WPŁYW ZACINAJĄCEGO DESZCZU NA STAN WILGOT- NOŚCIOWY PRZEGRÓD BUDOWLANYCH W POLSCE



Podobne dokumenty
WUFI-POL - PROGRAM DO CIEPLNO-WILGOTNOŚCIOWEGO PROJEKTOWANIA PRZEGRÓD BUDOWLANYCH W POLSCE

O PEWNYCH ASPEKTACH PROJEKTOWANIA ZEWNĘTRZNYCH PRZEGRÓD PEŁNYCH

Wpływ zawilgocenia ściany zewnętrznej budynku mieszkalnego na rozkład temperatur wewnętrznych

ZAPOTRZEBOWANIE NA CIEPŁO DO OGRZEWANIA BUDYNKU A ZAWILGOCENIE ŚCIAN ZEWNĘTRZNYCH

WPŁYW WILGOTNOŚCI SORPCYJNEJ NA PRZEWODNOŚĆ CIEPLNĄ BETONÓW KOMÓRKOWYCH

PORADNIK CERAMIKA Właściwości cieplno wilgotnościowe ścian z pustaków ceramicznych i innych wyrobów murowych

DANE KLIMATYCZNE DLA POTRZEB MODELOWANIA TRANSPORTU CIEPŁA I WILGOCI W PRZEGRODACH BUDOWLANYCH

PN-B-03004:1988. Kominy murowane i żelbetowe. Obliczenia statyczne i projektowanie

Ocena zmian wytrzymałości na ściskanie trzech grup elementów murowych w zależności od stopnia ich zawilgocenia

Sposób na ocieplenie od wewnątrz

Program BEST_RE. Pakiet zawiera następujące skoroszyty: BEST_RE.xls główny skoroszyt symulacji RES_VIEW.xls skoroszyt wizualizacji wyników obliczeń

Murowane ściany - z czego budować?

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY.

Zagadnienia fizyki budowli przy ocieplaniu od wewnątrz

Analiza wymiany ciepła w przekroju rury solarnej Heat Pipe w warunkach ustalonych

ANALIZA PORÓWNAWCZA ZUŻYCIA I KOSZTÓW ENERGII DLA BUDYNKU JEDNORODZINNEGO W SŁUBICACH I FRANKFURCIE NAD ODRĄ

Wpływ czynników atmosferycznych na zmienność zużycia energii elektrycznej Influence of Weather on the Variability of the Electricity Consumption

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

KSZTAŁTOWANIE PARAMETRÓW FIZYKALNYCH ZŁĄCZY STROPODACHÓW W ŚWIETLE NOWYCH WYMAGAŃ CIEPLNYCH

Specjalistyczny moduł oprogramowania WUFI plus umożliwiający precyzyjne modelowanie mikroklimatu i zużycia energii

Numeryczna symulacja rozpływu płynu w węźle

WPŁYW ZAWARTOŚCI WILGOCI NA DOKŁADNOŚĆ POMIARU WSPÓŁCZYNNIKA PRZEWODZENIA CIEPŁA BETONU KOMÓRKOWEGO METODĄ STACJONARNĄ

Wynik obliczeń dla przegrody: Dach bez ocieplenia

KSZTAŁTOWANIE MIKROKLIMATU W STREFIE PRZEBYWANIA LUDZI W OBIEKTACH SAKRALNYCH

Cieplno-wilgotnościowe właściwości przegród budowlanych wg normy PN-EN ISO )

DWUTEOWA BELKA STALOWA W POŻARZE - ANALIZA PRZESTRZENNA PROGRAMAMI FDS ORAZ ANSYS

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

Oferta Małopolskiego Centrum Budownictwa Energooszczędnego skierowana różnych grup przedsiębiorców oraz osób indywidualnych.

WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH

Analiza wpływu przypadków obciążenia śniegiem na nośność dachów płaskich z attykami

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

Fizyka cieplna budowli w praktyce : obliczenia cieplno-wilgotnościowe / Andrzej Dylla. Warszawa, cop Spis treści. Wykaz ważniejszych oznaczeń

Cieplno-wilgotnościowe właściwości przegród budowlanych wg normy PN-EN ISO )

WPŁYW TEMPERATURY W POMIESZCZENIACH POMOCNICZYCH NA BILANS CIEPŁA W BUDYNKACH DLA BYDŁA

ANALIZA BELKI DREWNIANEJ W POŻARZE

ANALIZA CZYNNIKÓW WPŁYWAJĄCYCH NA WARTOŚCI TERMICZNYCH ELEMENTÓW MIKROKLIMATU WNĘTRZ

Raport badania poddasza w domu jednorodzinnym

ANALIZA PARAMETRÓW LINIOWEGO MOSTKA CIEPLNEGO W WYBRANYM WĘŹLE BUDOWLANYM

Analiza cieplno-wilgotnościowa ścian parteru Plebanii w Choroszczy

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

Wybrane zagadnienia przenikania ciepła i pary wodnej przez przegrody. Krystian Dusza Jerzy Żurawski

Wynik obliczeń dla przegrody: Stropodach

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

Raport -Ocena parametrów cieplno-wilgotnościowych przegrody budowlanej na podstawie normy PN-EN ISO

ENERGII CIEPLNEJ W SZKLARNI Z RUCHOMYM EKRANEM TERMOIZOLACYJNYM THERMAL ENERGY CONSUMPTION IN GREENHOUSE WITH MOVABLE THERMAL SCREEN

ANALIZA WARTOŚCI POMIAROWYCH I LITERATUROWYCH NATĘŻENIA CAŁKOWITEGO PROMIENIOWANIA SŁONECZNEGO

Zastosowanie termografii do weryfikacji numerycznego modelu wymiany ciepła w przegrodach budowlanych z umieszczonymi przewodami centralnego ogrzewania

Wydział Budownictwa ul. Akademicka Częstochowa OFERTA USŁUGOWA. Politechnika Częstochowska ul. J.H. Dąbrowskiego Częstochowa

KINETYKA PROCESU SORPCJI WILGOCI W POROWATYCH MATERIAŁACH BUDOWLANYCH

Sprawozdanie z badań jakości powietrza wykonanych ambulansem pomiarowym w Tarnowskich Górach w dzielnicy Osada Jana w dniach

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

Zmiana wymagań dotyczących efektywności energetycznej budynków a inne aspekty projektowania

OCENA OCHRONY CIEPLNEJ

Pozycja okna w murze. Karol Reinsch, Aluplast Sp. z o.o.

ZMIANY W NORMALIZACJI KT 179

WPŁYW ZMIENNOŚCI DOSTARCZONEJ MOCY CIEPLNEJ NA TEMPERATURĘ POMIESZCZEŃ OGRZEWANYCH

Budownictwo mieszkaniowe

XIV KONFERENCJA CIEPŁOWNIKÓW

WPŁYW PRZESTRZENNYCH MOSTKÓW TERMICZNYCH NA PODSTAWOWE PARAMETRY FIZYKALNE JEDNOWARSTWOWYCH ZEWNĘTRZNYCH PRZEGRÓD BUDOWLANYCH

Przewodzenie ciepła oraz weryfikacja nagrzewania się konstrukcji pod wpływem pożaru

tylko przy użytkowaniu w warunkach wilgotnych b) tylko dla poszycia konstrukcyjnego podłóg i dachu opartego na belkach

Fizyka Budowli (Zagadnienia Współczesnej Fizyki Budowli) Zagadnienia współczesnej fizyki budowli

ZMIANY ZAWILGOCENIA PRZEGRÓD BUDYNKÓW HISTORYCZNYCH PRZY ZADANYCH WARUNKACH KLIMATU ZEWNĘTRZNEGO

PRZEWODNIK PO PRZEDMIOCIE

EUROKODY. dr inż. Monika Siewczyńska

Obciążenia montażowe

Fizyka budowli Building Physics. Inżynieria środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

SPITSBERGEN HORNSUND

Raport -Ocena parametrów cieplno-wilgotnościowych przegrody budowlanej na podstawie normy PN-EN ISO

Raport - Ocena parametrów cieplno-wilgotnościowych przegrody budowlanej na podstawie normy PN-EN ISO

