WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ"

Transkrypt

1 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający ocena bardzo dobra (5) W - wykraczający ocena celująca (6) DZIAŁ 1. POTĘGI TEMATY CELE PODSTAWOWE CELE PONADPODSTAWOWE Uczeń: Uczeń: Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach. Potęga o wykładniku całkowitym ujemnym. zna pojęcie potęgi o wykładniku naturalnym (K), rozumie pojęcie potęgi o wykładniku naturalnym (K), umie zapisać potęgę w postaci iloczynu (K), zapisać iloczyn jednakowych czynników w postaci potęgi (K), obliczyć potęgę o wykładniku naturalnym(k), zapisać liczbę w postaci potęgi, zapisać liczbę w postaci iloczynu potęg, obliczyć wartość wyrażenia arytmetycznego zawierającego potęgi zna wzór na mnożenie i dzielenie potęg o tych samych podstawach (K),rozumie powstanie wzoru na mnożenie i dzielenie potęg o tych samych podstawach, umie mnożyć i dzielić potęgi o tych samych podstawach (K), przedstawić potęgę w postaci iloczynu i ilorazu potęg o tych samych podstawach, stosować mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń zna wzór na potęgowanie potęgi (K) rozumie powstanie wzoru na potęgowanie potęgi, umie potęgować potęgę (K), przedstawić potęgę w postaci potęgowania potęgi, stosować potęgowanie potęgi do obliczania wartości liczbowej wyrażeń zna wzór na potęgowanie ilorazu i iloczynu (K), rozumie powstanie wzoru na potęgowanie ilorazu i iloczynu umie potęgować iloraz i iloczyn(k), zapisać iloraz i iloczyn potęg o tych samych wykładnikach w postaci jednej potęgi(k-p) umie doprowadzić wyrażenie do prostszej postaci stosując działania na potęgach zna pojęcie potęgi o wykładniku całkowitym ujemnym rozumie pojęcie potęgi o wykładniku całkowitym ujemnym umie obliczyć potęgę o wykładniku całkowitym ujemnym umie zapisać liczbę w postaci iloczynu potęg (R) obliczyć wartość wyrażenia arytmetycznego zawierającego potęgi,zapisać liczbę w systemach niedziesiątkowych i odwrotnie (W), rozwiązać nietypowe zadanie tekstowe związane z potęgami (W), przekształcić wyrażenie arytmetyczne zawierające potęgi (W) umie stosować mnożenie i dzielenie potęg o tych samych podstawach do obliczania wartości liczbowej wyrażeń umie porównać potęgi sprowadzając do tej samej podstawy (R), stosować potęgowanie potęgi do obliczania wartości liczbowej wyrażeń porównać potęgi korzystając z potęgowania potęgi (W) umie stosować potęgowanie iloczynu ilorazu w zadaniach tekstowych (R- D) doprowadzić wyrażenie do prostszej postaci stosując działania na potęgach (R-W), stosować działania na potęgach w zadaniach tekstowych umie obliczyć potęgę o wykładniku całkowitym ujemnym (R), wykonać porównanie ilorazowe potęg o wykładnikach ujemnych, wykonać działania na potęgach o wykładnikach całkowitych (D), obliczyć wartość wyrażenia 1

