KamLAND: Status and Prospects. Neutrino Geoscience 2010 Oct. 7, 2010 I. Shimizu (Tohoku Univ.)

Podobne dokumenty
Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

Reactor ν e Disappearance at KamLAND

Odkrycie oscylacji neutrin

Masywne neutrina w teorii i praktyce

Has the heat wave frequency or intensity changed in Poland since 1950?

Fizyka czastek: detektory

Inverse problems - Introduction - Probabilistic approach

Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)

Symmetry and Geometry of Generalized Higgs Sectors

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład VIII

The Overview of Civilian Applications of Airborne SAR Systems

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład IX

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Projekt SOX w poszukiwaniu neutrin sterylnych i nowych oddziaływań

Relaxation of the Cosmological Constant

poltegor - projekt sp. z o.o.

Projekt poszukiwania neutrin sterylnych w eksperymencie z krótką bazą przy użyciu detektora BOREXINO

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Łukasz Świderski. Scyntylatory do detekcji neutronów 1/xx

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

Few-fermion thermometry

M W M Z correlation. πα 1 M G F 2 = 2M 2 W 2 W

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

BULLETIN 2 II TRAINING CAMP POLISH OPEN MTBO CHAMPIONSHIPS MICHAŁOWO TRAINING CAMP WORLD MTB ORIENTEERING CHAMPIONSHIPS

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Oscylacje neutrin. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande

D. Kiełczewska. Super-Kamiokande after upgrade. Jan 2006 Copyright by Paweł Przewłocki

Extraclass. Football Men. Season 2009/10 - Autumn round

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

SPITSBERGEN HORNSUND

Model standardowy i stabilność próżni

Final LCP TWG meeting, Sewilla

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Fixtures LED HEDRION

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

Neutronowe przekroje czynne dla reaktorów IV generacji badania przy urządzeniu n_tof w CERN

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Modern methods of statistical physics

Poszukiwanie podwójnego bezneutrinowego rozpadu beta 76Ge w eksperymencie GERDA

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Development of Pulse Shape Discrimination Methods as Tools for Background Suppression in High Purity Germanium Detectors used in the GERDA Experiment

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Country fact sheet. Noise in Europe overview of policy-related data. Poland

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Astrofizyka cząstek w planach CERNu

Vacuum decay rate in the standard model and beyond

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Renewable Energy Sources

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Analiza oscylacji oraz weryfikacje eksperymentalne

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Laboratorium Technik Obrazowania

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

1945 (96,1%) backlinks currently link back (74,4%) links bear full SEO value. 0 links are set up using embedded object

archivist: Managing Data Analysis Results

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

STATISTICAL METHODS IN BIOLOGY

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

The Lorenz System and Chaos in Nonlinear DEs

Zagrożenie powodziowe na obszarach zurbanizowanych w dolnym biegu Odry

Cracow University of Economics Poland

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Inquiry Form for Magnets

CWF - Piece komorowe ogólnego przeznaczenia

SPITSBERGEN HORNSUND

Układ okresowy. Przewidywania teorii kwantowej

SPITSBERGEN HORNSUND

Convolution semigroups with linear Jacobi parameters

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII W PŁOCKU. Promienie kosmiczne - nowe wyniki, nowe interpretacje

MICROLENSING BLACK HOLES IN OGLE AND GAIA

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Discovery of. Do we throw away the energy conservation?

Tychy, plan miasta: Skala 1: (Polish Edition)

OpenPoland.net API Documentation

Employment. Number of employees employed on a contract of employment by gender in Company

AGREGATY W WERSJI CHŁODZĄCEJ I POMPY CIEPŁA

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

B IURO B ADAWCZE DS. J AKOŚCI

Gradient Coding using the Stochastic Block Model

Faculty of Environmental Engineering. St.Petersburg 2010

Working Tax Credit Child Tax Credit Jobseeker s Allowance

ARKOŃSKA BUSINESS PARK A1

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Weekly report 18/2018 Data source: MerlinX*

Transkrypt:

KamLAND: Status and Prospects Neutrino Geoscience 1 Oct. 7, 1 I. Shimizu (Tohoku Univ.)