ANALIZA ZAPOTRZEBOWANIA NA ENERGIĘ KOŃCOWĄ DLA GMACHU GŁÓWNEGO MUZEUM NARODOWEGO W KRAKOWIE

Analiza cieplno-wilgotnościowa ścian piętra plebanii w Choroszczy

Wykonawca dr hab. inż. Wojciech Dąbrowski

WPŁYW GRADIENTU TEMPERATURY NA WSPÓŁCZYNNIK PRZEWODZENIA CIEPŁA

Program Audytor OZC. Program Audytor OZC. Program Audytor OZC. Program Audytor OZC. Program Audytor OZC. FB VII w

POLITECHNIKA BIAŁOSTOCKA

SKRAJNIA DROGOWA I ZASADY OZNAKOWANIA OBIEKTÓW ZNAJDUJĄCYCH SIĘ W SKRAJNI DROGOWEJ

Środowisko symulacji parametry początkowe powietrza

Analiza zużycia ciepła przy zmiennym zawilgoceniu konstrukcyjnych części pionowych przegród budowlanych

SPITSBERGEN HORNSUND

PROBLEMY CIEPLNO-WILGOTNOŚCIOWE PRZY RENOWACJI ŚCIAN BUDYNKÓW Z MURU PRUSKIEGO

POLSKA NORMA. Numer: PN-80/B Tytuł: Obciążenia w obliczeniach statycznych - Obciążenie śniegiem

Dokumenty referencyjne:

Moduł meteorologiczny w serwisie CRIS

Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej

Zmiany izolacyjności cieplnej przegród budowlanych na tle modyfikacji obowiązujących norm i przepisów

Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska. Rozkład temperatury gruntu w sąsiedztwie ogrzewanych i nieogrzewanych budynków

Konsekwencje termodynamiczne podsuszania paliwa w siłowni cieplnej.

Obliczenia wstępne i etapy projektowania instalacji solarnych

ZUŻYCIE ENERGII DO OGRZEWANIA LOKALU W BUDYNKU WIELORODZINNYM. Paweł Michnikowski

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Właściwości i oznaczenia styropianu

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

POLE TEMPERATURY SIECI CIEPLNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Laboratorium LAB1. Moduł małej energetyki wiatrowej

Transkrypt:

XLIX KONFERENCJA NAUKOWA Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB Warszawa-Krynica, 14-19 września 2003 r., Krynica 2003 t. IV, str. 99-106 Konrad WITCZAK 1 Hartwig M. KÜNZEL 2 Dariusz GAWIN 3 WPŁYW ZACINAJĄCEGO DESZCZU NA STAN WILGOT- NOŚCIOWY PRZEGRÓD BUDOWLANYCH W POLSCE 1. Wprowadzenie Trwałość zewnętrznych przegród budowlanych oraz zachodzące w nich procesy cieplno wilgotnościowe zależą w znacznym stopniu od czynników klimatu zewnętrznego, tj.: temperatury, opadów atmosferycznych, prędkości i kierunku wiatru, wilgotności względnej powietrza i promieniowania słonecznego, oraz od szybkości ich zmian. Najmniej pożądanym i najbardziej destrukcyjnym czynnikiem w przegrodach budowlanych jest wilgoć, zwłaszcza w połączeniu z ujemnymi temperaturami. Jej obecność przyczynia się do zmniejszenia trwałości materiałów budowlanych, m.in. wskutek zamarzania wody w porach materiałów, korozję zbrojenia w konstrukcjach żelbetowych, wytrącanie się soli w porach, korozję biologiczną, itp. Ponadto wzrost zawartości wilgoci powoduje pogorszenie właściwości izolacyjnych materiałów, co może zwiększać koszty ogrzewania w okresie zimowym. Jedną z głównych przyczyn zawilgocenia zewnętrznych przegród budowlanych jest tzw. zacinający deszcz (ang. driving rain, wind-driven rain), [1-3]. Jest to zjawisko polegające na równoczesnym oddziaływaniu opadów atmosferycznych i wiatru na dany fragment zewnętrznej elewacji budynku. W Polsce opracowano do chwili obecnej kilka programów do obliczeń zjawisk przepływu ciepła i wilgoci przez przegrody budowlane, np. [4-6], ale żaden z nich nie pozwala na uwzględnienie wpływu zacinającego deszczu. Dzięki opracowaniu polskiej wersji programu WUFI [7], istnieje już taka możliwość, [8]. W niniejszej pracy przedstawiono wyniki symulacji wykonanych za pomocą programu WUFI-POL, które miały na celu przeanalizowanie wpływ zacinającego deszczu na stan zawilgocenia zewnętrznych przegród budynku usytuowanego w Warszawie. 2. Modelowanie zacinającego deszczu Analiza przegród budowlanych pod względem cieplno-wilgotnościowym wymaga stosowania szczegółowych danych pogodowych, w tym dotyczących opadów deszczu, które są 1 Mgr inż., Katedra Fizyki Budowli i Materiałów Budowlanych, Politechnika Łódzka 2 Dr inż., Instytut Fizyki Budowli im. Fraunhofera w Holzkirchen (Niemcy) 3 Dr hab. inż., Katedra Fizyki Budowli i Materiałów Budowlanych, Politechnika Łódzka -99-