2 Notacja wykładnicza. Pierwiastki. Działania na pierwiastkach. Liczba π. Długość okręgu. Pole koła. Długość łuku. Pole wycinka koła. zna pojęcie notacji wykładniczej umie zapisać liczbę w notacji wykładniczej zna pojęcie pierwiastka arytmetycznego II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby (K), pojęcie liczby niewymiernej i rzeczywistej (K), rozumie różnicę w rozwinięciu dziesiętnym liczby wymiernej i niewymiernej umie obliczyć pierwiastek arytmetyczny II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby (K-P), oszacować wartość wyrażenia zawierającego pierwiastki, określić na podstawie rozwinięcia dziesiętnego, czy dana liczba jest wymierna, czy niewymierna zna wzór na obliczanie pierwiastka z iloczynu i ilorazu (K) wzór na obliczanie pierwiastka II stopnia z kwadratu liczby nieujemnej i pierwiastka III stopnia z sześcianu dowolnej liczby (K), umie obliczyć pierwiastek II stopnia z kwadratu liczby nieujemnej i pierwiastek III stopnia z sześcianu dowolnej liczby (K-P), umie wyłączyć czynnik przed znak pierwiastka umie stosować wzór na obliczanie pierwiastka z iloczynu i ilorazu do obliczania wartości liczbowej wyrażeń DZIAŁ 3. DŁUGOŚĆ OKRĘGU I POLE KOŁA zna wzór na obliczanie długości okręgu (K) liczbę π (K), umie obliczyć długość okręgu znając jego promień lub średnicę (K-P), wyznaczyć promień lub średnicę okręgu, znając jego długość, rozwiązać zadanie tekstowe związane z porównywaniem obwodów figur zna wzór na obliczanie pola koła (K) umie obliczyć pole koła, znając jego promień lub średnicę (K-P) wyznaczyć promień lub średnicę koła, znając jego pole rozwiązać zadanie tekstowe związane porównywaniem pól figur zna pojęcie kąta środkowego, łuku, wycinka koła (K), umie obliczyć długość łuku jako określonej części okręgu, obliczyć pole wycinka koła jako określonej arytmetycznego zawierającego potęgi o wykładnikach całkowitych rozumie potrzebę stosowania notacji wykładniczej w praktyce (R), umie zapisać liczbę w notacji wykładniczej (R), wykonać porównywanie ilorazowe dla liczb podanych w notacji wykładniczej umie oszacować wartość wyrażenia zawierającego pierwiastki (R) umie obliczyć wartość wyrażenia arytmetycznego zawierającego pierwiastki umie oszacować liczbę niewymierną umie obliczyć pierwiastek II stopnia z kwadratu liczby nieujemnej i pierwiastek III stopnia z sześcianu dowolnej liczby (R), wyłączyć czynnik przed znak pierwiastka (R), włączyć czynnik pod znak pierwiastka, wykonywać działania na liczbach niewymiernych, stosować wzór na obliczanie pierwiastka z iloczynu i ilorazu do obliczania wartości liczbowej wyrażeń (P-D), usuwać niewymierność z mianownika korzystając z własności pierwiastków, porównać pierwiastki podnosząc do odpowiedniej potęgi (D-W), doprowadzić wyrażenie algebraiczne zawierające potęgi i pierwiastki do prostszej postaci rozumie sposób wyznaczenia liczby π (R) związane z długością okręgu, rozwiązać zadanie tekstowe związane porównywaniem obwodów figur obliczyć pole koła, znając jego obwód i odwrotnie, obliczyć pole nietypowej figury wykorzystując wzór na pole koła, rozwiązać zadanie tekstowe związane porównywaniem pól figur,rozwiązać zadanie tekstowe związane z obwodami i polami figur (D-W) umie obliczyć długość figury złożonej z łuków i odcinków(r), obliczyć pole figury złożonej z wielokątów i wycinków koła, rozwiązać 2