KamLAND Collaboration A. Gando,1 Y. Gando,1 K. Ichimura,1 H. Ikeda,1 K. Inoue,1, Y. Kibe,1, Y. Kishimoto,1 M. Koga,1, Y. Minekawa,1 T. Mitsui,1 T. Morikawa,1 N. Nagai,1 K. Nakajima,1 K. Nakamura,1, K. Narita,1 I. Shimizu,1 Y. Shimizu,1 J. Shirai,1 F. Suekane,1 A. Suzuki,1 H. Takahashi,1 N. Takahashi,1 Y. Takemoto,1 K. Tamae,1 H. Watanabe,1 B.D. Xu,1 H. Yabumoto,1 H. Yoshida,1 S. Yoshida,1 S. Enomoto,, y A. Kozlov, H. Murayama,, 3 C. Grant,4 G. Keefer,4, z A. Piepke,, 4 T.I. Banks,3 T. Bloxham,3 J.A. Detwiler,3 S.J. Freedman,, 3 B.K. Fujikawa,, 3 K. Han,3 R. Kadel,3 T. OʼDonnell,3 H.M. Steiner,3 D.A. Dwyer,5 R.D. McKeown,5 C. Zhang,5 B.E. Berger,6 C.E. Lane,7 J. Maricic,7 T. Miletic,7, x M. Batygov,8, { J.G. Learned,8 S. Matsuno,8 M. Sakai,8 G.A. Horton-Smith,, 9 K.E. Downum,1 G. Gratta,1 Y. Efremenko,, 11 O. Perevozchikov,11, H.J. Karwowski,1 D.M. Markoff,1 W. Tornow,1 K.M. Heeger,, 13 and M.P. Decowski, 14 1Research Center for Neutrino Science, Tohoku University, Sendai 98-8578, Japan Institute for the Physics and Mathematics of the Universe, Tokyo University, Kashiwa 77-8568, Japan 3Physics Department, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 947, USA 4Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA 5W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 9115, USA 6Department of Physics, Colorado State University, Fort Collins, Colorado 853, USA 7Physics Department, Drexel University, Philadelphia, Pennsylvania 1914, USA 8Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 968, USA 9Department of Physics, Kansas State University, Manhattan, Kansas 6656, USA 1Physics Department, Stanford University, Stanford, California 9435, USA 11Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 1Triangle Universities Nuclear Laboratory, Durham, North Carolina 778, USA and Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill 13Department of Physics, University of Wisconsin, Madison, Wisconsin 5376, USA 14Nikhef, Science Park 15, 198 XG Amsterdam, the Netherlands

KamLAND Experiment Earth Anti-Neutrino Detector Reactor Inner tank 1, ton LS Outer water tank 34% photo-coverage with 135 17 and 554 PMTs Kamioka ~ 18 km baseline flavor neutrino oscillation most sensitive region P (ν e ν e )=1 sin θ sin ( 1.7Δm [ev ]l[m] ) E[MeV] Δm =(1/1.7) (E[MeV]/L[m]) (π/) 3 1 5 ev reactor neutrino : sensitive to LMA solution geo neutrino : U and Th decays inside the Earth

KamLAND Kamioka Liquid Scintillator Anti-Neutrino Detector 1, ton Liquid Scintillator inverse beta-decay γ e + ν e p mean capture time ~ μsec on proton prompt γ n Pseudocumene (%) Dodecane (8%) PPO (1.5 g/l) delayed γ 1,35 17 inch + 554 inch PMTs commissioned in February, 3 photocathode coverage : % 34% Water Cherenkov Outer Detector

Physics Target in KamLAND observed energy (MeV) solar neutrino geo neutrino reactor neutrino supernova neutrino Jun. 1 preliminary new result Sep. 1 new result (hep-ex/19.4771) solar neutrino ν x e - ν x reactor neutrino geo neutrino γ e + ν e p prompt γ delayed e - mean capture time ~ μsec on proton n γ neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

Geologically Produced Antineutrinos Antineutrino Flux Number of anti-neutrinos per MeV per parent 1 1 38 U series 3 Th series 1 1-1 1 - beta-decay.5 1 1.5.5 3 3.5 Anti-neutrino energy, E (MeV) 38 U 6 Pb+8 4 He+6e +6 ν e +51.7 MeV (1%) 3 Th 8 Pb + 6 4 He+4e +4 ν e +4.7 MeV (1%) 4 K 4 Ca + e + ν e +1.31 MeV (89.8%) 4 K+e 4 Ar + ν e +1.51MeV(1.7%) 4 K Window for KamLAND

