄZU CuAl10Fe5Ni5 PO RAFINACJI

Stargard Szczecinski i okolice (Polish Edition)

European Crime Prevention Award (ECPA) Annex I - new version 2014

Materiały do regeneracji układu krążenia

TRIBOLOGICAL PROPERTIES OF PLASMA SPRAYED Al TiO 2 NANOSTRUCTURED COATINGS

Streszczenia / Abstracts 3/ 2013

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!

KOMPOZYTY NA OSNOWIE FAZY MIĘDZYMETALICZNEJ NiAl O WŁAŚCIWOŚCIACH ZMODYFIKOWANYCH CZĄSTECZKAMI CERAMICZNYMI

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Lecture 18 Review for Exam 1

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /amm

EFFECT OF PLASTIC DEFORMATION ON THE STRUCTURE AND TEXTURE OF CUSN6 ALLOY

THE ANALYSIS OF WEAR OF THE LAYERS CONTAINING WC/W 2 C IN ABRASIVE SOIL

a. Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

ODPORNOŚĆ KOROZYJNA WARSTW KOMPOZYTOWYCH Z OSNOWĄ NIKLOWĄ I DYSPERSYJNĄ FAZĄ CERAMICZNĄ

Akademia Morska w Szczecinie. Wydział Mechaniczny

THE INFLUENCE OF THE STEEL CHEMICAL COMPOSITION ONTO THE POSSIBILITIES OF USING IT IN THE PROCESS OF COLD SHAPING

MATERIAŁY NA BAZIE FAZ MIĘDZYMETALICZNYCH OTRZYMYWANE METODĄ SPIEKANIA W PODWYŻSZONEJ TEMPERATURZE Z UDZIAŁEM FAZY CIEKŁEJ

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Patients price acceptance SELECTED FINDINGS

miniature, low-voltage lighting system MIKRUS S

Streszczenie rozprawy doktorskiej

MODELOWANIE I BADANIA EKSPERYMENTALNE PĘKANIA CIENKICH POWŁOK CERAMICZNYCH I WĘGLOWYCH

WOJSKOWE TRASY LOTÓW (MRT) NA MAŁYCH WYSOKOŚCIACH LOW FLYING MILITARY TRAINING ROUTES (MRT)

ODLEWNICZY STOP MAGNEZU ELEKTRON 21 STRUKTURA I WŁAŚCIWOŚCI W STANIE LANYM

What our clients think about us? A summary od survey results

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

MICROSTRUCTURE AND WEAR RESISTANCE OF STELLITE-6/WC METAL MATRIX COMPOSITE COATINGS

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Transkrypt:

