Artur Nosalewicz. Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, 20-290 Lublin e-mail: a.nosalewicz@ipan.lublin.



Podobne dokumenty
ZMIANY WŁAŚCIWOŚCI GLEBY W WARSTWIE ORNEJ POD WPŁYWEM NACISKÓW KÓŁ AGREGATÓW CIĄGNIKOWYCH

ANALIZA WŁAŚCIWOŚCI TRAKCYJNYCH DARNI W ZMIENNYCH WARUNKACH GRUNTOWYCH

BADANIA ODKSZTAŁCEŃ DYNAMICZNYCH ROLNICZYCH OPON NAPĘDOWYCH NA GLEBIE LEKKIEJ

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia

ANALIZA ZALEŻNOŚCI NAPRĘŻEŃ PIERWOTNYCH OD WTÓRNYCH I STANU POCZĄTKOWEGO PRÓBKI GLEBY

WPŁYW RODZAJU BIEŻNIKA I JEGO ZUŻYCIA NA ZAGĘSZCZENIE GLEBY PIASZCZYSTEJ

PRZYROSTY ZWIĘZŁOŚCI GLEBY LEKKIEJ UGNIATANEJ WIELOKROTNIE I WIELOŚLADOWO

OCENA WPŁYWU ZMIAN CIŚNIENIA WEWNĄTRZ OPON NA ICH WŁAŚCIWOŚCI TRAKCYJNE NA WYBRANYM PODŁOŻU LEŚNYM *

WPŁYW SPOSOBU ZAGĘSZCZANIA GLEBY NA PRZEBIEG KRZYWYCH DOŚWIADCZALNYCH ORAZ WYZNACZANĄ WARTOŚĆ JEJ NAPRĘŻENIA GRANICZNEGO

MODEL SYMULACYJNY DO PROGNOZOWANIA WYBRANYCH PARAMETRÓW RUCHU KÓŁ TOCZONYCH

RESEARCH ON INDIVIDUAL STRESS DISTRIBUTION IN THE SOIL WITH REGARD TO THE OCCURRENCE OF PLOUGH PAN

ANALIZA TRAKCYJNYCH WŁAŚCIWOŚCI OPON W UPROSZCZONYCH TECHNOLOGIACH UPRAWY

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

NAPRĘśENIE PIERWOTNE W PODŁOśU GRUNTOWYM

ANALIZA STANU ZAGĘSZCZENIA WARSTWY PODORNEJ GLEBY GLINIASTEJ. Wstęp i cel

WYZNACZANIE NACISKÓW KRYTYCZNYCH NA PODSTAWIE WIELOKROTNYCH TESTÓW JEDNOOSIOWEGO ZAGĘSZCZANIA GLEBY

WPŁYW RODZAJU AGREGATU CIĄGNIKOWEGO NA ZAGĘSZCZENIE GLEBY W WARSTWIE ORNEJ

Zagęszczenie i opory penetracji gleby przy stosowaniu siewu buraka cukrowego w mulcz i bezpośredniego

BADANIE PODATNOŚCI NA ZAGĘSZCZANIE PODORNEJ WARSTWY CZARNEJ ZIEMI GLINIASTEJ

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(100)/2014

WPŁYW GŁĘBOKOŚCI KOLEINY I CIŚNIENIA POWIETRZA W OGUMIENIU NA NACISKI JEDNOSTKOWE KÓŁ CIĄGNIKÓW NA GLEBĘ

WYTRZYMAŁOŚĆ NA ŚCINANIE WARSTWY PODORNEJ GLEB BRUNATNOZIEMNYCH NIZINY SZCZECIŃSKIEJ

BADANIA WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKOWYCH OPON NAPĘDOWYCH NA STRUKTURĘ AGREGATOWĄ GLEBY LEKKIEJ W KOLEINACH