UCC U :.8 ppm / Th : 1.7 ppm MCC U : 1.6 ppm / Th : 6.1 ppm LCC U :. ppm / Th : 1. ppm continental crust Reference Earth Model Rudnick et al. (1995) oceanic crust U :.1 ppm / Th :. ppm chondrite meteorite { mantle U :.1 ppm / Th :.48 ppm { core Th/U ~ 3.9 radiogenic heat ~ 16 TW U : ppm / Th : ppm no U/Th in core Mantle = BSE (Primitive Mantle) Crust

Cumulative flux (1/cm /sec) Distance and Cumulative Flux 4 3 1 1 6 sediment crust mantle total 1 1 1 1 1 3 1 4 Distance from KamLAND (km) neutrino oscillation km P (E,L) 1 1 sin θ 1 Total Crust Mantle 5% of the total flux originates within 5 km 1 8 6 4 Sediment (constant suppression) Percentage of total (%)

Radio-purity Upgrade in Geo Neutrino Purification system in Kamioka mine in 6 LS distillation ~ 1.5 kilo-liter / hour Events /.17MeV 3 5 15 KamLAND 5 16 TW U/Th 1 B.G. total (α, n) 5 accidental Th Events /.17MeV 15 1 4 6 8 Anti-neutrino energy, E (MeV) 1.8..4.6.8 3 3. 3.4 Anti-neutrino energy, E (MeV) 5 reactor α-source Distillation 1 Pb (Bi, Po), 4 K, 38 U, 3 Th,... N purge 85 Kr, 39 Ar,... U remove (α, n) BG to get higher S/N

Purification Process Top filling case in nd purification LS filling purification system 1st purification : Apr. 17, 7 ~ Aug. 1, 7 nd purification : Jun. 19, 8 ~ Feb. 9, 9 purified volume 1699 m 3 4856 m 3 ~5.6 times circulation in total In the nd purification, we succeeded in keeping the LS boundary by the precise density control

events/5kev/α-decay -7 1 13 C(α, n) 16 O α natural abundance 1.1% 1 Po 4 3 1 Q =.MeV 13 C 1 C n 16 O prompt γ (4.4MeV) 1 C(n, nγ) 1 C KamLAND data ground state e + e + + Background Estimation prompt γ (6.1MeV) or e + e - (6.MeV) recoil proton 16 p O delayed n γ (.MeV) 3 619.9 kev(nd excited state) + 649.4 kev(1st excited state) γ O 1 3 4 5 6 7 8 (MeV) E visible d 1st excited state nd excited state. kev( ) 16 1 1 * 4438.9 kev γ C(n,n) C 6.13MeV 3-6.49MeV + in-situ calibration with 1 Po 13 C + LS purification 1st nd 7. 5 ~ 8. 7 ~ 1 Po 14 Bi 85 Kr (1) dominant BG source (α, n) has been reduced by down to ~ 1 / () determination of the cross section is improved by in-situ calibration uncertainty: 11% for ground state

Stability of Event Reconstruction Time variation of 6 Co/ 68 Ge energy Time variation of 1 B/ 1 N event ratio Z dependence of energy deviation Z dependence of vertex deviation

Data-set Systematic Uncertainty (DS-1) Mar. 9, - May 1, 7 (pre-purification data-set) (DS-) May 1, 7 - Nov. 4, 9 (post-purification data-set) Detector related no full volume calibration in DS- Reactor related livetime 1486 days 649 days 135 days Fiducial volume 1.8% /.5% νe spectra.4% /.4% Energy scale 1.1% / 1.3% Reactor power.1% /.1% L-selection eff..7% /.8% Fuel composition 1.% / 1.% OD veto.5% /.5% Long-lived nuclei.3% /.4% Cross section.% /.% Time lag.1% /.1%.3% / 3.% 3.3% / 3.4% Total systematic uncertainty (DS-1 / DS-) : 4.1% / 4.5%