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 55 2010 Issue 4 DOI: 10.2478/v10172-010-0008-2 A. PAWŁOWSKI C. SENDEROWSKI, Z. BOJAR, M. FARYNA DETONATION DEPOSITED Fe-Al COATINGS PART I: MORPHOLOGY OF Ni(Al) AND Cr(Ni) TRANSITION LAYERS AND COATINGS OF Fe-Al TYPE SPRAYED ONTO CARBON STEEL SUBSTRATE POWŁOKI Fe-Al OSADZANE DETONACYJNIE CZĘŚĆ I: WARSTWY POŚREDNIE Ni(Al) I Cr(Ni) ORAZ POWŁOKI Fe-Al OSADZANE DETONACYJNIE NA PODŁOŻU ZE STALI 045 The microstructure of transition layers of Ni(Al) pure Ni with Al and NiAl particles as well as Cr(Ni) pure Cr in the Ni matrix, occurred between the coating of Fe-Al type intermetallic phases and the 045 carbon steel substrate was analysed in the present work. The investigations were aimed at the adherence of transition layers and the outer coating deposited with the detonation-gas spraying. The structure was examined using the methods of scanning (SEM) and transmission electron (TEM) microscopies as well as the analysis of chemical composition in microareas (EDS). Silica grains at the boundary of the substrate and the layer of Ni(Al), aluminium oxide at the boundary and inside the Ni(Al) layers, an Al based AlNiO x phase, columnar crystals at the boundary of the coating of Fe-Al type phases and an adjacent Cr(Ni) layer were observed. The results were discussed in reference to earlier examinations of bending strength considering cracking and delamination of the coating off the substrate. They were then compared with the state of the boundary between the coating and the steel substrate analysed in former works. It seems, that the substrate boundary free from silica inclusions and the prevention of the formation of aluminium oxides at the boundary of transition layers and the substrate should improve the adherence of the whole multi layer and the coating. Keywords: intermetallics of Fe-Al type, coatings, D-gun spraying W pracy poddano analizie mikrostrukturę warstw pośrednich: Ni(Al) czystego niklu z cząstkami Al i faz NiAl oraz warstwy Cr(Ni) chromu w osnowie Ni, występujących pomiędzy powłoką faz międzymetalicznych typu Fe-Al i podłożem ze stali węglowej 045. Badania wykonano z punktu widzenia przyczyn przyczepności warstw pośrednich i powłoki zewnętrznej, naniesionych przez natryskiwanie detonacyjno-gazowe DGS. Analizę struktury przeprowadzono na podstawie badań metodą skaningowej (SEM) i transmisyjnej mikroskopii (TEM) elektronowej oraz analizy składu chemicznego w mikroobszarach (EDS). Stwierdzono wystąpienie ziaren krzemionki na granicy podłoża z warstwą Ni(Al), obecności ziaren tlenku glinu na granicy i wewnątrz warstw Ni(Al) oraz fazy na bazie glinu AlNiO x i kryształów kolumnowych na granicy powłoki faz typu Fe-Al oraz warstwy Cr(Ni) chromu do niej przylegającej. Wyniki badań mikrostruktury dyskutowano w odniesieniu do rezultatów wcześniejszych pomiarów wytrzymałości na zginanie w aspekcie pękania powłoki oraz delaminacji podwarstwy od podłoża. Porównano je także do stanu granicy powłoki z podłożem stalowym dokonanych w poprzednich pracach. Jest prawdopodobne, iż granice podłoża pozbawione wtrąceń krzemionki oraz zapobieżenie tworzeniu tlenków glinu na granicy warstw pośrednich i podłoża powinno poprawić przyczepność całej multiwarstwy i powłoki. 1. Introduction The coatings of Fe-Al type together with a contribution of transition layers of Ni(Al) pure Ni and NiAl particles as well as transition layers of Cr(Ni) Cr in the Ni matrix deposited with detonation gas spraying technique (DGS) belong to the system of multi layer composite coatings. Their good adherence to the substrate is one of the basic properties of a coating [1-3]. They reveal high resistance to abrasive wear and high temperature oxidation and are used in turbines and jet engines. The investigations of adherence of DGS coatings were performed with the technique of tri-support bending correlated with the results of acoustic emission [4]. The analysis allowed the establishing the value of limit INSTITUTE OF METALLURGY AND MATERIALS SCIENCE PAS, 25, REYMONTA STR. 30-059 KRAKOW, POLAND DEPARTMENT OF ADVANCED MATERIALS AND TECHNOLOGIES, MILITARY UNIVERSITY OF TECHNOLOGY, 2, KALISKIEGO STR, 00-908 WARSZAWA, POLAND