3 części koła obliczyć długość łuku i pole wycinka koła, znając miarę kąta środkowego obliczyć długość figury złożonej z łuków i odcinków obliczyć pole figury złożonej z wielokątów i wycinków koła zadanie tekstowe związane z obwodami i polami figur (D-W) obliczyć promień okręgu, znając miarę kąta środkowego i długość łuku, na którym jest oparty (R) umie obliczyć promień koła, znając miarę kąta środkowego i pole wycinka koła (R) Jednomiany i sumy algebraiczne. Mnożenie jednomianów przez sumy Mnożenie sum algebraicznych. DZIAŁ 4. WYRAŻENIA ALGEBRAICZNE zna pojęcie wyrażenia algebraicznego, jednomianu, jednomianu uporządkowanego, pojęcie jednomianów podobnych (K), rozumie zasadę przeprowadzania redukcji wyrazów podobnych, rozumie zasadę nazywania wyrażeń algebraicznych (K), umie budować proste wyrażenia algebraiczne, odczytać wyrażenia algebraiczne (K-P), umie porządkować jednomiany (K-P), podać współczynnik liczbowy jednomianu (K), wskazać jednomiany podobne (K) redukować wyrazy podobne (K-P), opuszczać nawiasy, doprowadzić wyrażenie algebraiczne do prostszej postaci, obliczyć wartość liczbową wyrażenia dla zmiennych wymiernych bez jego przekształcania (K-P) umie mnożyć i dzielić sumę algebraiczną przez liczbę wymierną (K), mnożyć sumę algebraiczną przez jednomian (K-P), wyłączyć wspólny czynnik przed nawias umie obliczyć wartość liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń, wyrazić pole figury w postaci wyrażenia algebraicznego umie mnożyć sumy algebraiczne umie doprowadzić wyrażenie algebraiczne do prostszej postaci umie budować i odczytać wyrażenia algebraiczne o konstrukcji wielodziałaniowej umie obliczyć wartość liczbową wyrażenia dla zmiennych wymiernych po przekształceniu do postaci dogodnej do obliczeń umie stosować dodawanie i odejmowanie sum algebraicznych w zadaniach testowych (R-W) umie wyłączyć wspólny czynnik przed nawias stosować dodawanie i odejmowanie sum algebraicznych, mnożenie jednomianów przez sumy algebraiczne w zadaniach testowych (R-W), wykorzystać wyrażenia algebraiczne do rozwiązywania zadań związanych z podzielnością i dzieleniem z resztą (W), wyrazić pole figury w postaci wyrażenia algebraicznego umie mnożyć sumy algebraiczne (R), doprowadzić wyrażenie algebraiczne do prostszej postaci stosując mnożenie sum algebraicznych, interpretować geometrycznie iloczyn sum algebraicznych (R), mnożyć sumy algebraiczne w zadaniach testowych (R-W), Do czego służą układy równań? DZIAŁ 5. UKŁADY RÓWNAŃ zna pojęcie układu równań i rozwiązania układu równań (K) rozumie pojęcie rozwiązania układu równań (K), umie podać przykładowe rozwiązanie równania I stopnia z dwiema niewiadomymi (K), zapisać treść zadania w postaci układu równań, sprawdzić, czy dana para liczb spełnia układ równań umie zapisać treść zadania w postaci układu równań (D-W) tworzyć układ równań o danym rozwiązaniu (D-W) 3

4 Rozwiązywanie układów równań metodą podstawiania. Rozwiązywanie układów równań metodą przeciwnych współczynników. Ile rozwiązań może mieć układ równań? Procenty w zadaniach tekstowych. Twierdzenie Pitagorasa. Twierdzenie odwrotne do twierdzenia Pitagorasa. Zastosowanie twierdzenia Pitagorasa. Twierdzenie Pitagorasa w układzie współrzędnych. zna metodę podstawiania (K) umie wyznaczyć niewiadomą z równania (K-P) rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą podstawiania (K-P) rozwiązać zadanie tekstowe z zastosowaniem układu równań i metody podstawiania zna metodę przeciwnych współczynników (K) umie rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą przeciwnych współczynników (K-P) z zastosowaniem układu równań i metody przeciwnych współczynników zna pojęcia: układ oznaczony, nieoznaczony, sprzeczny umie podać przykłady par liczb spełniających podany układ nieoznaczony z zastosowaniem układu równań i procentów(p-k) DZIAŁ 6. TRÓJKĄTY PROSTOKĄTNE zna twierdzenie Pitagorasa (K) rozumie potrzebę stosowania twierdzenia Pitagorasa (K), umie obliczyć długość przeciwprostokątnej na podstawie twierdzenia Pitagorasa (K) obliczyć długości przyprostokątnych na podstawie twierdzenia Pitagorasa zna twierdzenie odwrotne do twierdzenia Pitagorasa (K) rozumie potrzebę stosowania twierdzenia odwrotnego do twierdzenia Pitagorasa (K), umie sprawdzić, czy trójkąt o danych bokach jest prostokątny (K-P) umie wskazać trójkąt prostokątny w figurze (K) umie stosować twierdzenie Pitagorasa w prostych zadaniach o trójkątach, prostokątach, trapezach, rombach umie odczytać odległość między dwoma punktami o równych odciętych lub rzędnych (K), wyznaczyć odległość między dwoma punktami, których współrzędne wyrażone są liczbami całkowitymi umie wyznaczyć niewiadomą z równania (R), rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą podstawiania, rozwiązać zadanie tekstowe z zastosowaniem układu równań i metody podstawiania rozwiązać układ równań z parametrem (W), rozwiązać układ równań wyższego stopnia (W) umie rozwiązać układ równań I stopnia z dwiema niewiadomymi metodą przeciwnych współczynników, rozwiązać zadanie tekstowe z zastosowaniem układu równań i metody przeciwnych współczynników, rozwiązać układ równań z parametrem (W), rozwiązać układ równań wyższego stopnia (W) umie określić rodzaj układu równań, umie dobrać współczynniki układu równań, aby otrzymać żądany rodzaj układu (D) umie wykorzystać diagramy procentowe w zadaniach tekstowych, rozwiązać zadanie tekstowe z zastosowaniem układu równań i procentów(r-w) rozumie konstrukcję odcinka o długości wyrażonej liczbą niewymierną (R), umie konstruować odcinek o długości wyrażonej liczbą niewymierną, konstruować kwadraty o polu równym sumie pól danych kwadratów (W) umie sprawdzić, czy trójkąt o danych bokach jest prostokątny (R), umie stosować twierdzenie odwrotne do twierdzenia Pitagorasa w zadaniach tekstowych, określić rodzaj trójkąta znając jego boki (W) umie stosować twierdzenie Pitagorasa w zadaniach o trójkątach, prostokątach, trapezach, rombach, stosować twierdzenie Pitagorasa w zadaniach rachunkowych i konstrukcyjnych (R- D) umie obliczyć długości boków wielokąta leżącego w układzie współrzędnych (R), sprawdzić, czy trójkąt leżący w układzie współrzędnych jest prostokątny (R- D) Przekątna zna wzór na obliczanie długości umie wyprowadzić wzór na 4

