PROGRAM KSZTAŁCENIA dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim

Podobne dokumenty
Automatyka i Robotyka. I stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis

Kierunkowy efekt kształcenia opis

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

Dziedzina nauk inżynieryjno-technicznych, Dyscyplina automatyka, elektronika i elektrotechnika

Elektrotechnika. I stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA

PROGRAM KSZTAŁCENIA dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim

Zakładane efekty kształcenia dla kierunku

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

Tabela odniesień efektów kierunkowych do efektów obszarowych

Odniesienie do obszarowych efektów kształcenia Kierunkowe efekty kształcenia WIEDZA (W)

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Automatyka i Robotyka

PROGRAM KSZTAŁCENIA dla kierunku Elektronika i Telekomunikacja studiów I stopnia o profilu ogólnoakademickim

Umiejscowienie kierunku w obszarze kształcenia

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW TRANSPORT STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

Uchwała Nr 27/2012/IV Senatu Politechniki Lubelskiej z dnia 24 maja 2012 r.

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIE OCHRONY ŚRODOWISKA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku

Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol

Efekty kształcenia dla kierunku inżynieria środowiska

AUTOMATYKA i ROBOTYKA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK INŻYNIERIA CHEMICZNA I PROCESOWA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ

OPIS EFEKTÓW KSZTAŁCENIA W OBSZARZE KSZTAŁCENIA W ZAKRESIE NAUK TECHNICZNYCH. Profil ogólnoakademicki. Wiedza

Załącznik 2 Tabela odniesień efektów kierunkowych do efektów obszarowych

Efekty kształcenia Dla kierunku Inżynieria Bezpieczeństwa

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

2) opisu i analizy działania systemów elektronicznych, w tym systemów zawierających układy programowalne;

WYDZIAŁ TRANSPORTU I INFORMATYKI INFORMATYKA I STOPIEŃ PRAKTYCZNY

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami. Kierunkowy efekt kształcenia - opis

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE WYDZIAŁ TECHNICZNY EFEKTY KSZTAŁCENIA. Kierunek studiów INŻYNIERIA ŚRODOWISKA

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka

Uchwała Nr 28/2012/IV Senatu Politechniki Lubelskiej z dnia 24 maja 2012 r.

ZAKŁADANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Transport

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia)

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW. TRANSPORT studia stacjonarne i niestacjonarne

Automatyka i Robotyka, studia I stopnia (profil ogólnoakademicki)

Automatyka i Robotyka, studia II stopnia (profil ogólnoakademicki)

Uchwała Nr 34/2012/V Senatu Politechniki Lubelskiej z dnia 21 czerwca 2012 r.

Kierunkowy efekt kształcenia - opis WIEDZA

Control, Electronic, and Information Engineering

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIA CHEMICZNA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI

Po ukończeniu studiów pierwszego stopnia na kierunku studiów elektronika i telekomunikacja absolwent:

Uchwała Nr 4/2014/I Senatu Politechniki Lubelskiej z dnia 23 stycznia 2014 r.

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.

Opis efektów kształcenia dla studiów podyplomowych

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW: ELEKTRONIKA i TELEKOMUNIKACJA STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI

Umiejscowienie kierunku w obszarze kształcenia

KIERUNKOWE EFEKTY KSZTAŁCENIA

Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach

KIERUNKOWE EFEKTY KSZTAŁCENIA

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Automatyka i Robotyka

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych, technicznych i inżynierskich

PROGRAM KSZTAŁCENIA dla kierunku ELEKTROTECHNIKA studiów I stopnia o profilu ogólnoakademickim

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia dla kierunku Energetyka komunalna profil praktyczny - pierwszego stopnia

Uchwała Nr 000-2/6/2013 Senatu Uniwersytetu Technologiczno-Humanistycznego im. Kazimierza Pułaskiego w Radomiu z dnia 21 marca 2013 r.

Automatyka i Robotyka. II stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA

KIERUNKOWE EFEKTY KSZTAŁCENIA

ELEKTRONIKA I TELEKOMUNIKACJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W KONINIE ZAMIEJSCOWY WYDZIAŁ BUDOWNICTWA I INSTALACJI KOMUNALNYCH W TURKU EFEKTY KSZTAŁCENIA

OPIS EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW I N F O R M A T Y K A STUDIA PIERWSZEGO STOPNIA PROFIL PRAKTYCZNY

OPIS EFEKTÓW KSZTAŁCENIA DLA KIERUNKU STUDIÓW M E C H A N I K A I B U D O W A M A S Z Y N STUDIA PIERWSZEGO STOPNIA PROFIL PRAKTYCZNY