zwykle mierzone na stacjach meteorologicznych dla płaszczyzny poziomej. Aby było możliwe wykorzystanie tych danych do symulacji zjawisk wilgotnościowych w przegrodach zewnętrznych, konieczne jest dodatkowo zastosowanie pewnych modeli, zwykle półempirycznych, np. [7,9], które umożliwiają przeliczanie danych o deszczu i wietrze na wielkości definiujące warunki brzegowe dla analizowanych zagadnień. Na obciążenie zacinającym deszczem, poza parametrami lokalnego klimatu, takimi jak: kierunek i prędkość wiatru oraz natężenie opadu deszczu, wpływają także charakterystyki otoczenia budynku (np. szorstkość podłoża, wysokość sąsiednich budynków), cechy geometryczne budynku (np. wymiary budynku, jego ustawienie względem stron świata, szerokości okapów), a także położenie analizowanej przegrody na elewacji zewnętrznej (np. odległość od narożników budynku, nachylenie i orientacja przegrody), [1-3,7]. Równoczesne uwzględnienie wpływu tak różnorodnych czynników, w celu wystarczająco dokładnego dla celów praktycznych opisu zacinającego deszczu, możliwe jest dzięki zastosowaniu tzw. komputerowej dynamiki płynów (CFD ang. Computational Fluid Dynamics), np. [2, 3]. Obecnie w wielu ośrodkach na świecie, m.in.: na Uniwersytecie Technologicznym w Göteborgu (Szwecja), Uniwersytecie Katolickim w Leuven (Belgia), Uniwersytecie Technicznym w Eindhoven (Holandia), prowadzone są prace na temat wpływu czynników klimatu zewnętrznego na stan cieplno-wilgotnościowy przegród. Bardzo ważną częścią badań eksperymentalnych - laboratoryjnych i poligonowych, jest opracowanie dokładniejszego modelu opisującego zjawisko zacinającego deszczu. Przykładowo w pracy Blockena i Carmelieta, [3], uwzględniono trajektorie kropli deszczu dla 33 różnych ich średnic. Istnieją również prostsze modele tych zjawisk, oparte na równaniach empirycznych. Znalazły one już zastosowanie w odpowiednich normach krajowych. Przykładowo norma brytyjska IBC 8104, [9], podaje następującą zależność: r v = 2/9 V r h 8/9 (1) D s = Σ r v cos( - Θ) (2) gdzie r v [mm/h] jest obciążeniem deszczem zacinającym na powierzchnię pionową zorientowaną prostopadle do kierunku wiatru, V [m/s] prędkością wiatru o kierunku prostopadłym do ściany, r h [mm/h] opadem deszczu na powierzchnię poziomą, [deg] kierunkiem wiatru mierzonym względem północy, Θ [deg] kątem między kierunkiem północnym a normalną do ściany, D s [mm/h] obciążeniem deszczem zacinającym na powierzchnię pionową zorientowaną pod dowolnym kątem do kierunku wiatru. Norma ta podaje także współczynniki uwzględniające charakterystyki terenu i wysokość, na której położona jest analizowana przegroda. Część istniejących modeli, opisujących zacinający deszcz, znalazła już praktyczne zastosowanie w programach komputerowych do analizy zjawisk cieplno-wilgotnościowych w przegrodach budowlanych. Jednym z nich jest program WUFI [7], który wykorzystuje godzinne dane pogodowe, uwzględniając ponadto zmienność chwilowych kierunków wiatru (przez podanie częstotliwości ich występowania dla każdej godziny podczas pomiarów). Model ten, wielokrotnie weryfikowany poprzez porównanie z wynikami eksperymentów prowadzonych dla obiektów rzeczywistych [7], opisany jest zależnością: R L = R h (R 1 + R 2 V w ) (3) gdzie R L [mm/h] jest obciążeniem deszczem zacinającym, R h [mm/h] opadem deszczu na powierzchnię poziomą (wg danych pogodowych), V w [m/s] prędkością wiatru zmierzoną -100-