1062 bending load, which cannot be exceeded because of danger of cracking or delamination. The investigations of adherence of multi layer coatings and the results of acoustic emission showed that the highest bending strength of the hybrid coating system was revealed by the joint of substrate with the Ni-5 wt.% Al transition layer, compared with the Ni-20Al and Ni-20Cr transition layers with the Fe-Al coatings [4]. However, the highest delamination was observed in the joint of steel with Ni(Al) transition layer, while the Cr(Ni) transition layer revealed a higher bending strength. A higher content of oxygen in the DGS process or the addition of Al 2 O 3 phase to the powders in the coating built of Fe-Al type phases brings about the occurrence of microcracks. The worst strength properties and bad adherence of the coating was observed in the case of Fe-Al coatings sprayed with the DGS technique directly onto the steel substrate. Good adherence was observed in FeAl/Cr(Ni), FeAl/ Ni(Al) and Ni(Al) / Cr(Ni) connections [4]. The objective of the work was to describe the morphology of a multilayer coatings of Fe-Al type produced with the DGS technique in order to deduce structure reasons for as well as to find how to elevate the adherence of the coating to the substrate of 045 steel with Ni(Al) and Cr(Ni) transition layers. 2. Experimental The Ni(Al) transition layer with inclusions of Al particles or NiAl phases and another transition layer of Cr in the Ni matrix, Cr(Ni), at the boundary with Fe-Al coating at the 045 steel substrate were subjected to examinations. Additionally, the microstructure of coating produced of powders of intermetallic phases of Fe-Al type was analysed. Both, the transition layers and the coating were detonation sprayed (DGS). Materials for the experiments were delivered from the Military University of Technology, Warszawa. The parameters of deposition process (DGS) are given in work [5]. The steel for the substrate was stress relieved and mechanically cleaned. The obtained coatings were examined by scanning (SEM) and transmission (TEM) electron microscopy techniques. Cross-sections of the coatings for SEM studies were inspected using back-scattered electrons. The measurement of the chemical composition in the interaction zone were carried out using a Link ISIS energy dispersive X-ray (EDX) spectrometer attached to a Philips XL 30 scanning electron microscope operating at 20kV voltage. The chemical composition was calculated applying the ZAF (Z-atomic number, A-absorption, F-fluorescence) correction procedure and using standards of relevant elements and the resulting relative error (look table Fig.2a,2b). Thin foils for the TEM were prepared using a focused Ga + ion beam (FIB- Focus Ion Beam technique), in a Quanta 200 3D, FEI instrument) and then examined in a Philips CM 20 Twin microscope equipped with an EDAX Phoenix EDX spectrometer. The microscope operated at accelerating voltage 200 kv in the nanoprobe mode with a LaB 6 cathode. A high resolution X-ray mapping was applied in order to determine partitioning of the elements across the coating. It was accomplished using the TEM TECNAI G 2 FEG super TWIN (200kV) microscope equipped with High Angle Angular Dark Field (HAADF) detector and integrated energy dispersive spectroscopy system. 3. Results and discussion 3.1. SEM microstructure and EDX analysis The investigations were performed on samples with coatings of Fe-Al type obtained with the DGS technique. The surface of the 045 steel was DGS sprayed with Ni(Al) transition layer of pure Ni with inclusions of Ni15 at.% Al and pure Al followed by the Cr(Ni) layer of Cr and Ni. Next, a coating consisting of phases: FeAl, FeAl 2, Fe 2 Al 4 and Fe 3 Al was deposited on the above mentioned transition layers. The coating was 50-100 µm thick, while the Cr(Ni) transition layer was 20µm and Cr layer 1-2 µm wide. The SEM microstructure in the coating cross section shown in Fig. 1 derives the substrate of 045 steel at its left side adjoining the boundary with the Ni(Al) interlayer, which is built of characteristic wavy boundaries of the transition layers resulting from inhomogeneity of the detonation wave in the DGS process and partial melting of powders. Next layer was identified as Cr(Ni) followed by Fe-Al coating. The EDX local analysis revealed black inclusions of SiO 2 phase located in hollows of the steel surface (Fig. 1 a). It might have come from sand-blast cleaning before the DGS treatment. Narrow, bowed particle in the bottom part of the image and black particles in the background of the Ni(Al) transition layer was identified as Al 2 O 3 (Fig. 1b). It appeared as a result of oxidation of partially melted particle of pure Al during the DGS process. A distinct boundary of the Ni(Al) transition layer and Cr(Ni) layer with the Fe-Al coating is very fuzzy and wavy, which indicates partial melting of the sprayed grains of Fe-Al (1200 C) and Cr (1800 C). Fig. 1a shows an analysis of the SiO 2 inclusion, while Fig. 1b presents the analysis of NiAl and Al 2 O 3

1063 inclusions in Ni(Al) layer of 70 µm width and good quality followed by smooth cross section of Cr(Ni) transition layer and the Fe-Al coating (on the right) of larger porosity than the Ni(Al) transition layer. Fig. 1. SEM microstructure of Fe-Al coating (right side) DGS sprayed onto the 045 steel substrate (on the left) with transition layers of Ni(Al) and Cr(Ni) Fig. 1 a. (SEM/EDX) point analysis of composition of silica grain at the boundary of 045 steel substrate and the Ni(Al) transition layer. Fig. 1.b. (SEM/EDX) point analysis of composition of corundum grain at the boundary of Ni(Al) and Cr(Ni) transition layers and inside the Ni(Al) transition layer