Program kształcenia na studiach I stopnia kierunku "Informatyka"

Kierunkowe efekty kształcenia wraz z odniesieniem do efektów obszarowych. Elektrotechnika studia I stopnia

PROGRAM KSZTAŁCENIA dla kierunku Elektrotechnika studiów I stopnia o profilu ogólnoakademickim studia niestacjonarne

Efekty kształcenia dla kierunku Mechanika i budowa maszyn

WYDZIAŁ TRANSPORTU I INFORMATYKI MECHANIKA I BUDOWA MASZYN I STOPIEŃ PRAKTYCZNY

Informatyka. II stopień. Ogólnoakademicki. Stacjonarne/Niestacjonarne. Kierunkowy efekt kształcenia - opis WIEDZA

Zakładane efekty kształcenia dla kierunku

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW AUTOMATYKA I ROBOTYKA

Zakładane efekty kształcenia dla kierunku

Tabela odniesień efektów kierunkowych do efektów obszarowych

MACIERZ POWIĄZANIA OBSZAROWYCH EFEKTÓW KSZTAŁCENIA Z KIERUNKOWYMI EFEKTAMI KSZTAŁCENIA

W kategoria wiedzy U kategoria umiejętności K kategoria kompetencji społecznych 01, 02, 03, i kolejne numer efektu kształcenia

UCHWAŁA Nr 56/VI/II/2016 SENATU PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W KONINIE z dnia 23 lutego 2016 r.

Efekty kształcenia dla makrokierunku: INFORMATYKA STOSOWANA Z KOMPUTEROWĄ NAUKĄ O MATERIAŁACH Wydział: MECHANICZNY TECHNOLOGICZNY

Kierunkowe efekty kształcenia Po ukończeniu studiów absolwent :

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ENERGETYKA

EFEKTY KSZTŁACENIA dla kierunku logistyka pierwszego stopnia

Uchwała Nr 36/2012 Senatu Politechniki Rzeszowskiej im. Ignacego Łukasiewicza z dnia 21 czerwca 2012 r.

I. OGÓLNA CHARAKTERYSTYKA PROWADZONYCH STUDIÓW. Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Forma studiów:

Efekty kształcenia dla: nazwa kierunku

PLANOWANE EFEKTY KSZTAŁCENIA DLA KIERUNKU Inżynieria Biomedyczna

PROGRAM KSZTAŁCENIA dla kierunku ELEKTROTECHNIKA studiów II stopnia o profilu ogólnoakademickim

UCHWAŁA NR 28/2017 SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 23 marca 2017 roku

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW AUTOMATYKA I ROBOTYKA STUDIA PIERWSZEGO STOPNIA PROFIL PRAKTYCZNY

Opis zakładanych efektów kształcenia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia

Opis efektu kształcenia dla programu kształcenia

6 C2A_W02_03 Ma wiedzę z zakresu logistyki produktów przerobu ropy naftowej i produktów polimerowych.

zakładane efekty kształcenia

Transkrypt:

PROGRAM KSZTAŁCENIA dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim Program kształcenia dla określonego kierunku, poziomu studiów i profilu kształcenia obejmuje opis zakładanych efektów kształcenia oraz program studiów, stanowiący opis procesu kształcenia prowadzącego do uzyskania tych efektów. ( 2 Rozporządzenia MNiSW z dnia 3 października 2014 r. w sprawie warunków prowadzenia studiów na określonym kierunku i poziomie kształcenia) OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA Symbol K_W01 K_W02 K_W03 K_W04 Efekty kształcenia dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim, kończących się uzyskaniem tytułu inżyniera Po ukończeniu studiów absolwent: Wiedza posiada wiedzę w zakresie matematyki, obejmującą analizę matematyczną, algebrę liniową, statystykę matematyczną oraz funkcje zmiennej zespolonej, niezbędną do: (a) opisu i analizy ciągłych i dyskretnych układów dynamicznych, (b) analizy wyników eksperymentu, (c) opisu i analizy działania obwodów elektrycznych oraz analogowych i cyfrowych układów elektronicznych, (d) rozwiązywania zadań mechaniki ogólnej, obejmującą kinematykę i dynamikę ma elementarną wiedzę w zakresie matematyki stosowanej obejmującą modelowanie matematyczne, metody numeryczne oraz techniki symulacji stosowane powszechnie do rozwiązywania zadań inżynierskich ma wiedzę w zakresie fizyki, obejmującą mechanikę, termodynamikę, optykę, elektryczność i magnetyzm oraz fizykę ciała stałego, w tym wiedzę niezbędną do zrozumienia podstawowych zjawisk fizycznych występujących w układach sterowania oraz w ich otoczeniu w zakresie reprezentacji sygnałów oraz ciągłych i dyskretnych systemów dynamicznych, zarówno w dziedzinie czasu, jak i częstotliwości Odniesienie do efektów kształcenia w obszarze nauk technicznych T1A_W01 T1A_W01 T1A_W03 K_W05 zna i rozumie podstawowe pojęcia i ma elementarną