w otwartym terenie na wysokości 10 m, R 1 [-] współczynnikiem uwzględniającym wpływ nachylenia przegrody (np. dla powierzchni pionowych R 1 = 0), R 2 [s/m] współczynnikiem zależnym od położenia przegrody w wysokości przegrody (np. dla budynków w terenie otwartym R 2 = 0.2 s/m). Podczas obliczeń wartość obciążenia deszczem zacinającym (R L ) mnożona jest przez tzw. współczynnik absorpcji deszczu, którego wartość, według Künzla [7], dla większości materiałów budowlanych wynosi około 0.7. 3. Wyniki symulacji komputerowych Poniżej przedstawiono wyniki symulacji, wykonanych za pomocą programu WUFI-POL [8], dotyczących procesów cieplno wilgotnościowych w wybranych zewnętrznych przegrodach budowlanych. Obliczenia wykonano dla czterech różnych przegród zewnętrz-nych, wysychających z wilgoci technologicznej podczas trzech pierwszych lat eksploatacji budynku. Przegroda 1 była zbudowana z 1.5 cm tynku mineralnego zewnętrznego, 36.5 cm betonu komórkowego (odmiany 600) i 1.5 cm wewnętrznego tynku gipsowego. Przegroda 2 miała podobną budowę, ale bez tynku zewnętrznego. Przegroda 3 składała się z 12 cm cegły silikatowej, 12 cm wełny mineralnej, 24 cm cegły silikatowej i 1.5cm wewnętrznego tynku gipsowego. Przegroda 4 była zbudowana z 12cm cegły pełnej, 12cm wełny mineralnej, 24 cm ceramiki ekstrudowanej i 1.5 cm wewnętrznego tynku gipsowego. Dla każdej z warstw analizowanych przegród, jako początkową zawartość wilgoci, przyjęto typową wilgotność technologiczną wg danych z [7]. Obliczenia wykonano dla fragmentów ścian położonych na elewacjach: wschodniej, północnej, zachodniej i południowej, oraz dla ściany położonej na różnych wysokościach elewacji zachodniej. W ten sposób uzyskano zróżnicowane poziomy obciążenia deszczem zacinającym. Dla porównania wykonano też obliczenia dla okrojonych danych pogodowych, tj.: nie uwzględniających promieniowania słonecznego i/lub zacinającego deszczu. Symulacje wykonano dla odpowiednio opracowanych danych pogodowych Typowego Roku Meteorologicznego (TRM) dla Warszawy, [10]. Godzinne wielkości opadów podczas TRM przedstawiono na Rys. 1. Roczna suma opadu dla tych danych pogodowych wynosiła 493.1 mm, czas trwania opadu - 760 h, zaś maksymalny opad godzinny - 7 mm/h. Na Rys. 2 i 3 przedstawiono wyniki symulacji procesów cieplno wilgotnościowych dla przegród 1 i 2, dla różnej ich orientacji ścian względem stron świata. W wyniku zastosowania modelu (3) otrzymano następujące dane dotyczące zacinającego deszczu na płaszczyznę pionową na poszczególnych elewacji (zach./płn./wsch./płd.): roczna suma obciąże- Opad [mm/h] 8 7 6 5 4 3 2 1 0 0 30 60 90 120 150 180 210 240 270 300 330 360 Czas [dni] Rys. 1. Wielkość opadów deszczu wg danych pogodowych TRM. -101-