5 kwadratu. Wysokość trójkąta równoboczneg o. Trójkąty o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, przekątnej kwadratu (K) zna wzór na obliczanie długości wysokości trójkąta równobocznego (K), zna wzór na obliczanie pola trójkąta równobocznego, umie wyprowadzić wzór na obliczanie długości przekątnej kwadratu, obliczyć długość przekątnej kwadratu, znając jego bok (K-P), obliczyć wysokość lub pole trójkąta równobocznego, znając jego bok, umie obliczyć długość boku lub pole kwadratu, znając jego przekątną związane z przekątną kwadratu i wysokością trójkąta równobocznego zna zależność między bokami i kątami trójkąta o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 umie rozwiązać trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 obliczanie długości wysokości trójkąta równobocznego (R), obliczyć wysokość lub pole trójkąta równobocznego, znając jego bok (R) umie obliczyć długość boku lub pole kwadratu, znając jego przekątną (R), obliczyć długość boku lub pole trójkąta równobocznego, znając jego wysokość związane z przekątną kwadratu i wysokością trójkąta równobocznego (R-W) umie rozwiązać trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0, rozwiązać zadanie tekstowe z wykorzystaniem zależności między bokami i kątami trójkąta o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 (R-W) Okrąg opisany na trójkącie. Styczna do okręgu. Okrąg wpisany w trójkąt. Wielokąty foremne. Wielokąty foremne okręgi wpisane i opisane. DZIAŁ 7. WIELOKĄTY I OKRĘGI zna pojęcie okręgu opisanego na wielokącie (K), umie konstruować okrąg opisany na trójkącie (K), określić położenie środka okręgu opisanego na trójkącie prostokątnym, ostrokątnym, rozwartokątnym, konstruować okrąg przechodzący przez trzy dane punkty zna pojęcie stycznej do okręgu (K), umie konstruować styczną do okręgu (K), konstruować okrąg styczny do prostej w danym punkcie, umie rozwiązać zadanie konstrukcyjne i rachunkowe związane ze styczną do okręgu zna pojęcie okręgu wpisanego w wielokąt (K), umie konstruować okrąg wpisany w trójkąt (K) zna pojęcie wielokąta foremnego (K), rozumie własności wielokątów foremnych, umie konstruować sześciokąt i ośmiokąt foremny wpisany w okrąg o danym promieniu (K-P), obliczyć miarę kąta wewnętrznego wielokąta foremnego wskazać wielokąty foremne środkowosymetryczne, podać ilość osi symetrii wielokąta foremnego umie obliczyć długość promienia okręgu wpisanego w kwadrat o danym boku (K), obliczyć długość promienia okręgu opisanego na kwadracie o danym boku, obliczyć długość promienia, pole lub obwód koła opisanego i wpisanego w trójkąt równoboczny o danym boku, wpisać i opisać okrąg na wielokącie (K-P), rozwiązać zadanie tekstowe związane z okręgami wpisanymi i opisanymi na umie rozwiązać zadanie konstrukcyjne i rachunkowe związane z okręgiem opisanym na trójkącie (R- W) umie rozwiązać zadanie konstrukcyjne i rachunkowe związane ze styczną do okręgu (R-W) umie konstruować okrąg styczny do ramion kąta ostrego(r), rozwiązać zadanie konstrukcyjne i rachunkowe zw. z okręgiem wpisanym w trójkąt (R-W) związane z wielokątami foremnymi (D-W) rozumie warunek wpisywania i opisywania okręgu na czworokącie (D), umie obliczyć długość promienia, pole lub obwód koła opisanego i wpisanego w trójkąt równoboczny o danym boku (R) związane z okręgami wpisanymi i opisanymi na wielokątach foremnych (R-W) 5