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

WPŁYW UGNIATANIA KOŁAMI CIĄGNIKA DWÓCH GLEB PIASZCZYSTEJ I PYŁOWEJ NA ICH WŁAŚCIWOŚCI RETENCYJNE

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

Politechnika Poznańska. Zakład Mechaniki Technicznej

MOśLIWOŚCI WYKORZYSTANIA ŚCINARKI OBROTOWEJ DO WYZNACZANIA SPÓJNOŚCI GLEBY

SPECYFIKACJA TECHNICZNA WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH. KORYTO WRAZ Z PROFILOWANIEM I ZAGĘSZCZANIEM PODŁOśA (ST )

WPŁYW ZRYWKI DREWNA NA WYBRANE WŁAŚCIWOŚCI FIZYKO-MECHANICZNE GLEBY LEŚNEJ

ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]

BADANIA WYTRZYMA OŒCI NA ŒCISKANIE PRÓBEK Z TWORZYWA ABS DRUKOWANYCH W TECHNOLOGII FDM

FIZYCZNE WŁAŚCIWOŚCI WARSTWY PODORNEJ GLEBY GLINIASTEJ

D PROFILOWANIE I ZAGĘSZCZANIE PODŁOśA POD WARSTWY KONSTRUKCYJNE NAWIERZCHNI

Zakres wiadomości na II sprawdzian z mechaniki gruntów:

Politechnika Poznańska Metoda elementów skończonych. Projekt

PROGNOZOWANIE OPORU TOCZENIA KÓŁ CIĄGNIKÓW ROLNICZYCH NA GLEBIE

WPŁYW WYBRANYCH PARAMETRÓW I WARUNKÓW PRACY OPRYSKIWACZA NA POŁOŻENIE BELKI POLOWEJ W PŁASZCZYŹNIE POZIOMEJ

2 Chmiel Polski S.A., ul. Diamentowa 27, Lublin

OCENA TRAKCYJNA OPON DO UNIWERSALNEGO CIĄGNIKA ROLNICZEGO *

DOSKONALENIE PROCEDURY WYZNACZANIA KĄTA TARCIA WEWNĘTRZNEGO ZIARNA ZBÓŻ METODĄ TRÓJOSIOWEGO ŚCISKANIA. J. Horabik, J. Łukaszuk

Lab. Metody Elementów Skończonych

MODEL DO WYZNACZANIA OPORU TOCZENIA WYNIKAJĄCEGO Z UGIĘCIA OPON NA GLEBIE

OCENA ZMIAN SIŁY UCIĄGU CIĄGNIKA ROLNICZEGO Z RADIALNYMI I DIAGONALNYMI OPONAMI NAPĘDOWYMI

ANALIZA WYBRANYCH WŁAŚCIWOŚCI TRAKCYJNYCH CIĄGNIKA NEW HOLLAND TG 255

OCENA PORÓWNAWCZA ZUśYCIA PALIWA SILNIKA CIĄGNIKOWEGO ZASILANEGO BIOPALIWEM RZEPAKOWYM I OLEJEM NAPĘDOWYM

Konsolidacja podłoŝa gruntowego

Stanisław Skonecki, Janusz Laskowski

WPŁYW WIELOKROTNYCH OBCIĄŻEŃ STATYCZNYCH NA STOPIEŃ ZAGĘSZCZENIA I WŁAŚCIWOŚCI REOLOGICZNE MASY ZIARNA

OCENA PROCESU PRZENOSZENIA SIŁY NAPĘDOWEJ PRZEZ OPONĘ W RÓŻNYCH TECHNOLOGIACH UPRAWY GLEBY*

ANALIZA ROZKŁADU OPORÓW NA POBOCZNICĘ I PODSTAWĘ KOLUMNY BETONOWEJ NA PODSTAWIE WYNIKÓW PRÓBNEGO OBCIĄśENIA STATYCZNEGO

Wyniki badań laboratoryjnych wybranych parametrów geotechnicznych dla gruntów spoistych z tematu:

on behavior of flood embankments

WPŁYW SPOSOBU UPRAWY NA OPÓR PENETRACJI GLEBY

Klasa betonu Klasa stali Otulina [cm] 3.00 Średnica prętów zbrojeniowych ściany φ 1. [mm] 12.0 Średnica prętów zbrojeniowych podstawy φ 2

