WYMAGANIA EDUKACYJNE

Podobne dokumenty
Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

DZIAŁ II: PIERWIASTKI

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

Wymagania edukacyjne z matematyki Klasa II

Wymagania edukacyjne z matematyki

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

Określenie wymagań edukacyjnych z matematyki w klasie II

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I

Kryteria ocen z matematyki w klasie II gimnazjum

Semestr Pierwszy Potęgi

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy

Wymagania edukacyjne z matematyki w klasie II gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

DZIAŁ 1. POTĘGI. stopień

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

DZIAŁ 1. POTĘGI (14 h)

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

WYMAGANIA EDUKACYJNE klasa II

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

Szczegółowe wymagania edukacyjne z matematyki klasa II gim

ZESPÓŁ SZKÓŁ W OBRZYCKU

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM

Przedmiotowy system oceniania z matematyki kl.ii

Wymagania programowe na poszczególne stopnie szkolne klasa 2 GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

DZIAŁ 1. POTĘGI (14 h)

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Matematyka klasa II Dział programowy: 1. Potęgi (14 h)

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE DRUGIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO: 4 GODZ. TYGODNIOWO 125 GODZ.

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy VII szkoły podstawowej

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

Katalog wymagań programowych na poszczególne stopnie szkolne

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Matematyka z plusem dla gimnazjum

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2

Katalog wymagań programowych na poszczególne stopnie szkolne

Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Wymagania edukacyjne klasa druga.

Transkrypt:

GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: oblicza potęgę o wykładniku naturalnym mnoży i dzieli potęgi o tych samych podstawach potęguje iloraz i iloczyn podaje przykłady liczb niewymiernych oblicza pierwiastek II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby zapisuje i objaśnia wzory na: długość okręgu i pole koła oblicza długość okręgu i pole koła mając dany promień podaje wartość liczby definiuje kąt środkowy, łuk i wycinek koła odróżnia jednomian od sumy algebraicznej wskazuje jednomiany podobne buduje i odczytuje proste wyrażenie algebraiczne typu: suma liczb a i b, połowa liczby x oblicza wartość wyrażenia algebraicznego dla zmiennych wymiernych, bez jego przekształcenia mnoży i dzieli sumę algebraiczną przez liczbę wymierną nazywa boki trójkąta prostokątnego zapisuje i objaśnia twierdzenie Pitagorasa stosując twierdzenie Pitagorasa oblicza długość przeciwprostokątnej trójkąta prostokątnego sprawdza, czy trójkąt o bokach wyrażonych liczbami naturalnymi jest prostokątny zapisuje wzór na przekątną kwadratu znając jego bok zapisuje wzór na wysokość trójkąta równobocznego znając jego bok konstruuje okrąg opisany na trójkącie i wpisany w trójkąt definiuje styczną do okręgu konstruuje sześciokąt foremny i ośmiokąt foremny opisuje graniastosłup prosty rysuje graniastosłup prosty w rzucie równoległym zapisuje i objaśnia wzór ogólny na pole powierzchni i objętość graniastosłupa wymienia jednostki objętości opisuje ostrosłup, w tym ostrosłup prawidłowy i czworościan foremny str. 2

rysuje ostrosłup w rzucie równoległym rozpoznaje siatkę ostrosłupa zapisuje i objaśnia wzór ogólny na pole powierzchni i objętość ostrosłupa odczytuje informacje z tabeli, wykresu, diagramu. Na ocenę dostateczną uczeń spełnia wymagania poziomu koniecznego oraz: oblicza wartość wyrażenia arytmetycznego zawierającego potęgi do obliczania wartości liczbowej wyrażeń stosuje mnożenie i dzielenie potęg o tych samych podstawach i potęgowanie potęgi zamienia potęgi o wykładnikach całkowitych ujemnych na odpowiednie potęgi o wykładnikach naturalnych zapisuje duże i małe liczby w notacji wykładniczej szacuje wartość wyrażenia arytmetycznego zawierającego pierwiastki stosuje wzór na obliczanie pierwiastka z iloczynu i ilorazu do obliczania wartości liczbowej wyrażeń oblicza długość okręgu i pole koła mając daną średnicę oblicza długość łuku i pole wycinka koła mając miarę kąta środkowego albo jako określoną część koła oblicza wartość liczbową wyrażenia algebraicznego dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń mnoży sumę algebraiczną przez jednomian wyraża pole figury w postaci wyrażenia algebraicznego rozwiązuje układ równań stopnia I z dwiema niewiadomymi metodą podstawiania lub przeciwnych współczynników sprawdza, czy dana para liczb spełnia układ równań zapisuje treść typowej sytuacji zadaniowej (np. zakupy) za pomocą układu równań na podstawie twierdzenia Pitagorasa oblicza długość przyprostokątnej trójkąta prostokątnego sprawdza, czy trójkąt o danych bokach jest prostokątny znając bok kwadratu oblicza jego przekątną znając bok trójkąta równobocznego oblicza jego wysokość i pole powierzchni konstruuje styczną do okręgu oblicza miary kąta wewnętrznego wielokąta foremnego określa liczbę osi symetrii wielokąta foremnego wpisuje okrąg w wielokąt i opisuje okrąg na wielokącie oblicza sumę długości krawędzi graniastosłupa kreśli siatkę graniastosłupa o podstawie dowolnego wielokąta zamienia jednostki objętości oblicza pole powierzchni i objętość graniastosłupa i ostrosłupa w typowych zadaniach tekstowych wyznacza średnią arytmetyczną i medianę zestawu danych opracowuje i prezentuje dane statystyczne podaje przykłady doświadczeń losowych oblicza prawdopodobieństwo w najprostszych zdarzeniach Na ocenę dobrą uczeń spełnia wymagania poziomu podstawowego oraz: str. 3