1064 The Al oxides appear in the transition layer during the DGS process most often because of the oxidation of partially melted Al or Ni(Al) particles. It seems that the SiO 2 and Al 2 0 3 inclusions are responsible for the delamination of the coating and transition layers. Fig. 2 presents a SEM microstructure of the coating with linear changes of composition (EDX). Starting from the top, they refer to oxygen, aluminium, chromium, iron, and nickel present within the layers of the coating. The point analysis of composition (EDX) in individual grains of Ni(Al) (Fig. 2a-c) revealed the content of Al from 4 to 46 wt.%. However, it should be taken into consideration that such measurements are semi qualitative because of quite high depth of the electron beam penetration. The Al low phase Ni-4 wt.% Al +5 wt.% Fe was observed in the direct vicinity of the substrate due to the Fe diffusion to the Ni phase. The number of particles with increasing Al content in Ni-Al phase grew together with the distance from the substrate. A grain of Ni and 22 wt.% Al was observed at the distance 52 µm from the substrate and corresponded to the solid solution based on βgnial) phase. The phases containing 11 and 13 wt.% Al were the Ni 3 Al phase, which were frequently accompanied with corundum (Al 2 O 3 ). About 60 µm away from the substrate, the Cr(Ni) phase began at the line of content measurement, also accompanied with corundum. The boundary of transition layers Ni(Al) and Cr(Ni) was determined by the appearance of Cr peak (Fig. 2). In the area of Ni(Al) at some distance from the boundary of Cr(Ni) layer and Fe-Al coating, a particle of pure Cr was identified. Fig. 2a presents the measurement of composition of the Fe+36Al+20wt%Cr phase at the boundary Cr(Ni)/FeAl. Within the coating at the boundary with the Cr(Ni) transition layer, the Al low Fe 3 Al phase containing 19 wt.% Al, ε phase with 44 wt.% Al and 43wt%Al as well as the FeAl 2 O 4 phase were identified. All the above contents were established in the EDX point analysis. As an example, the composition of the FeCr10Al21 (wt.%) measured at the Fe-Al / Cr(Ni) boundary is shown in Fig. 2 c. O K Al K Cr K Fe K Ni K 20 m Fig. 2. SEM-EDX image of the DGS coating (starting from the left side): steel/ Ni(Al)/Cr(Ni)/Fe-Al (cross section)

1065 Fig. 2 a. Composition of FeAlCr phase measured using EDX analysis close to the coating boundary. Fig. 2 b. Composition of FeAl phase inside the coating Fig. 2 c. Example of EDS point analysis at the boundary of FeAl coating and the transition layer Cr(Ni)

1066 Fig. 3 a. SEM microstructure of transition layers Ni(Al) and Cr(Ni) (upper image) b c d e Fig. 3 b. Map of Ni distribution in the area of Ni(Al) and Cr(Ni) transition layers (lower photo). Fig. 3 c. Ni(Al) and Cr(Ni) transition layers, map of Al distribution. (light regions). Fig. 3 d. Cr(Ni) transition layer, map of Cr distribution (light regions). Fig. 3 e. Substrate on the left side and coating (on the right side), map of Fe distribution (light regions)

1067 Fig. 3 f. SEM microstructure of Ni(Al) and Cr(Ni) transition layers and the coating, map of Fe, Al and Cr distributions (light regions) Analysing the SEM image in Fig. 3 a along a selected section of the Fe-Al coating and its transition layers Ni(Al) and Cr(Ni), it can be concluded, that Ni dominated in the first layer of width about 70 µm deposited on the steel substrate. The map presented in Fig. 3 c reveals also regions of elevated content of Al. Fine cracks and sticking out irregularities were observed at the surface of steel. Apart from NiAl phases, quite numerous Al 2 O 3 oxides were seen within the Ni(Al) layer (Fig. 3 e). A 20 µm Cr(Ni) layer with a thin film of pure chromium of 1-2 µm width was observed at the boundary between the Ni(Al) layer and the Fe-Al coating (Fig. 3 d). In the region containing Fe (Fig. 3 e) and Al (Fig. 3 f), 8 µm farther from the boundary, another Cr film consisting of a series of Cr particles was identified. SEM microstructure of the substrate surface with SiO 2 inclusions is shown in Fig. 4 a, where instead of Cr(Ni) layer, an area of elevated Cr content, 10-12 µm wide, followed by its individual particles was registered at the boundary of region containing Fe and Al (Fig. 4 b). High amount of aluminium oxides were observed in the area of Ni(Al) layer (Fig. 4. c). Fig. 5 contains the topography of the coating surface consisted of intermetallic phases of the Fe-Al type after polishing off about 5wgµm. It revealed inhomogeneity of surface in the aspect of grain sizes, differing from about 20 µm (FeAl 2 O 4 containing 36 at.% Al and 60 at.% O down to sizes of about 2 µm (Fe 2 Al 5 with 69 at.% Al), which prevailed (Fig. 5 b.) The small ones surrounded the larger grains, which formed in the detonation beam at the end of the process. An average composition of the surface about 100x100 µm revealed 44 at.% Fe, 27 at.% Al and 26 at.% O (Fig. 5 a), which indicated that only small volume of grains was oxidized.