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej

BADANIA DYNAMICZNEGO OBCIĄŻENIA NORMALNEGO KÓŁ NAPĘDOWYCH CIĄGNIKA

Nasyp przyrost osiadania w czasie (konsolidacja)

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

Badania symulacyjne wytrzymałości płyty wewnętrznej przejazdu kolejowego

OCENA SPRAWNOŚCI TRAKCYJNEJ OPONY UŻYTKOWANEJ NA RÓŻNYCH PODŁOŻACH ROLNICZYCH*

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

ANALIZA WŁAŚCIWOŚCI TRAKCYJNYCH OPON NAPĘDOWYCH W UPROSZCZONYCH TECHNOLOGIACH UPRAWY GLEBY

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

WPŁYW WIELOKROTNEGO PRZEJAZDU CIĄGNIKA NA ZMIANY NAPRĘŻEŃ POD KOŁAMI ORAZ PRZYROSTY GĘSTOŚCI OBJĘTOŚCIOWEJ GLINY LEKKIEJ

ANALIZA SPRĘŻYSTOŚCI PROMIENIOWEJ OGUMIENIA 14.00R20 Z WKŁADKĄ TYPU RUN-FLAT

KOMPUTEROWE MODELOWANIE I OBLICZENIA WYTRZYMAŁOŚCIOWE ZBIORNIKÓW NA GAZ PŁYNNY LPG

FATIGUE LIFE OF ADHESION PLASTICS

SZCZEGÓŁOWE SPECYFIKACJE TECHNICZNE D KORYTO WRAZ Z PROFILOWANIEM I ZAGĘSZCZANIEM PODŁOśA

WPŁYW WILGOTNOŚCI GLEBY NA JEJ ZAGĘSZCZENIE KOŁEM CIĄGNIKA

SPITSBERGEN HORNSUND

PROGRAM KOMPUTEROWY DO WYZNACZANIA PARAMETRÓW TRAKCYJNYCH KÓŁ NAPĘDOWYCH

WPŁYW GŁĘBOKOŚCI SPULCHNIANIA GLEBY NA ZAPOTRZEBOWANIE MOCY DO NAPĘDU ŁOPATY MECHANICZNEJ GRAMEGNA

OCENA MOŻLIWOŚCI POPRAWY WŁAŚCIWOŚCI TRAKCYJNYCH POPRZEZ ZMIANĘ CIŚNIENIA POMPOWANIA OPON *

Podłoże warstwowe z przypowierzchniową warstwą słabonośną.

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r.

Optymalizacja konstrukcji wymiennika ciepła

D NAWIERZCHNIE GRUNTOWE 1. WSTĘP

OCENA ENERGETYCZNYCH PARAMETRÓW WSPÓŁPRACY UKŁADU KOŁO NAPĘDOWE-DROGA LEŚNA

Applications of FEM for explanation of influence of the operating parameters upon failure wear of the piston in a diesel engine

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

OCENA PRZYDATNOŚCI ROZWIĄZANIA BOUSSINESQA-FRÖHLICHA DO OKREŚLANIA NAPRĘśEŃ W GLEBIE W WARUNKACH LABORATORYJNYCH

SPITSBERGEN HORNSUND

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

ANALIZA WŁAŚCIWOŚCI TRAKCYJNYCH CIĄGNIKA FENDT 820 W WYBRANYCH TECHNOLOGIACH UPRAWY GLEBY

SZCZEGÓŁOWA SPECYFIKACJA TECHNICZNA

WŁAŚCIWOŚCI TECHNICZNO-UśYTKOWE

MODELOWANIE PROCESU NISZCZENIA KOMPOZYTOWEGO OKUCIA MODELING OF DAMAGE PROCESS OF BOLTED COMPOSITE JOINT

Wykonawstwo robót fundamentowych związanych z posadowieniem fundamentów i konstrukcji drogowych z głębiej zalegającą w podłożu warstwą słabą.