zapisuje liczbę w postaci iloczynu potęg porównuje potęgi sprowadzając do tej samej podstawy oblicza wartości wyrażeń arytmetycznych zawierających potęgi o wykładnikach całkowitych porównuje ilorazowo liczby podane w notacji wykładniczej oblicza wartość wyrażeń arytmetycznych z pierwiastkami wyłącza czynnik przed znak pierwiastka rozwiązuje zadania związane z długością okręgu i polem koła wyznacza promień lub średnicę koła znając jego pole oblicza pole figury złożonej z wielokątów i wycinków koła oblicza promień koła znając miarę kąta środkowego i pole wycinka koła oblicza promień okręgu znając miarę kąta środkowego i długość łuku, na którym jest oparty doprowadza wyrażenie algebraiczne do prostszej postaci wyłącza wspólny czynnik przed nawias mnoży sumy algebraiczne rozwiązuje zadania tekstowe metodą układów równań określa rodzaj układu równań: oznaczony, nieoznaczony, sprzeczny stosuje twierdzenie Pitagorasa w zadaniach o trójkątach, prostokątach, trapezach i rombach, także w układzie współrzędnych rozwiązuje trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 rozwiązuje zadania związane z okręgiem opisanym na trójkącie, wpisanym w trójkąt, oraz ze styczną do okręgu oblicza promień, pole i obwód koła opisanego i wpisanego w trójkąt równoboczny o danym boku rozwiązuje zadania tekstowe związane z polem powierzchni i objętością graniastosłupa prostego wykreśla siatkę ostrosłupa stosuje twierdzenie Pitagorasa do wyznaczenia długości odcinków w ostrosłupie (np. wysokość ściany bocznej) interpretuje dane przedstawione za pomocą tabel, diagramów słupkowych, kołowych i wykresów rozwiązuje zadanie tekstowe związane ze średnią i medianą analizuje proste doświadczenia losowe. Na ocenę bardzo dobrą uczeń spełnia wymagania poziomu rozszerzającego oraz: stosuje działania na potęgach w zadaniach tekstowych wykonuje działania na potęgach o wykładnikach całkowitych usuwa niewymierność z mianownika ułamka korzystając z własności pierwiastków rozwiązuje zadanie tekstowe związane z porównywaniem obwodów i pól figur oblicza pole koła znając jego obwód i odwrotnie doprowadza wyrażenie algebraiczne do prostszej postaci stosując mnożenie sum algebraicznych stosuje dodawanie i odejmowanie sum algebraicznych w zadaniach tekstowych rozwiązuje zadania tekstowe, w tym z procentami, metodą układu równań stosuje twierdzenie Pitagorasa w zadaniach tekstowych str. 4

sprawdza, czy trójkąt leżący w układzie współrzędnych jest prostokątny rozwiązuje zadania tekstowe związane z przekątną kwadratu, wysokością trójkąta równobocznego, wielokątami foremnymi rozwiązuje zadania tekstowe związane z długościami przekątnych, polem i objętością graniastosłupa i ostrosłupa. Na ocenę celującą uczeń spełnia wymagania poziomu dopełniającego oraz umie: rozwiązuje nietypowe zadania z potęgami, porównuje potęgi korzystając z potęgowania potęgi, porównuje pierwiastki podnosząc do odpowiedniej potęgi wykorzystuje wyrażenia algebraiczne do rozwiązywania zadań związanych z podzielnością i dzieleniem z resztą stosuje umiejętności matematyczne do rozwiązywania skomplikowanych, nietypowych problemów, interpretuje i uzasadnia poprawność rozumowania, samodzielnie rozwija własne zainteresowania, osiąga sukcesy w konkursach matematycznych korzystając z różnych źródeł informacji przygotowuje fragmenty lekcji na wcześniej zadany, dzieli się umiejętnie posiadana wiedzą z rówieśnikami. str. 5