Reactor Neutrino Status

Observed Energy Spectrum:.9 MeV - 8.5 MeV geo neutrinos Efficiency (%) Events/.45MeV 1 8 6 35 3 5 15 1 5 exposure : 416 ton-year (1.4 881 ton-year for KamLAND 8 ) Selection efficiency KamLAND data no-oscillation best-fit osci. accidental 13 16 C(,n) O best-fit Geo e best-fit osci. + BG + best-fit Geo e 1 3 4 5 6 7 8 E p (MeV) Geo + Reactor combined analysis No osci. expected Background (w/o geo neutrino) Observed events 3-flavor best-fit Geo-neutrinos from U and Th are unconstrained 879 ± 118 36 ± 6 16 tan +.1 θ 1 =.436.81 +. Δm 1= 7.49. 1-5 ev sin +.37 θ 13 =.3.37 free parameter : geo neutrinos (U, Th) = (8, 6) events

L/E plot P = (observed - B.G.) / (no osci. expected) 1 L : a fixed baseline (18 km) Survival Probability.8.6.4. 3- best-fit oscillation Data - BG - Geo e - best-fit oscillation 3 4 5 6 7 8 9 1 11 L /E e (km/mev) KamLAND data covers almost cycle of oscillation characteristic of neutrino oscillation

KamLAND: 3-flavor oscillation analysis survival probability P 3ν ee = cos 4 θ 13 P ν e'e' + sin 4 θ 13 matter effect electron density N e' N e cos θ 13 atmospheric oscillation length is completely averaged out Δm 31 anti-correlation 13 sin..18.16.14.1.1.8 KamLAND+Solar 95% C.L. 99% C.L. 99.73% C.L. best-fit KamLAND Solar 95% C.L. 99% C.L. 99.73% C.L. best-fit 95% C.L. 99% C.L. 99.73% C.L. best-fit +.19 Δm = 7.5 1-5 ev 1..6.4 1. Survival Probability.8.6.4. 3- best-fit oscillation Data - BG - Geo e - best-fit oscillation 3 4 5 6 7 8 9 1 11 L /E e (km/mev).1..3.4.5.6.7.8.9 1 Best-Fit tan 1 KamLAND only tan θ1 =.436 +.1.81 +.37.37 sin θ13 =.3 (<.94 at 9% C.L.)

4 3 1 4 3 1 Oscillation Parameters: - and 3-flavor ) ev -4 (1 1 m 15 1 5 1.8 1.6 1.4 1. 1.8 (a) -flavor analysis KamLAND+Solar KamLAND 95% C.L. 95% C.L. 99% C.L. 99.73% C.L. best-fit 4 3 1 99% C.L. 99.73% C.L. best-fit Solar 95% C.L. 99% C.L. 99.73% C.L. best-fit ) ev -4 (1 1 m 15 1 5 1.8 1.6 1.4 1. 1.8 (b) 3-flavor analysis KamLAND+Solar KamLAND 95% C.L. 95% C.L. 99% C.L. 99.73% C.L. best fit 99% C.L. 99.73% C.L. best fit Solar 95% C.L. 99% C.L. 99.73% C.L. best fit 4 3 1.6.4 13 =.6.4 13 free.1..3.4.5.6.7.8.9 1 tan 1 solar + KamLAND 5 1 15 +.19 Δm 1 = 7.5. 1-5 ev tan θ1 =.446 +.34.31 same result for Δm.1..3.4.5.6.7.8.9 1 tan 1 solar + KamLAND 5 1 15 +.19 Δm 1 = 7.5. 1-5 ev tan θ1 =.45 +.37.31 sin θ13 =. +.16.16

Geo Neutrino Status (Preliminary)

+ BG Rate (Events/Day) Reactor e Event rate time variation:.9 MeV -.6 MeV.6.5.4.3..1 expected event rate (best-fit oscillation, BG estimation, Earth Model) (A) pre-purification expected reactor observed update reactor + non-ν BG + geo-neutrino reactor + non-ν BG preliminary 3 4 5 6 7 8 9 Date Observed Rate (Events/Day).6.5.4.3..1 (B) correlation preliminary best-fit reactor + non-ν BG + geo-neutrino reactor + non-ν BG.1..3.4.5.6 Expected Rate (Events/Day) Constant contribution above the estimated reactor neutrino + non-neutrino background in.9 < E <.6 MeV region Time information is useful to extract the geo neutrino signal