ST05 NASYP Z POSPÓŁKI

PODCZERWIEŃ W DYNAMICZNYCH POMIARACH WILGOTNOŚCI GLEBY W TERENIE URZEŹBIONYM Leszek Piechnik, Paweł Tomiak

WYNIKI BADAŃ WARTOŚCIOWANIA PROCESU OBSŁUGI TECHNICZNEJ CIĄGNIKÓW ROLNICZYCH O RÓŻNYM POZIOMIE WYKORZYSTANIA

SPITSBERGEN HORNSUND

ANALIZA SIŁ TRAKCYJNYCH OPONY NAPĘDOWEJ W ZMODYFIKOWANYCH TECHNOLOGIACH UPRAWY

SPITSBERGEN HORNSUND

WYZNACZANIE PARAMETRÓW PLASTYCZNEGO PŁYNIĘCIA SYPKICH SUROWCÓW SPOŻYWCZYCH 1. J. Horabik, M. Grochowicz

SPECYFIKACJE TECHNICZNE. KORYTO WRAZ Z PROFILOWANIEM I ZAGĘSZCZANIEM PODŁOśA ST

SZCZEGÓŁOWA SPECYFIKACJA TECHNICZNA D.05 PODBUDOWA Z KRUSZYWA ŁAMANEGO STABILIZOWANEGO MECHANICZNIE

2. MATERIAŁY Nie występują.

Transkrypt:

Acta Agrophysica, 25, 6(3), 753-759 OCENA WPŁYWU PRZEJAZDÓW CIĘśKICH MASZYN ROLNICZYCH NA ZAGĘSZCZENIE GLEBY PRZY UśYCIU MODELU SOCOMO Artur Nosalewicz Instytut Agrofizyki im. Bohdana Dobrzańskiego PAN, ul. Doświadczalna 4, 2-29 Lublin e-mail: a.nosalewicz@ipan.lublin.pl S t r e s z c z e n i e. Celem pracy była ocena wpływu przejazdów cięŝkich maszyn rolniczych na zagęszczenie gleby z wykorzystaniem modelu SOCOMO. Określono wielkość obszarów gleby podlegających odkształceniom plastycznym i napręŝenia powstające w profilu gleby pod wpływem przejazdów kołami wyposaŝonymi w opony niskociśnieniowe GoodYear 73x44.-32, w szerokim zakresie ciśnień w oponie. Zwiększenie obciąŝenia koła z 3 do 5 Mg powodowało znaczny wzrost głębokości, na której zachodzą odkształcenia gleby przy jednoczesnym pięciokrotnym wzroście powierzchni gleby ulegającej odkształceniom. S ł o wa kluczowe: zagęszczenie gleby, SOCOMO, napręŝenia w glebie WSTĘP Postęp techniczny w rolnictwie pociąga za sobą wzrost liczby przejazdów maszyn rolniczych po polach a takŝe wzrost obciąŝeń tych pojazdów. O ile zagęszczona górna warstwa gleby, do głębokości około 3cm podlega zabiegom spulchniania, to gleba poniŝej podlega stopniowej degradacji w wyniku kumulacji zagęszczenia. Stosowane powszechnie zabiegi spulchniające powodują rozluźnienie górnej warstwy gleby, natomiast energochłonne zabiegi głębokiego spulchniania, są rzadko stosowane. Stan głębszych warstw zagęszczonej gleby po zastosowaniu mechanicznego rozluźniania cechuje się nadal niekorzystnymi właściwościami w porównaniu do stanu sprzed zagęszczenia [4]. Pomiary czterech typów opon obciąŝonych tym samym ładunkiem [1] wykazały, Ŝe wysokie ciśnienie opon znacząco zwiększa głębokość śladu, opór penetracji gleby w śladzie i napręŝenia w glebie. Opony przystosowane do niskich Praca częściowo finansowana z projektu badawczego KBN nr 3 P6R 1 23.