K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 wiedzę w zakresie budowy i funkcjonowania systemów operacyjnych oraz programowania w językach niskiego i wysokiego poziomu ma elementarną wiedzę w zakresie budowy i funkcjonowania procesorów, komputerów i sieci komputerowych w zakresie podstaw elektrotechniki, w tym wiedzę o podstawowych zjawiskach, prawach, wielkościach i jednostkach niezbędną do analizy obwodów elektrycznych prądu stałego i sinusoidalnie zmiennego ma podstawową wiedzę z zakresu elektroniki niezbędną do analizy działania oraz do projektowania prostych układów elektronicznych ma podstawową wiedzę o metodach, przyrządach i systemach pomiarowych do pomiaru wybranych wielkości elektrycznych i nieelektrycznych ma elementarną wiedzę dotyczącą funkcji, topologii, właściwości i zastosowań podstawowych przekształtników energoelektronicznych typu AC/DC, DC/DC, AC/AC oraz DC/AC ma wiedzę o podstawowych rodzajach i strukturach układów regulacji automatycznej: (a) rozumie potrzebę konstruowania opisu matematycznego systemu na potrzeby projektowania układów regulacji, (b) posiada elementarną wiedzę w zakresie metod projektowania układów regulacji, (c) rozumie podstawowe zagadnienia związane ze sterowaniem procesami dyskretnymi i ciągłymi w zakresie współczesnych robotów przemysłowych: (a) charakteryzuje podstawowe układy napędowe i sensoryczne robotów przemysłowych, (b) rozumie ograniczenia związane z funkcjonowaniem robotów przemysłowych, (c) posiada wiedzę o typowych zastosowaniach robotów w przemyśle ma ugruntowaną wiedzę w zakresie zastosowania typowego oprogramowania i oprzyrządowania wykorzystywanego do projektowania układów automatyki: (a) posiada elementarną wiedzę w zakresie programowalnych sterowników logicznych (PLC), (b) zna podstawowe charakterystyki elektromechaniczne i typowe przeznaczenie maszyn elektrycznych, (c) zna programowe narzędzia inżynierskie umożliwiające weryfikację funkcjonowania układów sterowania ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie kwantowania i próbkowania T1A_W03, T1A_W07 T1A_W03, T1A_W03, T1A_W07 T1A_W03

K_W15 K_W16 K_W17 K_W18 K_W19 K_W20 K_W21 K_W22 K_U01 K_U02 K_U03 K_U04 K_U05 sygnałów, algorytmów sterowania cyfrowego, w tym cyfrowych regulatorów PID, oraz implementacji układów regulacji ze sprzężeniem od stanu i układów z obserwatorami stanu ma uporządkowaną wiedzę ogólną w zakresie urządzeń automatyki przemysłowej i sieci przemysłowych, znając ich systematykę, stosowane standardy oraz symbole stosowane do ich przedstawiania w zakresie formułowania problemów decyzyjnych, technik przeszukiwań prostych, heurystycznych i metaheurystycznych, oraz systemów ekspertowych i obliczeń inteligentnych posiada specjalistyczną wiedzę w zakresie wybranej specjalności orientuje się w obecnym stanie oraz najnowszych trendach rozwojowych automatyki i robotyki ma podstawową wiedzę niezbędną do zrozumienia społecznych, ekonomicznych, prawnych i innych pozatechnicznych uwarunkowań działalności inżynierskiej ma elementarną wiedzę w zakresie ochrony własności intelektualnej oraz prawa patentowego ma elementarną wiedzę w zakresie zarządzania, w tym zarządzania jakością, i prowadzenia działalności gospodarczej zna ogólne zasady tworzenia i rozwoju form indywidualnej przedsiębiorczości Umiejętności potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł, integrować je w celu interpretacji a także wyciągać wnioski i formułować opinie potrafi opracować dokumentację oraz prezentację ustną dotyczącą realizacji zadania inżynierskiego, wykorzystując do tego celu odpowiednie techniki informacyjno-komunikacyjne ma umiejętność samokształcenia się, m.in. w celu podnoszenia kompetencji zawodowych posługuje się językiem angielskim w stopniu pozwalającym na porozumienie się, przeczytanie ze zrozumieniem prostych tekstów technicznych oraz instrukcji obsługi sprzętu i oprogramowania T1A_U06 potrafi posługiwać się właściwie dobranymi aplikacjami, środowiskami programistycznymi oraz symulatorami do T1A_W03, T1A_W06 T1A_W04 T1A_W08 T1A_W10 T1A_W09 T1A_W11 T1A_U01 T1A_U04, T1A_U07 T1A_U05 T1A_U06 T1A_U08, T1A_U09