6 wielokątach foremnych Przykłady graniastosłupów. Siatki graniastosłupów. Pole powierzchni. Objętość prostopadłościanu. Jednostki objętości. Objętość graniastosłupa. Odcinki w graniastosłupach. DZIAŁ 8. GRANIASTOSŁUPY zna pojęcie graniastosłupa, prostopadłościanu, graniastosłupa prostego (K), graniastosłupa pochyłego, graniastosłupa prawidłowego (K), zna budowę graniastosłupa (K) rozumie sposób tworzenia nazw graniastosłupów (K) umie wskazać na modelu krawędzie i ściany prostopadłe i równoległe (K), umie wskazać na rysunku krawędzie i ściany prostopadłe i równoległe, umie określić ilość wierzchołków, krawędzi i ścian graniastosłupa (K-P), rysować graniastosłup prosty w rzucie równoległym (K-P), obliczyć sumę długości krawędzi graniastosłupa zna pojęcie siatki graniastosłupa, pola powierzchni graniastosłupa (K), zna wzór na obliczanie pola powierzchni graniastosłupa (K), rozumie pojęcie pola figury (K), rozumie sposób obliczania pola powierzchni jako pola siatki rozumie zasadę kreślenia siatki (K), umie kreślić siatkę graniastosłupa o podstawie trójkąta lub czworokąta (K), kreślić siatkę graniastosłupa o podstawie dowolnego wielokąta rozpoznać siatkę graniastosłupa (K-P), obliczyć pole powierzchni graniastosłupa (K-P), rozwiązać zadanie tekstowe związane z polem powierzchni graniastosłupa prostego zna wzór na obliczanie objętości prostopadłościanu i sześcianu (K), zna jednostki objętości (K), rozumie zasady zamiany jednostek objętości, rozumie pojęcie objętości figury (K) umie zamieniać jednostki objętości, obliczyć objętość prostopadłościanu i sześcianu (K-P), zna wzór na obliczanie objętości graniastosłupa (K) umie obliczyć objętość graniastosłupa (K-P),rozwiązać zadanie tekstowe związane z objętością graniastosłupa zna pojęcie przekątnej ściany graniastosłupa (K) zna pojęcie przekątnej graniastosłupa (K) związane z sumą długości krawędzi umie rozwiązać nietypowe zadanie związane z rzutem graniastosłupa (W) umie obliczyć sumę długości krawędzi graniastosłupa (R) umie kreślić siatkę graniastosłupa o podstawie dowolnego wielokąta (P-R) umie rozpoznać siatkę graniastosłupa (R-W) umie obliczyć pole powierzchni graniastosłupa (R) związane z polem powierzchni graniastosłupa prostego (R-W) umie zamieniać jednostki objętości związane z objętością prostopadłościanu (R-W) umie obliczyć objętość graniastosłupa (R) związane z objętością graniastosłupa (R-W) umie obliczyć długość przekątnej ściany graniastosłupa jako przekątnej prostokąta (R), obliczyć długość przekątnej dowolnej ściany i przekątnej graniastosłupa, rozwiązać zadanie tekstowe związane z długościami przekątnych, polem i objętością graniastosłupa (R-W) 6