754 A. NOSALEWICZ ciśnień mogą w znacznie mniejszym stopniu powodować zagęszczenie gleby pod warunkiem stosowania obniŝonego ciśnienia (opony te zwykle mogą pracować w szerokim zakresie ciśnień). ObniŜenie ciśnienia w oponach ma takŝe dodatkowy pozytywny skutek redukcję wibracji [9]. Efekty przejazdów maszyn rolniczych zaleŝą od początkowego stanu (wilgotności, zagęszczenia początkowego) i typu gleby, rodzaju maszyn rolniczych (nacisku na oś, stosowanych opon), częstotliwości przejazdów i wielu innych. MoŜliwymi sposobami uniknięcia zwiększającego się zagęszczenia warstwy ornej i podornej gleby jest zredukowanie do niezbędnego minimum przejazdów maszynami rolniczymi, zwłaszcza w okresach, gdy gleba jest wilgotna i podatna na zagęszczenie. W tych warunkach nacisk jednostkowy gleby moŝna ograniczyć poprzez stosowanie specjalnych opon niskociśnieniowych lub zwykłych o obni-ŝonym ciśnieniu. Ponadto zastąpienie opony zestawem dwu mniejszych opon równieŝ powoduje istotne obniŝenie nacisku jednostkowego maszyn rolniczych [1]. ObciąŜenie koła, ilość przejazdów, wilgotność gleby, kształt powierzchni kontaktu gleby z oponą i ciśnienie opon są czynnikami mającymi istotny wpływ na zagęszczenie gleby [2,3,5]. Ograniczenie napręŝeń wywołanych przejazdami maszyn rolniczych do wartości niŝszych od napręŝeń granicznych gleby zmniejszy prawdopodobieństwo wystąpienia niepoŝądanych zmian struktury gleby [6]. UŜycie modeli zagęszczenia gleby moŝe być pomocne w dostosowaniu praktyk rolniczych do eliminowania zagroŝeń degradacją gleby. Obecnie występuje na rynku europejskim kilka modeli kombajnów do zbioru buraków cukrowych mających dopuszczalne obciąŝenie kół przekraczające 1 Mg [8], przy całkowitej masie dochodzącej do 6 Mg. ObciąŜenia tej wielkości mogą powodować znaczne zagęszczenie głębokich warstw gleby. MATERIAŁY I METODY Ocenę skutków przejazdów maszyn rolniczych przeprowadzono z wykorzystaniem modelu SOCOMO (SOil COmpaction MOdel) [1,11]. Weryfikowany doświadczalnie, pomiarami polowymi i laboratoryjnymi model SOCOMO dzięki względnie niewielkiej ilości wymaganych danych wejściowych moŝe być łatwo uŝyty do stosunkowo dokładnego przewidywania efektów przejazdów oponami maszyn rolniczych. Model bazując na teorii Boussinesq a opisuje rozkład naprę- Ŝeń w jednorodnym, izotropowym ośrodku wywołany siłą wynikającą z przyło- Ŝenia masy do powierzchni tego ośrodka. ZałoŜenie jednorodności i izotropowości ośrodka umoŝliwiło ograniczenie wymagań co do ilości wymaganych danych wejściowych modelu [1].