Rys. 2. Porównanie zmian zawartości wilgoci w przegrodzie 1 dla różnych orientacji przegrody względem stron świata. Rys. 3. Porównanie zmian zawartości wilgoci w przegrodzie 2 (tj. przegrody 1 bez tynku zewnętrznego) dla różnych orientacji przegrody względem stron świata. nia - 298.26/100.21/70.33/123.89 mm; czas trwania opadu - 552/236/143/342 h; maksymalny opad godzinny 7.5/7.2/7.9/7.3 mm. Zastosowanie zewnętrznej warstwy tynku na przegrodzie 1 spowodowało wyraźne ograniczenie, w porównaniu z przegrodą 2, wpływu deszczu zacinającego na szybkość wysychania tej ściany. Mimo dużych różnic w obciążeniu deszczem zacinającym, dla tej ściany dały się zauważyć jedynie niewielkie różnice w przebiegu zmian zawartości wilgoci. Zupełnie odmiennie wyniki otrzymano dla tej samej przegrody, ale bez tynku zewnętrznego (przegroda 2), Rys. 3. Wyraźnie widoczny jest bardzo duży wpływ orientacji analizowanych ścian na stan zawilgocenia podczas deszczu. Najwolniej wysychała przegroda na elewacji zachodniej (linia gruba), a najszybciej usytuowana na elewacji wschodniej (linia ciemnoszara). Różnice chwilowych zawartości wilgoci dla skrajnych przypadków, tj. elewacji zachodniej i wschodniej, dochodzą do ok. 30 kg/m 2, co stanowi ok. 60% większej z tych wartości. Nawet dla mniej nawietrznych elewacji wpływ zacinającego deszczu powoduje występowanie na wykresach charakterystycznych pików, Rys.3. Wykres -102-

Rys. 4. Porównanie zmian zawartości wilgoci w przegrodzie 3 umieszczonej na różnych wysokościach elewacji zachodniej budynku wielorodzinnego. odpowiadający przegrodzie usytuowanej na elewacji północnej zaznaczono linią cienką, a na elewacji południowej linią jasnoszarą. Na Rys. 4 przedstawiono wyniki symulacji dla przegrody 3, które pokazują wpływ prędkości wiatru na obciążenie deszczem zacinającym. Zróżnicowanie prędkości wiatru wynikało z położenia analizowanej przegrody na różnych wysokościach na elewacji zachodniej budynku wielorodzinnego: powyżej 20 m (wariant I linia gruba), między 10 a 20 m (wariant II linia cienka), poniżej 10 m (wariant III linia szara) oraz na elewacji zachodniej wolnostojącego budynku jednorodzinnego (wariant IV linia przerywana). W tym przypadku widoczny jest proporcjonalny wzrost obciążenia deszczem zacinającym przy wzrastającej prędkości wiatru (tj. wysokości, na której znajduje się ściana). Najwolniej wysychał fragment przegrody znajdujący się najwyżej, Rys.4. Dla tych analiz otrzymano następujące dane dotyczące zacinającego deszczu (wariant I/II/III/IV): roczna suma obciążenia 298.3/149.2/104.4/74.6 mm, czas trwania opadu 552/551/550/543 h, maksymalny opad godzinny 7.9/3.9/2.7/2.0 mm. Przedstawione na Rys. 3 i 4 wyniki wskazują jednoznacznie, że w klimacie polskim, gdzie dominują wiatry zachodnie, w przypadku budynków bez tynku zewnętrznego, których elewacja wykonana jest z materiału podatnego na zawilgocenie, zawartość wilgoci w górnych fragmentach ścian zachodnich może być nawet dwu-, trzykrotnie wyższa w stosunku do innych elewacji budynku, a zwłaszcza wschodniej. Na Rys. 5 przedstawiono wyniki obliczeń wykonanych dla przegrody 1 przy użyciu pełnego zestawu danych pogodowych TRM (wariant I - linia czarna) oraz wariantów danych okrojonych : z pominiętym deszczem zacinającym (wariant II - linia przerywana), promieniowaniem słonecznym (wariant III - linia szara) oraz obydwu tych czynników (wariant IV cienka linia przerywana). Przegroda była usytuowana na elewacji zachodniej. Tak jak można było oczekiwać, najszybciej wysycha przegroda, na którą oddziałuje tylko promieniowanie słoneczne, a najwolniej przegroda poddana działaniu jedynie deszczu zacinającego. Wart podkreślenia jest fakt, że historie zmian wilgoci dla wariantów I i IV, tj. uwzględniających jednocześnie promieniowanie słoneczne i zacinający deszcz oraz pomijające te czynniki, były bardzo podobne. Oznacza to, że dla analizowanej przegrody i zestawu danych pogodowych, wpływy tych dwóch czynników klimatycznych wzajemnie kompensowały się. -103-