1068 Fig. 4 a. SEM image of transition layers and the Fe-Al coating b c Fig.4 b. Cr(Ni) layer, map of Cr distribution (light regions). Fig. 4 c. Ni(Al) and Cr(Ni) transition layers and Fe-Al coating, map of Al distribution (light regions)

1069 Fe 2 Al 5 FeAl 2 O 4 Fe 2 Al 5 Fig. 5. Surface topography of DGS FeAl coating after grinding by 50 µm Fig. 5 a. Average composition of area 100x 100 µm shown in Fig. 5

1070 Fig. 5 b. SEM/EDX point analysis of the area in the centre of the image of Fig. 5. FeAl 2 O 4 phase 4. Summary It results from the performed examinations using the SEM-EDX technique, that the lower adherence at boundary steel/ Ni(Al) transition layer established in strengths tests [2] may have been brought about by the presence of SiO 2 particles stuck into the surface before the spraying. The boundary free from the SiO 2 particles should reveal better properties. Thin bands of pure Cr in the Ni matrix was observed in the Cr(Ni) layer at the boundary with the Fe-Al coating. The boundary between Ni(Al) and Cr(Ni) layers was free from inclusions apart from the individual films of Al oxide of less than 1 µm width, which was of wavy shape as a result of partial melting of primary grains. The occurrence of Al 2 O 3 indicated, that too high amount of oxygen was used in the DGS process. The grains of Al oxide were found in small amount also at the boundary of Cr(Ni) transition layer and Fe-Al coating. The examinations of surface microstructure of Fe-Al coating showed inhomogeneity of grain size (from 5 to 10 µm) and composition of phases. Within the coating the grain size differed from 5 µm to more than 50 (Fig. 5). 5. Conclusions 1. First transition layer Ni(Al) detonation sprayed (DGS) at the substrate was about 70 µm and consisted of nickel with inclusions of AlNiO x. The oxidation occurred during partial melting of an Al particle in the DGS process. The inspection of the substrate revealed also SiO 2 particles stuck into the substrate coming from the sand-blast cleaning of steel. They can be the reason for the deterioration of Ni(Al) layer adherence to the substrate. The layer revealed low porosity, in spite of a high spread of chemical composition of individual grains, which contained from 4 to 46 wt.% Al. 2. The second transition layer Cr(Ni) was about 20 µm wide and revealed the occurrence of pure Cr layers of 1-2µm width in the Ni matrix, particularly at the boundary with the Fe-Al coating. Inclusions of Al oxides and micropores were also observed. The Fe Cr10Al21 (wt.%) phase was identified at the boundary of Cr(Ni) transition layer and the coating Fe-Al. 3. The wavy boundary of Cr(Ni) transition layer and the Fe-Al coating resulted from the inhomogeneous flux of partially melted Fe-Al grains during the DGS process. The Fe 3 Al, ε (Fe-44 wt.% Al) and FeAl 2 O 4 phases were identified in the area of the coating at the boundary with the Cr(Ni) transition layer, apart from large porosity. 4. The established occurrence of Al oxides at the boundaries of transition layers and the substrate could be the reason for the delamination. That is why, the use of aluminium should be limited. The idea of deposition of transition layer is by all means justified, but it follows from the performed study, that the application of one layer would be sufficient. It could be Cr(Ni) transition

1071 layer, which would increase the strength of the joint and adherence of the coating. REFERENCES [1] Sc. D e e v i, Vk. S i k k a, Intermetallics 9, 357 (1996). [2] J. M. G u i l e m y, C. R. C. L i m a, N. C i n c a, J. R u f a c e, Coating Technology 201, 2072 (2006). [3] C. S e n d e r o w s k i, Z. B o j a r, A. P a w ł o w s k i, W. W o ł c z y ń s k i, International Conference EURO- MAT, Glasgow, September 7-10, 2009. [4] C. S e n d e r o w s k i, Z. K o m o r e k, Z. B o j a r, A. P a w ł o w s k i, Inżynieria Materiałowa 27, 1-4, 65 (2004). [5] C. S e n d e r o w s k i, Z. B o j a r, W. W o ł c z y ń s - k i, A. P a w ł o w s k i, Intermetallics 18, 1405-1409 (2010). Received: 10 April 2010.