OCENA WPŁYWU PRZEJAZDÓW CIĘśKICH MASZYN ROLNICZYCH 755 Wymaganymi danymi wejściowymi są: początkowy rozkład gęstości gleby, kohezja i współczynnik tarcia wewnętrznego gleby, napręŝenia graniczne, oraz dane opony: wymiary, prędkość przejazdu, ciśnienie opony. Istnieje moŝliwość wyboru kształtu rozkładu napręŝeń pod oponą, który to rozkład ma istotny wpływ na wartości napręŝeń w glebie [7]. Oponą wykorzystaną w obliczeniach była opona niskociśnieniowa Good Year 73x44.-32. Wybór opony został podyktowany bardzo szerokim zakresem ciśnień: 7-28 kpa, przy których moŝe być stosowana oraz tym, Ŝe zaprojektowana została do najcięŝszych maszyn rolniczych. Jej dopuszczalne obciąŝenie wynosi 13,23 Mg, przy ciśnieniu w oponie równym 28 kpa. Podstawowe wymiary opony to szerokość całkowita: 19,7 cm i średnica: 186,4 cm. Tabela. 1. Właściwości gleby Table. 1. Soil properties Głębokość Depth (cm) Kohezja Cohesion (kpa) Kąt tarcia wewnętrznego Angle of internal friction (deg) Gęstość Bulk density(mg m -3 ) -24 28 32 36 4 44 48 52 56-6 5,8 4, 14,3 19,1 21,9 21,9 21,9 22,7 29,1 25 3 3 3 3 3 3 3 3 1,35 1,35 1,55 1,55 1,55 1,55 1,55 1,55 1,55 Właściwości gleby (tab.1, napręŝenia graniczne gleby przedstawione na rys. 4) uŝyte w modelowaniu są zaczerpnięte z pracy [8] i odpowiadają glebie gliniastej po zbiorze ziemniaków. WYNIKI I DYSKUSJA Symulacji poddano przejazdy oponą obciąŝoną cięŝarem 3 i 5 Mg (rys. 1-3), dla róŝnych ciśnień w ogumieniu, oraz maksymalnym, dopuszczalnym ładunkiem dla ciśnień 18 i 28 kpa. Wzrost powierzchni gleby ulegającej odkształceniu plastycznemu ze wzrostem ciśnienia w ogumieniu pod kołem obciąŝonym ładunkiem 3 Mg przedstawiony jest na rysunku 1. Zagęszczenie w warstwach poniŝej 2 cm występuje dopiero przy ciśnieniach od 14 kpa, którego przekroczenie powoduje znaczny wzrost powierzchni odkształcenia w warstwie -2 cm. Odkształcenie to występuje na obszarze o szerokości większej niŝ wynosi szerokość opony.

756 A. NOSALEWICZ Pola powierzchni odkształceń dla obciąŝenia 5 Mg prezentowane są na rysunku 2. Dla tej wartości obciąŝenia juŝ przy najniŝszym dopuszczalnym ciśnieniu w ogumieniu 7 kpa zagęszczeniu ulega gleba do głębokości 28 cm, dla ciśnień od 14 kpa zagęszczeniu ulega gleba na głębokościach do 32 cm. Powierzchnia-Area (m 2 ),3,2,1-2 cm 2-24 cm 24-28cm 7 11 14 175 28 Ciśnienie-Pressure (kpa) Rys. 1. Powierzchnia odkształcenia plastycznego po przejeździe kołem obciąŝonym 3 Mg z oponą GoodYear 73x44.-32, w określonych przedziałach głębokości Fig. 1. Area with plastic deformation after passing a GoodYear 73x44.-32 tyre loaded with 3 Mg, for given ranges of depths Powierzchnia-Area (m 2 ),3,2,1-2 cm 2-24 cm 24-28 cm >28 cm 7 11 14 175 28 Ciśnienie-Pressure (kpa) Rys. 2. Powierzchnie odkształcenia plastycznego po przejeździe kołem obciąŝonym 5 Mg z oponą GoodYear 73x44.-32, w określonych przedziałach głębokości Fig. 2. Area with plastic deformation after passing a GoodYear 73x44.-32 tyre loaded with 5 Mg, for given ranges of depths