Rys. 5. Porównanie historii zmian zawartości wilgoci w przegrodzie 1 dla danych pogodowych TRM: pełnych oraz z pominięciem opadów atmosferycznych i/lub promieniowania słonecznego. Rys. 6. Historie zmian zawartości wilgoci w przegrodzie 4 dla danych pogodowych TRM (linia przerywana), 1980 (linia cienka) i 1983 roku (linia gruba). Analizy przedstawione w [11] wskazują, że dobór danych pogodowych ma wpływ na wyniki symulacji procesów cieplno-wilgotnościowych w przegrodach budowlanych. Aby dokładniej przeanalizować ten problem dla zjawiska deszczu zacinającego, wykonano stosowne obliczenia dla przegrody 4, Rys. 6. Użyto w nich trzech różnych zestawów danych pogodowych Warszawy: roku 1980 (jako najzimniejszego z okresu 10-letniego: 1976-85), roku 1983 (jako najcieplejszego dla tego okresu) oraz danych TRM, [10]. Założono położenie fragmentu przegrody na elewacji zachodniej, na wysokości powyżej 20 m, gdzie wpływ zacinającego deszczu jest największy (por. Rys.4). Obliczenia wykonano dla okresu jednego roku, a początkowy stan zawilgocenia przegrody odpowiadał równowadze higrotermicznej ściany z powietrzem zewnętrznym o wilgotności względnej 55%, czyli stanowi suchemu. Deszcz zacinający był w tym przypadku głównym źródłem zawilgocenia ściany, o czym świadczy dodatni bilans strumienia masy wilgoci na końcu analizowanego okresu. W Tab.1 zestawiono wielkości charakteryzujące opady deszczu dla poszczegól- -104-

nych zestawów danych pogodowych oraz odpowiadające im wielkości dotyczące zacinającego deszczu, otrzymane z zależności (3). Widoczne są znaczne różnice w przebiegu zjawisk wilgotnościowych w analogicznych okresach roku dla rozważanych danych pogodowych. W wyniku obliczeń otrzymano zbliżone wartości maksymalnej zawartości wilgoci w ścianie, choć występowała ona w różnych miesiącach roku. Wskazuje to na konieczność opracowania standardowego zestawu danych pogodowych do symulacji wilgotnościowych, z uwzględnieniem zacinającego deszczu, w postaci Wilgotnościowego Projektowego Roku Odniesienia (WPRO), [10], który mógłby być stosowany podczas analiz porównawczych różnych rozwiązań konstrukcyjno-materiałowych. Tablica 1. Zestawienie danych pogodowych i obciążenia deszczem zacinającym. Dane pogodowe Obciążenie deszczem zacinającym Roczna suma opadów nia opadów godzinny ma opadów opadów godzinny Czas trwa- Max. opad Roczna su- Czas trwania Max. opad Rok [mm] [h/rok] [mm] [mm] [h/rok] [mm] TRM 493.1 760 7 298.3 552 7.9 1983 463.8 759 7.8 177.2 356 7.2 1980 595.1 807 10.5 238.4 476 7.5 5. Wnioski i uwagi końcowe Przeprowadzone obliczenia wskazują, że w polskich warunkach klimatycznych deszcz zacinający ma istotny wpływ na przebieg procesów cieplno-wilgotnościowych w zewnętrznych przegrodach budowlanych. Dotyczy to zwłaszcza budynków, których elewacja wykonana jest z materiałów podatnych na zawilgocenie, a które nie są chronione warstwą tynku zewnętrznego. W przypadku obiektów tego typu, ze względu na prędkość i dominujący kierunek wiatru, zawartość wilgoci w najwyżej położonych fragmentach ścian elewacji zachodniej, może być nawet kilkukrotnie wyższa w porównaniu do innych elewacji. Stan zawilgocenia ścian zewnętrznych wskutek zacinającego deszczu jest ściśle związany z ich położeniem na elewacji budynku. Szczególnie ważna jest ich wysokość nad poziomem gruntu oraz odległość od krawędzi obiektu, wywołujących dodatkowe zmiany prędkości i kierunku ruchu powietrza w pobliżu elewacji budynku. Aby dokonać prawidłowej oceny ilościowej, pod względem wilgotnościowym, różnych rozwiązań konstrukcyjno-materiałowych, które mają być zastosowane w konkretnym obiekcie, niezbędne jest wykonanie obliczeń symulacyjnych przy pomocy programu komputerowego, uwzględniającego zjawisko deszczu zacinającego, np. [8], wyposażonego w odpowiednio przygotowany zestaw danych pogodowych WPRO. Prace nad opracowaniem takich danych, uwzględniających wpływ deszczu zacinającego, są obecnie prowadzone w ramach projektu KBN Nr 7 T07E 045 23. 6. Literatura [1] BIJAN ADL-ZARRABI, ANNELI B. HOGBERG, Microclimate: Field Measurements, Driving Rain Analyses, Building Durability Practices, Mat. Konf. Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes, (na CD), Clearwater Beach, Florida, 2002. -105-

[2] BLOCKEN B., CARMELIET J., Spatial and Temporal Distribution of Driving Rain on Buildings: Numerical Simulation and Experimental Verivication. Mat. Konf. Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes (na CD), Clearwater Beach, Florida, 2002. [3] FABIEN J.R van MOOK., Driving rain on building envelopes, Eindhoven University Press, Eindhoven, 2002. [4] GAWIN D., A numerical solution of coupled heat and moisture transfer problems with phase changes in porous building materials, Arch. Civil Engng, 39(4), 393-412, 1993. [5] WYRWAŁ J., ŚWIRSKA J., Problemy zawilgocenia przegród budowlanych, Studia z Zakresu Inżynierii Nr.44, KILiW PAN, Warszawa, 1998 [6] GAWIN D., Modelowanie sprzężonych zjawisk cieplno-wilgotnościowych w materiałach i elementach budowlanych, Zeszyty Naukowe Nr 853, Wydawnictwo Politechniki Łódzkiej, Łódź, 2000. [7] KÜNZEL H.M., Simultaneous Heat and Moisture Transport in Building Components, IRB Verlag, 1995. [8] KÜNZEL H., HOLM A., RADOŃ J., GAWIN D., WUFI-POL - program do cieplno-wilgotnościowego projektowania przegród budowlanych w Polsce, referat zgłoszony na IX Konf. Fizyka Budowli w Teorii i Praktyce, Łódź, 2003. [9] BSI, BS 8104 1992, British Standard Code of practice for assessing the exposure of walls to wind-driven rain. British Standard Institution, 1992. [10] GAWIN D., KOSSECKA E. (red.), Typowy rok meteorologiczny do symulacji wymiany ciepła i masy w budynkach, Wydawnictwo Politechniki Łódzkiej, Łódź, 2002. [11] WITCZAK K., KOSSECKA E., GAWIN D., Wpływ doboru danych pogodowych na wyniki symulacji przepływu ciepła i wilgoci w ścianach budynków, referat zgłoszony na IX Konf. Fizyka Budowli w Teorii i Praktyce, Łódź, 2003. THE INFLUENCE OF WIND-DRIVEN RAIN ON HYGRAL STATE OF BUILDING ENVELOPES IN POLAND Summary In this paper the results of hygro-thermal simulations concerning the effect of driving rain upon the hygral state of four different external building walls located in Warsaw (Poland) are presented. The results obtained show that the driving rain is one of the most important factors affecting the hygro-thermal performance of building envelopes. The latter one depends upon the wind direction and speed, the wall orientation and its location on the building façade, and the moisture transport properties of the external layer. The results are strongly influenced by the weather data used during simulations. The highest moisture content of the external building walls, caused by the wind-driven rain in Polish climatic conditions, can be expected at the highest parts of the western façades. Powyższa praca została wykonana w ramach finansowanego przez Komitet Badań Naukowych projektu badawczego Nr 7 T07E 045 23. -106-