Observed Energy Spectrum:.9 MeV -.6 MeV Events /. MeV Efficiency (%) 1 8 6 4 4 16 14 1 1 8 6 4 416 ton-yr data-set (135 days) preliminary KamLAND data 1 1. 1.4 1.6 1.8..4.6 E p (MeV) Rate + Shape + Time analysis E p best-fit (U, Th) = (65, 33) Selection efficiency for Geo e Data - BG - best-fit Rea. e Reference Geo e best-fit Reactor e accidental 13 16 O C(,n) best-fit Geo e best-fit Reactor e + best-fit Geo e estimated fitted + BG w/ solar osci. constraint Rate analysis (.9 < E <.6 MeV) 841 candidates 9 Li. ±.1 Accidental 77.4 ±.1 Fast neutron <.8 (α, n) 165.3 ± 18. Reactor ν 484.7 ± 6.5 BG total 79.4 ± 3.3 +45 excess 111 events 43 Null signal exclusion (rate) 99.55% C.L.

Rate + Shape + Time analysis best-fit (U, Th) = (65, 33) U/Th mass ratio fixed Th/U = 3.9 earth model prediction EPSL 58, 147 (7) N Th 15 1 68.3% C.L. 95.4% C.L. 99.7% C.L. (A) preliminary earth model prediction EPSL 58, 147 (7) 15 1 preliminary (B) 4 model w/o neutrino osc. 3 ratio fixed 5 5 5 1 15 N U signal is rejected at 99.997% C.L. (> 4σ C.L.) 5 1 15 5 N U + N Th +9 Ngeo = 16 8 events 1 +1. Fgeo = 4.3 1.1 1 6 /cm /sec +1.3 (38.3 9.9 TNU)

Radiogenic Heat and Flux s -1 ) - Flux (cm e 1 1 1 8 6 4 6 BSE model (16 TW) crust mantle crust + mantle Kamioka Gran Sasso Hawaii fully radiogenic 1 3 4 Radiogenic Heat Production (TW) Fully-radiogenic model KamLAND preliminary Borexino crust mantle Kamioka Gran Sasso Hawaii fully-radiogenic model EPSL 58, 147 (7) crust ( 38 U, 3 Th) 7. TW 4 K, 35 U 3.5 TW mantle (44. 7. 3.5) TW uniform mantle mantle bottom only earth model prediction EPSL 58, 147 (7) 38 U, 3 Th 16 TW 4 K, 35 U 3.5 TW Multi-site measurements have just started! Fully-radiogenic model Radiogenic heat production = Surface heat flow (scale U and Th amount in mantle assuming fixed crustal contribution)

Test of Fully-Radiogenic Model s -1 ) - Flux (cm e 1 1 1 8 6 4 6 KamLAND preliminary Borexino mantle fully-radiogenic model EPSL 58, 147 (7) crust ( 38 U, 3 Th) 7. TW 4 K, 35 U 3.5 TW mantle (44. 7. 3.5) TW uniform mantle mantle bottom only crust Kamioka Gran Sasso v Hawaii earth model prediction EPSL 58, 147 (7) 38 U, 3 Th 16 TW 4 K, 35 U 3.5 TW The observed flux is consistent with the 16 TW model prediction Fully-radiogenic models start to be disfavored KamLAND only.4σ C.L. KamLAND + Borexino.3σ C.L.

Future Prospects

KamLAND-Zen Experiment KamLAND-Zen test balloon in water R. S. Raghavan PRL7 1411 (1994) Xenon loaded LS decane 8.3% pseudo-cumene 17.7% PPO.7 g/liter Xenon 3. wt% 4 kg 136 Xe loaded Why use Xe? reactor & geo neutrino measurements continue KamLAND LS dodecane 8% pseudo-cumene % PPO 1.36 g/liter - Isotopic enrichment, purification established - Soluble to LS more than 3 wt%, easily extracted - Slow νββ (T1/ > 1 years) requires modest energy resolution neutrino-less double beta decay search with 136 Xe LS Zero Neutrino Double Beta ν ν νββ 136 Xe

KamLAND-Zen Experiment KamLAND-Zen chimney enlargement capability to accommodate CANDLES, CdWO4, NaI and others LS renewal KL LS 8, photon/mev standard LS 1, photon/mev x1.4 > sensitivity (9%C.L.) [mev] <m 3 1 1 1, kg 136 Xe loaded ~ 5 mev KKDC claim inverted hierarchy 1 11 1 13 14 15 16 1 Year 17 PMT PMT ~ mev 17 136 KamLAND ( Xe, 4kg) 136 KamLAND ( Xe, 1kg) 15 SNO+ ( Nd), 56kg 48 CANDLES III ( Ca 3g) 48 CANDLES IV ( Ca 3kg) 1 NEMO-3 ( Mo 7kg) 15 8 SuperNEMO ( Nd or Se 1-) 76 MAJORANA ( Ge), 3-6kg 76 GERDA phasei( Ge:17.66kg) 76 GERDA phaseii( Ge:37.5kg) 76 GERDA phaseiii + MAJORANA( Ge:~8kg) 13 CUORE- ( Te ~1kg) 13 CUORE ( Te 4kg) 136 EXO- ( Xe kg) 136 EXO ( Xe 1t) Winstone Cone photo-coverage > x photon collection > x1.8 target sensitivity ~ mev / 5 years KamLAND-Zen (4 kg 136 Xe) + KamLAND-Zen (1, kg 136 Xe) w/ improved energy resolution useful also for geo neutrino measurement

Time Line of KamLAND and KamLAND-Zen item FY 9 1 11 1 13 14 15 136 Xe enrichment (9%) Mini balloon 14 kg 6 kg 3 kg 3 kg total 14 kg total 4 kg total 7 kg total 1 kg film survey rehearsal production rehearsal production Peripheral R&D installation Others Mirror R&D Physics targets high performance LS R&D 16 event expected (16 TW) 1st phase νβ 4 kg KamLAND upgrade & regal inspection nd phase ~ event expected (16 TW) νβ 1 kg Reactor neutrinos Geo-neutrinos Reactor neutrinos Geo-neutrinos Solar neutrinos

Super-KamLAND(-Zen) Experiment Super-KamLAND-Zen Toward further improvement of KamLAND-Zen - Increase the pressure of Xe x4 at 3 m depth - Increase number of photo electrons x3.3 - Reduce 1 C BG by multiple vertex identification 1/1 reduction - Target 136 Xe mass 4 kg 4 tons x1 $M (highest cost) sensitivity ~ 7.6 mev normal hierarchy? 1 ~ 5 mev Super-KamLAND 5 kton LS Another possibility is high statistics LS detector geo neutrino ~ 1 events / 5 kton / yr flux at < 1% accuracy but... effect from local geology ~ 1% s -1 ) - Flux (cm e 1 1 KamLAND 1 8 6 4 6 preliminary Borexino mantle precise subtraction of the crustal contribution is more important crust Kamioka Gran Sasso Hawaii

data-set : 881 ton-yr 416 ton-yr Summary Anti-neutrino results in KamLAND are improved. improved radio-purify by LS purification Geo-neutrino (preliminary result) reactor power reduction (α, n) B.G. reduction ~ 1 / Reactor-neutrino (available at hep-ex/19.4771) - Three-flavor oscillation analysis is presented solar + KamLAND Δm +.19 tan θ1 =.45 +.37.31 = 7.5 1-5 ev (3-flavor) sin θ13 =. +.16.16. - Observed flux is fully consistent with Earth model - Fully-radiogenic model starts to be disfavored Observed geo-neutrino event flux +9 16 8 events +1. 4.3 1.1 1 6 /cm /sec (mass Th/U = 3.9)

Multi-site measurements have just started! Multi-site measurements and/or a measurement on the oceanic crust (e.g. Hawaii) will be important to advance neutrino geophysics. Future Prospects KamLAND-Zen starts in 11 with 4 kg 136 Xe, aiming at the effective mass ~ 5 mev. KamLAND, KamLAND-Zen,... experiments will continue to measure the geo neutrino flux including future detector improvements.