OCENA WPŁYWU PRZEJAZDÓW CIĘśKICH MASZYN ROLNICZYCH 757 Zwiększanie obciąŝenia, przy ustalonych ciśnieniach w ogumieniu, powoduje, Ŝe odkształcenia plastyczne zachodzą w coraz głębszych warstwach gleby. Na przykład przy ciśnieniu równym 175 kpa wzrost obciąŝenia koła z 3 Mg do 5 Mg powodował wzrost głębokości, na której zachodzą odkształcenia plastyczne z 28 do 44 cm. Powierzchnia gleby ulegająca odkształceniu plastycznemu w przekroju poprzecznym pod kołem (prostopadle do kierunku przejazdu) wzrasta przy zmianie obciąŝenia z 3 Mg do 5 Mg, odpowiednio z,3 do,44 m 2 dla ciśnienia 175 kpa (rys. 3). Powierzchnia-Area (m 2 ),5,4,3,2,1 3 Mg 5 Mg 7 11 14 175 28 Ciśnienie-Pressure (kpa) Rys. 3. Całkowita powierzchnia przekroju poprzecznego gleby pod oponą GoodYear 73x44.-32 podlegająca odkształceniu plastycznemu dla podanych zakresów ciśnień w ogumieniu Fig. 3. Total area where soil plastic deformation occurred after passing the GoodYear tyre 73x44.-32, for given pressure ranges Wraz ze wzrostem ciśnień w oponie od 7 do 28 kpa, całkowita powierzchnia gleby ulegająca odkształceniu plastycznemu pod kołem, wzrastała z,4 do,32 m 2 przy obciąŝeniu koła 3 Mg oraz z,24 do,53 m 2 przy obciąŝeniu 5 Mg. Rozkład napręŝeń wywołany przejazdem opony obciąŝonej maksymalnymi, dopuszczalnymi obciąŝeniami, 12,89 i 13,23 Mg dla ciśnień w oponie odpowiednio 18 i 28 kpa, przedstawiono na rysunku 4. Dla obu ciśnień napręŝenia w glebie przekroczyły napręŝenia graniczne w warstwach -32 i 52-58 cm, oraz od -34 i 5-64 cm, odpowiednio dla 18 i 28 kpa. Podobne badania modelowe przeprowadzone metodą elementów skończonych (Finite Element Method) [8], dla tej samej opony dały napręŝenia o tej samej wartości dla głębokości 37,5 cm, wyŝsze dla głębokości -37,5 cm, niŝsze dla głębokości poniŝej 37,5 cm (dla 18 kpa ciśnienia w oponie i 12,89 Mg obciąŝenia). Dla ciśnienia 28 kpa i 13,23 Mg obciąŝenia, identyczne napręŝenia obliczone metoda FEM i modelem SOCOMO stwierdzono dla głębokości 44 cm, podobnie jak dla ciśnienia 18 kpa w glebie powyŝej tej głębokości napręŝenia uzyskane

758 A. NOSALEWICZ metoda FEM były wyŝsze, poniŝej 44 cm niŝsze. RóŜnice te wyniosły 13 i 38% dla ciśnienia 18 kpa i obciąŝenia 12,89 Mg, oraz 16 i 23,75% dla 28 kpa i 13,23 Mg, odpowiednio dla głębokości 22,5cm i 57,5 cm (zakres głębokości, w którym dokonano obliczeń metodą FEM). NapręŜenia-Stress NapręŜenia Stress (kn/m 2 (kpa) ) 4 3 2 1 18 kpa, 1289 kg 28 kpa, 1323 kg PS 1 3 5 7 9 Głębokość-Depth (cm) Rys. 4. NapręŜenia graniczne gleby i napręŝenia w glebie dla róŝnych ciśnień w oponie GoodYear 73x44.-32. PS napręŝenia graniczne w glebie Fig. 4. Comparison of stresses within the soil for different inflation pressures and loads under GoodYear 73x44.-32 tyre, PS precompression stress WNIOSKI 1. Zwiększenie nacisku wywieranego na powierzchnie kontaktu opony i gleby powoduje, Ŝe trwałe odkształcenia gleby pojawiają się w coraz głębszych warstwach gleby. Wzrost obciąŝenia koła z 3 Mg do 5 Mg powodował ponad 5-krotny wzrost obszaru podlegającego odkształceniom, w tym w warstwach gleby poniŝej 24 cm ten wzrost moŝe być ponad 3-krotny, zaleŝnie od ciśnienia w ogumieniu. RóŜnice miedzy obszarami ulegającymi zagęszczeniu w wyniku zwiększenia nacisku zmniejszają się ze wzrostem ciśnienia w oponie, ale zagęszczeniu ulegają głębsze warstwy gleby. 2. Model SOCOMO umoŝliwia stosunkowo łatwą ocenę wpływu parametrów opon maszyn rolniczych i początkowego stanu gleby na zagęszczenie gleby, moŝe dostarczyć wielu pomocnych informacji dotyczących propagacji zagęszczenia w glebie. Znajomość tych procesów pozwoli na opracowanie metod ograniczenia degradacji gleby w wyniku jej zagęszczenia.