7 Rodzaje ostrosłupów. Siatki ostrosłupów. Pole powierzchni. Objętość ostrosłupa. Obliczanie długości odcinków w ostrosłupach. Przekroje graniastosłupó w i ostrosłupów. DZIAŁ 9. OSTROSŁUPY zna pojęcie ostrosłupa, ostrosłupa prawidłowego (K) zna pojęcie czworościanu i czworościanu foremnego (K) zna budowę ostrosłupa (K), rozumie sposób tworzenia nazw ostrosłupów (K), umie określić ilość wierzchołków, krawędzi i ścian ostrosłupa (K-P), rysować ostrosłup w rzucie równoległym (K-P), obliczyć sumę długości krawędzi ostrosłupa zna pojęcie siatki ostrosłupa, pola powierzchni ostrosłupa (K) zna wzór na obliczanie pola powierzchni ostrosłupa (K), rozumie pojęcie pola figury (K), sposób obliczania pola powierzchni jako pola siatki, rozumie zasadę kreślenia siatki (K), umie kreślić siatkę ostrosłupa prawidłowego(k-p) rozpoznać siatkę ostrosłupa (K-P), umie obliczyć pole ostrosłupa prawidłowego (K-P), rozwiązać zadanie tekstowe związane z polem powierzchni ostrosłupa zna pojęcie wysokości ostrosłupa (K) zna wzór na obliczanie objętości ostrosłupa (K), zna jednostki objętości (K), rozumie pojęcie objętości figury (K) umie obliczyć objętość ostrosłupa (K-P), rozwiązać zadanie tekstowe związane z objętością ostrosłupa zna pojęcie wysokości ściany bocznej (K) umie wskazać trójkąt prostokątny, w którym występuje dany lub szukany odcinek (K), stosować twierdzenie Pitagorasa do wyznaczania długości odcinków zna pojęcie przekroju figury (K) umie obliczyć pole przekroju graniastosłupa i ostrosłupa umie określić rodzaj figury powstałej z przekroju bryły umie obliczyć sumę długości krawędzi ostrosłupa (R) związane z suma długości krawędzi umie kreślić siatkę ostrosłupa (R) umie rozpoznać siatkę ostrosłupa umie obliczyć pole powierzchni ostrosłupa związane z polem powierzchni ostrosłupa (R-W) umie obliczyć objętość ostrosłupa (R) rozwiązać zadanie tekstowe związane z objętością ostrosłupa (R-W), rozwiązać zadanie tekstowe związane z objętością ostrosłupa i graniastosłupa (D-W) umie stosować twierdzenie Pitagorasa do wyznaczania długości odcinków (R), rozwiązać zadanie tekstowe związane z długością pewnych odcinków, polem powierzchni i objętością ostrosłupa (R-W) umie obliczyć pole przekroju graniastosłupa lub ostrosłupa (R-W) określić rodzaj figury powstałej z przekroju bryły Czytanie danych statystycznych. Co to jest średnia? DZIAŁ 10. STATYSTYKA zna pojęcie diagramu słupkowego i kołowego, wykresu (K) zna pojęcie tabeli łodygowo listkowej, rozumie potrzebę korzystania z różnych form prezentacji informacji (K), umie odczytać informacje z tabeli, wykresu, diagramu, tabeli łodygowo listkowej (K-P), ułożyć pytania do prezentowanych danych zna pojęcie średniej (K), pojęcie mediany umie obliczyć średnią (K-P), rozwiązać zadanie tekstowe związane ze średnią umie interpretować prezentowane informacje umie prezentować dane w korzystnej formie (D) umie obliczyć średnią, obliczyć medianę związane ze średnią i medianą (R-W) Zbieranie i zna pojęcie danych statystycznych, umie opracować dane statystyczne 7

8 opracowywani e danych. Zdarzenia losowe. umie zebrać dane statystyczne (K), opracować dane statystyczne.prezentować dane statystyczne zna pojęcie zdarzenia losowego umie podać zdarzenia losowe w doświadczeniu obliczyć prawdopodobieństwo zdarzenia ocenić zdarzenia mniej/bardziej prawdopodobne, prezentować dane statystyczne zna pojęcie prawdopodobieństwa zdarzenia losowego umie podać zdarzenia losowe w doświadczeniu, obliczyć prawdopodobieństwo zdarzenia (R-W) ocenić zdarzenia mniej i bardziej prawdopodobne, zdarzenia pewne i zdarzenia niemożliwe 8

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy

Klasa II POTĘGI. Na ocenę dobrą: umie porównać potęgi sprowadzając do tej samej podstawy Klasa II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II