K_U06 K_U07 K_U08 K_U09 K_U10 K_U11 K_U12 K_U13 K_U14 K_U15 K_U16 K_U17 obliczeń inżynierskich, syntezy i analizy modeli obiektów, układów cyfrowych i analogowych potrafi dokonać analizy i przetwarzania sygnałów oraz analizy systemów dynamicznych w dziedzinie czasu i częstotliwości, wykorzystując odpowiednie narzędzia sprzętowe i programowe potrafi projektować proste układy cyfrowe oraz skonfigurować sprzęt komputerowy i urządzenia sieci komputerowej potrafi programować w językach niskiego i wysokiego poziomu oraz analizować i konfigurować wybrane systemy operacyjne potrafi dobierać i stosować elementy elektroniczne i układy scalone do budowy prostych układów elektronicznych potrafi zrealizować pomiary wybranych wielkości elektrycznych, opracować wyniki pomiarów, określić błędy i niepewności pomiarów potrafi zbadać podstawowe właściwości obiektu sterowania, a w szczególności umie sprawdzić stabilność, sterowalność i obserwowalność systemów liniowych umie zastosować wybrane techniki projektowania regulatorów i dokonać oceny jakości ich funkcjonowania potrafi rozwiązywać podstawowe zagadnienia związane z eksploatacją robotów przemysłowych: (a) potrafi rozwiązywać zadanie kinematyki prostej i odwrotnej dla typowych manipulatorów przemysłowych, (b) potrafi zastosować typowe języki i sposoby programowania robotów, (c) zna i stosuje zasady bezpieczeństwa związane z zastosowaniem robotów potrafi zaprojektować prosty układ sterowania z zastosowaniem programowalnych sterowników logicznych (PLC): (a) umie zastosować podstawowe struktury i języki umożliwiające opis funkcjonowania PLC, (b) potrafi zweryfikować poprawność opisu funkcjonalności prostego układu sterowania potrafi projektować cyfrowe układy regulacji automatycznej, dobierać regulatory, czujniki pomiarowe i urządzenia wykonawcze potrafi stosować oprogramowanie wspomagające, np. Matlab Control System Toolbox oraz Simulink, w zadaniach projektowania układów sterowania potrafi wyspecyfikować problem decyzyjny, ocenić przydatność metod i istniejących narzędzi sztucznej T1A_U09, T1A_U13 T1A_U16 T1A_U16 T1A_U14, T1A_U16 T1A_U08 T1A_U09 T1A_U15, T1A_U16 T1A_U13, T1A_U14 T1A_U13, T1A_U16 T1A_U09, T1A_U16 T1A_U09, T1A_U16 T1A_U09

K_U18 K_U19 K_U20 K_U21 K_U22 inteligencji do jego rozwiązania, oraz zaprojektować i zaimplementować prosty system wspomagania decyzji potrafi wykorzystać specjalistyczną wiedzę do rozwiązywania prostych zadań związanych z wybraną specjalnością podczas formułowania i rozwiązywania zadań obejmujących projektowanie elementów, układów i systemów automatyki potrafi dostrzegać ich aspekty pozatechniczne, w tym środowiskowe, ekonomiczne i prawne stosuje zasady bezpieczeństwa i higieny pracy obowiązujące w przemyśle potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązywania prostych zadań inżynierskich, typowych dla automatyki i robotyki oraz wybierać i stosować właściwe metody i narzędzia potrafi zredagować, przeanalizować i przedstawić wymagania w przedsięwzięciach związanych z rozwiązywaniem zadań inżynierskich typowych dla automatyki i robotyki Kompetencje społeczne T1A_K01 rozumie potrzebę uczenia się przez całe życie, potrafi inspirować i organizować proces uczenia się innych osób T1A_K02 ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje T1A_K03 potrafi współdziałać i pracować w grupie, przyjmując w niej różne role T1A_K04 potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania T1A_K05 prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu T1A_K06 potrafi myśleć i działać w sposób przedsiębiorczy T1A_K07 ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej, podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały T1A_U14, T1A_U15 T1A_U10, T1A_U12 T1A_U11 T1A_U15 T1A_U02, T1A_U03 K_K02, K_K03 K_K02 K_K01, K_K06 K_K06 K_K05 K_K05 K_K04