OCENA WPŁYWU PRZEJAZDÓW CIĘśKICH MASZYN ROLNICZYCH 759 PIŚMIENNICTWO 1. Ardvidsson J., Ristic S.: Soil stress and compaction effect for four tractor tyres. Journal of Terramechanics, 33 (5) 223-232, 1996. 2. Dawidowski, J.B., Morrison, J.E., Snieg, M: Measurement of soil layer strength with plate sinkage and uniaxial confined methods. Transactions of ASAE 44, 159-164, 21. 3. Emmanuel C. Canillas, Vilas M. Salokhe: Modeling compaction in agricultural soils. Journal of Terramechanics, 39, 71-84, 22. 4. Hakanson I.: Swedish experiment on the persistence of subsoil compaction caused by vehicles with high axle load. Soil & Tillage Research, 29, 15-11, 1994. 5. Hakansson I., Medvedev V. M.: Protection of soils from mechanical overloading by establishing limits for stress caused by heavy vehicles. Soil & Tillage Research, 35, 85-97, 1995. 6. Keller T., Arvidsson J., Dawidowski J.B., Koolen A.J.: Soil precompression stress II. A comparison of different compaction tests and stress-displacement behaviour of the soil during wheeling. Soil & Tillage Research, 77, 97-18, 24. 7. Nowowiejski R., Dawidowski J. B., Kostecki P.: Wpływ modeli odwzorowania powierzchni styku koło-gleba i rozkładu obciąŝenia na wartość napręŝenia w glebie. Inzynieria Rolnicza, 13 (33), 323-329, 21. 8. Poodt M.P., Koolen A.J., Van der Linden J.P.: FEM analysis of subsoil reaction on heavy wheel loads with emphasis on soil preconsolidation stress and cohesion. Soil & Tillage Research, 73, 67-76, 23. 9. Raper R. L., Bailey A. C., Burt E. C., Way T. R., Liberati P.: The effects of reduced inflation pressure on soil-tire interface stresses and soil strength. Journal of Terramechanics, 32 (1), 43-51, 1995. 1. Van den Akker J. J. H.: SOCOMO a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil & Tillage Research, 79 113-127, 24. 11. Van den Akker J. J. H., W. B. M. Arts, A. J. Koolen, H. J. Stuiver: Comparison of stresses, compactions and increase of penetration resistance caused by low ground pressure and normal tyre. Soil & Tillage Research, 29, 125-134, 1994. EFFECT OF HEAVY AGRICULTURAL MACHINERY PASSES ON SOIL COMPACTION Artur Nosalewicz Institute of Agrophysics, Polish Academy of Sciences, ul. Doświadczalna 4, 2-29 Lublin e-mail: a.nosalewicz@ipan.lublin.pl Ab s t r a c t. The aim of the paper was to determine the effect of heavy agricultural machinery passes on soil compaction by computation with the SOCOMO model. Wide range of inflation pressures and loads were analysed. Impact of tyre load and wide range of inflation pressure on soil stresses, and area of soil plastic deformation were determined using GoodYear tire 73x44.-32. Increase of tyre load from 3 to 5 Mg caused increase of depth where plastic deformation occurs. Plastic deformation area was five times bigger at 5 than at 3 Mg load. K e y wo r d s : soil compaction, SOCOMO, soil stress