Wymagania edukacyjne z matematyki Klasa II Wymagania edukacyjne z matematyki Klasa II POTĘGI Dopuszczający Dostateczny Dobry (R) bardzo dobry (D) Celujący (W) zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej, KLASA II POTĘGI 1) zna i rozumie pojęcie potęgi o wykładniku naturalnym, 2) umie zapisać potęgę w postaci iloczynów, 3) umie zapisać iloczyny jednakowych czynników w postaci potęgi, 4) umie obliczyć potęgi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum

Wymagania edukacyjne z matematyki w klasie II gimnazjum Wymagania edukacyjne z matematyki w klasie II gimnazjum Dział Poziom wymagań koniecznych (na ocenę dopuszczającą) Poziom wymagań podstawowych (na ocenę dostateczną) Poziom wymagań rozszerzających (na ocenę

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 Uczeń chcąc uzyskać daną ocenę musi spełnić również wymagania na oceny niższe. Uczeń na ocenę: DOPUSZCZAJĄCY: zna i rozumie pojęcie potęgi

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

DZIAŁ 1. POTĘGI. stopień

DZIAŁ 1. POTĘGI. stopień DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI

KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. POTĘGI KRYTERIA OCENY Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki klasa II gim

Szczegółowe wymagania edukacyjne z matematyki klasa II gim Szczegółowe wymagania edukacyjne z matematyki klasa II gim POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D -

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II GIMNAZJUM( IIan1, IIan2, IIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010 POZIOMY WYMAGAŃ

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)

Bardziej szczegółowo

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI

Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. DZIAŁ I: POTĘGI I PIERWIASTKI Kryteria wymagań na poszczególne stopnie szkolne z matematyki klasa II gimnazjum. POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - ocena dopuszczająca (2) K, P - ocena dostateczna (3) K, P, R ocena dobra (4) K, P, R, D - ocena bardzo dobra

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM

WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM WYMAGANIA PROGRAMOWE DLA KLASY II GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ 1:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE klasa II

WYMAGANIA EDUKACYJNE klasa II Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa II POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Wymagania opracowano na podstawie programu: Matematyka z plusem zgodnie z obowiązującą w klasie drugiej gimnazjum podstawą programową. POZIOMY

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE DRUGIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE DRUGIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE DRUGIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.ii

Przedmiotowy system oceniania z matematyki kl.ii DZIAŁ 1. POTĘGI Matematyka klasa II - wymagania programowe zna i rozumie pojęcie potęgi o wykładniku naturalnym (K) umie zapisać potęgę w postaci iloczynu (K) umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI

KRYTERIA OCEN Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2015/2016 DZIAŁ 1. POTĘGI POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D dopełniający ocena bardzo dobra (5) W - wykraczający ocena celująca

Bardziej szczegółowo

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum W POTĘGI zna i rozumie pojęcie potęgi o wykładniku naturalnym umie obliczyć potęgę o

Bardziej szczegółowo

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY PODRĘCZNIK GWO Matematyka 2. Podręcznik

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z POZIOMEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: ocena dopuszczająca (2)

Bardziej szczegółowo

Matematyka klasa II Dział programowy: 1. Potęgi (14 h)

Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Wymagania podstawowe na ocenę: 14 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach.

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM NA ROK SZKOLNY 2017/2018 1. Ocena niedostateczna: Uczeń nie opanował wiadomości i umiejętności przewidzianych podstawą programową. Ocenę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP.168/2/2010 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM ZAKRES WYMAGAŃ EDUKACYJNYCH Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM" w roku szkolnym 2015/2016 Litery w nawiasach oznaczają kolejno: K - ocena dopuszczająca P - ocena dostateczna

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO: 4 GODZ. TYGODNIOWO 125 GODZ.

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO: 4 GODZ. TYGODNIOWO 125 GODZ. Plan realizacji materiału nauczania z matematyki w kl. 2 gimnazjum wraz z określeniem wymagań edukacyjnych zgodny z podstawą programową obowiązującą od 1 września 2009 r. OPRACOWANO NA PODSTAWIE PROGRAMU

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

Określenie wymagań edukacyjnych z matematyki w klasie II

Określenie wymagań edukacyjnych z matematyki w klasie II Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM POZIOMY WYMAGAŃ EDUKACYJNYCH: K

Bardziej szczegółowo

DZIAŁ II: PIERWIASTKI

DZIAŁ II: PIERWIASTKI Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w II klasie gimnazjum w roku szkolnym 2016/2017 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II

WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II WYMAGANIA EDUKACYJNE Z MATEMATYKI NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNEJ OCENY KLASYFIKACYJNEJ W KLASIE II Uwaga: na ocenę wyższą uczeń musi spełniać wszystkie wymagania na oceny niższe. DZIAŁ 1. POTĘGI Dopuszczający

Bardziej szczegółowo

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ

DZIAŁ 1. POTĘGI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM CELE PONADPODSTAWOWE CELE PODSTAWOWE TEMAT ZAJĘĆ Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocena dopuszczająca: Uczeń: Zna pojęcie potęgi o wykładniku naturalnym Rozumie pojęcie potęgi o wykładniku naturalnym Umie zapisać potęgi w postaci iloczynów

Bardziej szczegółowo

Wymagania programowe na poszczególne stopnie szkolne klasa 2 GIMNAZJUM

Wymagania programowe na poszczególne stopnie szkolne klasa 2 GIMNAZJUM Wymagania programowe na poszczególne stopnie szkolne klasa 2 GIMNAZJUM Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki)

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) Wymagania przedmiotowe z matematyki w klasie II gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Matematyka z plusem dla gimnazjum

Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ A,B,C,D,F WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Realizowany przez : mgr Emilię Wójcicką, mgr Małgorzatę Maniecką, mgr IzabellęKomperdę,

Bardziej szczegółowo

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI

Wymagania edukacyjne dla klasy drugiej POTĘGI I PIERWIASTKI zna pojęcie potęgi o wykładniku naturalnym i oblicza jej wartość zapisuje potęgę w postaci iloczynu zapisuje iloczyn jednakowych czynników w postaci potęgi porównuje potęgi o różnych wykładnikach naturalnych

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/2/2010

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Rok szkolny 2017/18 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocenę dopuszczający otrzymuje uczeń, który potrafi: Ocenę dostateczną otrzymuje uczeń, który potrafi: Ocenę dobrą otrzymuje uczeń, który potrafi:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA DOPUSZCZAJĄCY I DZIAŁ: POTĘGI zna pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI

PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: POTĘGI I PIERWIASTKI Ewa Koralewska LP..... 5... OGÓLNA PODSTA- WA PROGRA- MOWA PLAN WYNIKOWY Z MATEMATYKI DLA II KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Potęga

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA II GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie potęgi o wykładniku naturalnym, -wzór na mnożenie i dzielenie potęg o tych samych podstawach, -wzór na potęgowanie iloczynu

Bardziej szczegółowo

DOROTA BANIAK Zabierzów, Klasa 2c, 2e

DOROTA BANIAK Zabierzów, Klasa 2c, 2e DOROTA BANIAK Zabierzów, 1.09.2016 Klasa 2c, 2e PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu Matematyka z plusem mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu W Krakowie Wymagania edukacyjne z matematyki dla klasy II gimnazjum opracowane na podstawie programu

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Plan realizacji materiału nauczania został opracowany na podstawie programu nauczania Gdańskiego

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

ROK SZKOLNY 2012/2013

ROK SZKOLNY 2012/2013 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ROK SZKOLNY 2012/2013 OPRACOWAŁY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08

Bardziej szczegółowo

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN /08 NUMER DOPUSZCZENIA PODRĘCZNIKA 168/2/2009

OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN /08 NUMER DOPUSZCZENIA PODRĘCZNIKA 168/2/2009 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO Matematyka

Bardziej szczegółowo

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I

KLASA II WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA. Wymagania edukacyjne. dostosowane są do programu MATEMATYKA Z PLUSEM DZIAŁ I WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE MATEMATYKA Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM KLASA II DZIAŁ I POTĘGI I PIERWIASTKI Poziomy wymagań edukacyjnych: K - konieczny

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012

Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 Wymagania na poszczególne oceny z matematyki w klasie 2ab w roku szkolnym 2011/2012 POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający

Bardziej szczegółowo

Matematyka z plusem dla gimnazjum

Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU

Bardziej szczegółowo

1 Dokument pochodzi ze strony

1 Dokument pochodzi ze strony PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH klasy: 2a, 2b, 2r, rok szkolny 2013/2014 nauczyciele: Małgorzata Koba, Agata Midor OPRACOWANO

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo