Selected Mechanical Properties Analysis of Fibrous Composites Made on the Basis of Fine Waste Aggregate

Podobne dokumenty
INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS


TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

ROZPRAWY NR 128. Stanis³aw Mroziñski

UGIĘCIE DŁUGOTRWAŁE ELEMENTÓW FIBROBETONOWYCH WYTWORZONYCH NA BAZIE KRUSZYWA ODPADOWEGO

WPŁYW GEOMETRII I DYSTRYBUCJI ZBROJENIA ROZPROSZONEGO NA WYBRANE WŁAŚCIWOŚCI FIBROBETONÓW SAMOZAGĘSZCZALNYCH. 1. Wprowadzenie

METODY BADAŃ I KRYTERIA ZGODNOŚCI DLA WŁÓKIEN DO BETONU DOŚWIADCZENIA Z BADAŃ LABORATORYJNYCH

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

Tychy, plan miasta: Skala 1: (Polish Edition)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Sargent Opens Sonairte Farmers' Market

DEKLARACJA WŁAŚCIWOŚCI UŻYTKOWYCH


Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Raport z badań betonu zbrojonego włóknami pochodzącymi z recyklingu opon

KRUSZYWA Z RECYKLINGU W BUDOWNICTWIE

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Betony z użyciem kruszywa recyklingowego wysokiej wytrzymałości dziedzina zrównoważonego rozwoju

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Patients price acceptance SELECTED FINDINGS

CEE 111/211 Agenda Feb 17

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA


European Crime Prevention Award (ECPA) Annex I - new version 2014

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Revenue Maximization. Sept. 25, 2018

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

INFLUENCE THE TYPE OF FIBRES ON RHEOLOGICAL PROPERTIES OF MORTAR

Streszczenie rozprawy doktorskiej

Akademia Morska w Szczecinie. Wydział Mechaniczny

Mechanical Characteristics of Green SCC Modified by Steel and Polymer Fibres

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

LEARNING AGREEMENT FOR STUDIES

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

STRUKTURA ŻELIWA EN-GJS W ZALEŻNOŚCI OD MATERIAŁÓW WSADOWYCH

Tablice zmiennej treści Variable message boards UOPG6. Power of supply: Enclosure: Colour (Chrominance): Beam width: Luminance: Luminance ratio:

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Ocena przydatności metod. ultradźwiękowej i indukcji elektromagnetycznej, właściwości fibropiaskobetonu

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

PROJECT. Syllabus for course Negotiations. on the study program: Management

AN INVESTIGATION OF MECHANICAL PROPERTIES OF RECYCLED COARSE AGGREGATE CONCRETE

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Cracow University of Economics Poland

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Stany graniczne użytkowalności belek żelbetowych z betonu wysokowartościowego z dodatkiem włókien

Knovel Math: Jakość produktu

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

WIADRA I KASTRY BUDOWLANE BUILDING BUCKETS AND CONTAINERS

ETICS: Few words about the Polish market Dr. Jacek Michalak Stowarzyszenie na Rzecz Systemów Ociepleń (SSO), Warsaw, Poland

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Has the heat wave frequency or intensity changed in Poland since 1950?

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

OpenPoland.net API Documentation

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Analiza parametrów mechaniki pękania w warunkach I modelu obciążenia betonu

PARLAMENT EUROPEJSKI

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

IMPACT OF ADDED CHALCEDONITE POWDER ON SELECTED CONCRETE PROPERTIES WPŁYW DODATKU PYŁU CHALCEDONITOWEGO NA WYBRANE WŁAŚCIWOŚCI BETONU

Instructions for student teams

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

IMPACT OF THE RESEARCH CONDITIONS ON THE ACCURACY OF THE DESIGNATION OF HIGH PERFORMANCE CONCRETE STRENGTH PARAMETERS

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

deep learning for NLP (5 lectures)

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

WŁAŚCIWOŚCI KRUSZYW LEKKICH MODYFIKOWANYCH ZUśYTYMI ADSORBENTAMI


Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

ZASTOSOWANIE KRIGINGU ZWYCZAJNEGO DLA OSZACOWANIA ZAWARTOŚCI POPIOŁU I SIARKI W WĘGLU W ZALEŻNOŚCI OD GĘSTOŚCI I ROZMIARU ZIARNA

Zarządzanie sieciami telekomunikacyjnymi

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

DOI: / /32/37

WPŁYW WYBRANYCH KWARCOWYCH DODATKÓW MINERALNYCH MODYFIKUJĄCYCH BETON WARSTWY WIERZCHNIEJ NA JEGO ZESPOLENIE Z PODKŁADEM BETONOWYM

Faculty: Management and Finance. Management

PROJECT. Syllabus for course Principles of Marketing. on the study program: Management

Stargard Szczecinski i okolice (Polish Edition)

ROZKŁAD WIELKOŚCI WYDZIELEŃ GRAFITU W GRUBYM ODLEWIE ŻELIWNYM


Transkrypt:

MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Set The Environment Protection Rocznik Ochrona Środowiska Volume/Tom 19. Year/Rok 2017 ISSN 1506-218X 81-95 Selected Mechanical Properties Analysis of Fibrous Composites Made on the Basis of Fine Waste Aggregate 1. Introduction Jacek Domski, Wiesława Głodkowska Koszalin University of Technology The composites with dispersed reinforcement existed long before conventional reinforcement bars. Even before the birth of Christ people used various fibres such as animal dander or straw, mixing them with clay. The grounds for fibre reinforced concrete were laid by Joseph Lambot in the patent of 1847. Lambot suggested adding to the concrete fibres in the form of wires or nets (Naaman 1985). However, first use of steel components in concrete mix did not take place until year 1874, when A. Berard from California (USA) patented the strengthening of concrete by steel chips. In 1910 Porter was the first in the world to mention the possibility of using short steel wires in order to improve homogeneousness of concrete reinforced with only thick bars (Maidl 1995). The next patents, concerning various shapes of fibres and new methods of its application, were submitted as the first ones in the following countries by: H. Alfsen in France (1918), A. Kleinlogel in Germany (1920) and N. Zitkewic in England (1938). Yet, not until year 1963 in the USA, was elaborated the first theory of fine aggregate concrete containing steel fibres. The authors of the theory, J.P. Romualdi and G.B. Batson, proved that these steel fibres were able to inhibit development and propagation of cracks in concrete (Maidl 1995, Brandt 2008). This led to the possibility of introducing new technology of concrete reinforced with 25 mm fibres containing conventional fine aggregate. Guided by the rule that in

82 Jacek Domski, Wiesława Głodkowska fibre reinforced concrete the amount of small fraction aggregate should be dominant, this article presents the comparison of the results obtained from the study on fibrous composites containing waste aggregate with maximum granulation of 4 mm. There are many publications, in which SFRC made on the basis of waste sand was analyzed (Domski 2016, Głodkowska & Laskowska-Bury 2015, Domski 2015, Głodkowska & Kobaka 2013). However, these studies mostly concerned the typically selected volumetric quantity of steel fibres, i.e. 0.5, 1.0, 1.5, 2.0 and 2.5%. The presented analysis was conducted based on practical aspects of quantitative use of steel fibres. The analysis was limited to two composites, in which the volume of steel fibres was 0.42% (Domski 2016) and 1.20% (Głodkowska & Laskowska-Bury 2015), considered accordingly as minimal and optimal. 2. Characteristics of composite Concrete is the most popular construction material in the world. The basic component for concrete is aggregate, which constitutes approximately ¾ of its volume. It is estimated that annual demand on aggregate is 3,000 kg per one person. Such a big use of aggregate significantly influences the natural environment. Furthermore, the aggregate deposits are not evenly spread out around the world. It is the reason why the grading curves for concrete (e.g. reference concrete according to EN 1766) are difficult to obtain without additional activity. The regions with deficiency of coarse aggregate are in a particularly difficult situation as they are at risk of increased environmental degradation. This is due to the fact that more all-in aggregate is needed to prepare aggregate for concrete (e.g. the reference one). In the analyzed composites the used aggregate was sand of 4 mm granulation, which is a waste material in aggregate mines located in northern Poland. In this area a significant part of the output is subjected to the process of hydroclassification which results in obtaining 80% of sand and only 20% of coarse aggregate. This disproportion leads to the situation where most of sand remains unused in numerous plies located nearby the aggregate mines (Fig. 1). The postulate to somehow utilise remaining waste sand dumps constitutes a world-wide tendency consisted with Sustainable Ecological Development (Sadowska-Buraczewska

Selected Mechanical Properties Analysis of Fibrous Composites 83 & Rutkowski 2013, Błaszczyński & Król 2015, Meyer 2009, Hendriks & Janssen 2003, Siddique 2008, Soares et al. 2014, Ulsen et al. 2013). The similar phenomena of excessive sand fractions can be observed in other parts of the world, e.g. in Middle East or in North Africa (Al- Harthy et al. 2007). a) b) Fig. 1. Waste sand dumps in operative (a) and inoperative (b) aggregate mine (northern Poland area) Rys. 1. Hałdy piasku w czynnej (a) i nieczynnej (b) kopalni kruszyw (obszar północnej Polski) The figure 2 presents waste sand grading curves, appointed by various authors. These curves only insignificantly differ one from another, despite the fact that sand used in these studies originated all from various aggregate mines located in northern Poland. It proves that all these deposites are postglacial or fluvioglacial residues, developed in the same period. The used aggregates were additionally analyzed. Selected results are presented in table 1. Portland cements CEM II were used as binders in analyzed composites. Each cement mixture had different ash content. In case of cements of A-V series, the mixture was additionally sealed by silica dust (Głodkowska & Laskowska-Bury 2015). In every other analyzed composite, there was used a superplasticizer of FM series (Cartuxo et al. 2015). All composites were reinforced with steel fibres, which were 50 mm long and had 0.8 mm in diameter. Detailed analysis of the fibres is presented in (Katzer & Domski 2012). Figure 3 presents a histogram of tensile strength (R m ) of used steel fibres. The average value of strength, measured on 30 fibres, was 1155.2 MPa, and with standard deviation of 72.7 MPa. Described strength fits the range from 1153 to 1167 MPa, which is the range declared by the fibre producer. The conducted analysis

84 Jacek Domski, Wiesława Głodkowska confirms that the used fibres comply with tensile strength declared by the producer. 100.0 90.0 Percentage passing [%] 80.0 70.0 60.0 50.0 40.0 Domski 2016 30.0 Głodkowska & Kobaka 2009 20.0 Głodkowska & Laskowska-Bury 2015 10.0 PN-86/B-06712 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Fig. 2. Grading curves of waste aggregates Rys. 2. Krzywe przesiewu kruszywa odpadowego Table 1. Selected properties of waste aggregate Tabela 1. Wybrane właściwości kruszywa odpadowego Characteristics and origin of aggregate Sieve size [mm] Acc to (Głodkowska & Laskowska-Bury, 2015), mine in Lepino Acc to (Domski 2016), mine in Sępólno Wielkie Bulk density in loose state 1634 kg/m 3 1600 kg/m 3 Grain density 2632 kg/m 3 2600 kg/m 3 Quantity of mineral dust 1.3% 1.0% Voids 32% 30% Grain median 0.46 mm 0.28 mm Foreign body content 0.0% 0.0%

Selected Mechanical Properties Analysis of Fibrous Composites 85 11 10 9 8 Number of results 7 6 5 4 y=normal(x;1155.2;72.7)*50,*30, 3 2 1 0 950 1000 1050 1100 1150 1200 1250 1300 1350 R m [MPa] Fig. 3. Histogram of tensile strength and tensile strength test of steel fibres Rys. 3. Histogram wytrzymałości na rozciąganie oraz badanie wytrzymałości na rozciąganie włókien stalowych 20 18 16 14 Number of results 12 10 8 6 y=normal(x;7.27;0.94)*0.5,*30, 4 2 0 5 6 7 8 9 Number of bends Fig. 4. Histogram of ductility and bend test of steel fibres Rys. 4. Histogram odporności na przeginanie oraz badanie przeginania włókien stalowych

86 Jacek Domski, Wiesława Głodkowska The fibres were also put to the bending test. It resulted in setting the number of bends necessary to break the fibres, accordingly to EN 10218-1:1994 (with reference to ISO 7801:1984 Metallic materials: Wire: Reverse bend test). Figure 4 presents results of the bends measurements and a general view on the work stand. The average number of bends measured on 30 fibres was 7.3 at standard deviation of 0.94. The producer declares that the fibres should be resistant to at least 7 bends. The test results indicate that the analyzed fibres comply with this number. 3. Mechanical properties of composites with fibres made on the basis of waste sand Analyzing any concrete or composite, it is necessary to measure its strength properties (Bywalski et al. 2015, Domski & Katzer 2013, Domski et al. 2012, Seitl et al. 2010, Yazıcı et al. 2007, Chiaia et al. 2007, Naaman 2003). This is essential to be able to describe the usefulness of a concrete or composite in various applications. First, using the correlation between compressive strength and a number of used fibres, determined in (Głodkowska & Kobaka 2013), it was verified if it also describes the properties of analyzed composites. Figure 5 presents the relation between compressive strength measured on 150 mm cubes and the fibre content percentage (V f ). The conducted analysis shows that no composite fits in the curve proposed in (Głodkowska & Kobaka 2013). Because of this and due to the new results from (Głodkowska & Laskowska-Bury 2015) and (Domski 2016), the proper correction was made. The least-square method was used to determine the quadratic function, for which the correlation ratio is 0.87. Another analyzed quality was tensile strength while cracking, tested on cubic samples of 150 mm. In this case it was considered, also based on the function described in (Głodkowska & Kobaka 2013), whether the results of analyzed composites fit in the proposed range (fig. 6). According to the analysis of the composite with 1.2% of fibre content, the results fit the range of the curve proposed in (Głodkowska & Kobaka 2013). However, the composite with 0.42% of fibre amount slightly deviates from the curve and this is why a new curve was suggested (fig. 6). It was measured with the least square method using the test results from (Domski 2016, Głodkowska & Laskowska-Bury 2015 and Głodkowska

Selected Mechanical Properties Analysis of Fibrous Composites 87 & Kobaka 2013). The new curve shows that the correlation ratio of 0.94 is lower than in (Głodkowska & Kobaka 2013), but still relatively high. 75 Compressive strength fc,cube [MPa] 70 65 60 55 50 45 40 35 f c,cube = 7.10 V f2 +25.11V f +42.20 r = 0.87 f c,cube = 62.77 19.22e 1.61V f r = 0.90 Domski 2016 Głodkowska & Kobaka 2013 Głodkowska & Laskowska Bury 2015 Głodkowska & Kobaka 2013 Proposed curve 0 0.5 1 1.5 2 2.5 Volume of fibres V f [%] Fig. 5. Compressive strength vs. content of steel fibres Rys. 5. Wytrzymałość na ściskanie w funkcji ilości włókien stalowych 12 10 Tensile strength fct,cube [MPa] 8 6 4 2 0 f ct,cube = 9.75 6.52e 0.99V f r = 0.97 f ct,cube = 10.81 8.02e 0.70V f r = 0.94 Domski 2016 Głodkowska & Kobaka 2013 Głodkowska & Laskowska Bury 2015 Głodkowska & Kobaka 2013 Proposed curve 0 0.5 1 1.5 2 2.5 Volume of fibres V f [%] Fig. 6. Tensile strength at splintering vs. content of steel fibres Rys. 6. Wytrzymałość na rozciąganie przy rozłupywaniu w funkcji ilości włókien stalowych

88 Jacek Domski, Wiesława Głodkowska The study also included the analysis of modulus of elasticity. According to the literature (Naaman 1985, Maidl 1995, Brandt 2008, Głodkowska & Laskowska-Bury 2015, Błaszczyński & Przybylska-Fałek 2015), adding steel fibres to the composite results in a slight increase of static modulus of elasticity. Lack of significant influence of fibres on the modulus of elasticity can be caused by two factors. On the one hand, it can be caused by the increase of concrete compressive strength and on the other, by random setting of steel fibres and by the increase of air in hardened concrete (Rudzki et al. 2013, Bywalski & Kaminski 2011, Głodkowska & Kobaka 2012). Fig. 7 presents the relation between values of modulus of elasticity and compressive strength of several composites with fibres. These values were referred to the function presented in EN 1992-1-1. On the basis of this relation it can be stated that the function from EN 1992-1-1 does not describe variation of modulus of elasticity of tested composites. This is the reason why another function was proposed (fig. 7). It was set by the least-square method using test results from (Głodkowska & Kobaka 2009, Głodkowska & Laskowska-Bury 2015, Domski 2016). The correlation ratio for the proposed curve was 0.76. 50 45 40 E cm = 22(0.1f cm ) 0.3 35 E c [GPa] 30 E cm = 8.5f 0.35 cm 25 (r = 0.76) 20 15 EN 1992-1-1 Domski 2016 10 Głodkowska & Kobaka 2009 5 Głodkowska & Laskowska-Bury 2015 Proposed curve 0 20 30 40 50 60 70 80 f c [MPa] Fig. 7. Relation between modulus of elasticity and compressive strength Rys. 7. Zależność pomiędzy modułem sprężystości a wytrzymałością na ściskanie

Selected Mechanical Properties Analysis of Fibrous Composites 89 Figure 8 presents the relation between loading force and CMOD depending on the amount of steel fibres in concrete. Analyzing shape of each graph it can be stated that some composites, with steel fibres content of 0.42 and 1.20%, have the pcs attribute, i.e. decrease of destructive force together with increase of CMOD after the first crack appearance. On the other hand, for composites with steel fibre content of 0.90 and 0.50% the destructive force increases after appearance of the first crack. The test results of residual compressive strength clearly indicate on ductile nature of analyzed materials. It is caused by the fact that fibres significantly inhibit formation and expansion of cracks in composite with fibres. Thanks to applying dispersed reinforcement, composites are not so suddenly destroyed as it happens with ordinary concrete (Głodkowska & Kobaka 2012, Błaszczyński & Przybylska-Fałek 2015). Even the smallest amount of fibres, equal to 0.42%, comply with the minimal values of residual strength, specified in EN 14889-1 (1.5 MPa for COMD = 0.5 and 1.0 for CMOD = 3.5), which are declared by producers when their product contain adequate number of fibres (fig. 8 and tab. 2). Reaching these minimal values (f R1,min and f R4,min ) by every kind of steel fibres is essential for them to meet the assumed level of performance. 28 24 20 1.2 % Głodkowska et al. 2015 0.9 % Głodkowska et al. 2015 0.5 % Głodkowska et al. 2015 0.42 % Domski 2016 EN 14889 1 Force [kn] 16 12 8 4 f R1,min 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 CMOD [mm] Fig. 8. Relation between loading force and CMOD Rys. 8. Zależność pomiędzy siłą obciążającą a CMOD f R4,min

90 Jacek Domski, Wiesława Głodkowska Ultimately, based on fig. 8, the characteristic residual strengths were determined and the composites were classified given the proposal from Model Code 2010 (fib Bulletin 55 2010) (tab. 2). Classification 7b according to (fib Bulletin 55 2010, di Prisco et al. 2009) defines the analyzed material as composite with fibres (1.2%) of high f R1 value (range from 1 8). The letter b in its name means that the composite has the pcs value, obtained from the f R3 /f R1 dependence ( a and b pcs, d and e psh).the composite with the level of fibre content of 0.42% reached the classification 2a. It can be presumed that there is a possibility of reaching even lower class (e.g. 1a). However, it should be noted that the obtained residual strength values are characteristic and should be reduced in case of designing bended and sheared construction elements. Table 2. Average values of residual strength depending on the width of the opening crack (Głodkowska et al. 2015, Domski 2016) Tabela 2. Średnie wartości wytrzymałości resztkowych zależne od szerokości rozwarcia rysy (Głodkowska i in. 2015, Domski 2016) Crack mode opening displacement (CMOD) [mm] 1.20 [%] Residual strengths [MPa] 0.90 [%] 0.50 [%] 0.42 [%] 0.5 1.5 2.5 3.5 f R3 f R1 Classification according to MC2010 7.45 6.55 5.85 4.95 0.78 7b 5.45 5.72 5.23 4.75 0.96 5c 3.38 4.04 3.99 3.62 1.18 3d 2.39 1.43 1.41 1.40 0.59 2a Residual strengths f R,1, f R,2, f R,3 and f R,4 were determined for crack mode opening displacement (CMOD), equal respectively to: 0.5, 1.5, 2.5, 3.5 mm. 4. Summary The results of conducted analysis prove that mechanical properties of fine aggregate composites made of waste sand with steel fibre content ranging from 0.42% to 2.5% comply with the requirements im-

Selected Mechanical Properties Analysis of Fibrous Composites 91 posed on structural materials (fib Bulletin 55 2010, di Prisco et al. 2009). As it arises from (Głodkowska & Laskowska-Bury 2015) the most optimal quantity of steel fibres is 1.2% of the composite volume. Of course, the proper type of composite can be chosen depending on the strain level of construction elements. Ultimately, thanks to their properties, the analyzed composites can constitute in some cases an alternative for classic concrete as well as the material for creating construction elements such as: foundation plates, floor slabs, beams or shells (Domski 2015). The possibility of using waste sand as aggregate of full value in the process of producing construction materials on an industrial scale would largely resolve the problem of managing waste sand dumps located in northern Poland. Large amounts of fine aggregate, occurring in a form of industrial waste, could become the basic component of materials used to produce construction elements and thanks to that, they could be the new regional treasure (Domski 2016, Głodkowska et al. 2015, Głodkowska & Laskowska-Bury 2015, Głodkowska & Kobaka 2009). References Al-Harthy, A.S., Abdel Halim, M., Taha, R., & Al-Jabri, K.S. (2007). The properties of concrete made with fine dune sand. Construction and Building Materials, 21, 1803-1808. Błaszczyński, T., & Król, M. (2015). Usage of Green Concrete Technology in Civil Engineering. Procedia Engineering, 122, 296-301. Błaszczyński, T., & Przybylska-Fałek, M. (2015). Steel Fibre Reinforced Concrete as a Structural Material. Procedia Engineering, 122, 282-289. Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1-3), 3-9. Bywalski, C., & Kaminski, M. (2011). Estimation of the bending stiffness of rectangular reinforced concrete beams made of steel fibre reinforced concrete. Archives of Civil and Mechanical Engineering, 11(3), 553-571. Bywalski, C., Kamiński, M., Maszczak, M., & Balbus, Ł. (2015). Influence of steel fibres addition on mechanical and selected rheological properties of steel fibre high-strength reinforced concrete. Archives of Civil and Mechanical Engineering, 15(3), 742-750. Cartuxo, F., de Brito, J., Evangelista, L., Jiménez, J.R., & Ledesma, E.F. (2015). Rheological behaviour of concrete made with fine recycled concrete aggregates Influence of the superplasticizer. Construction and Building Materials, 89, 36-47.

92 Jacek Domski, Wiesława Głodkowska Chiaia, B., Fantilli, A.P., & Vallini P.P. (2007). Evaluation of minimum reinforcement ratio in FRC members and application to tunnel linings. Materials and Structures, 40, 593-604. di Prisco, M., Plizzari, G., & Vandewalle, L. (2009). Fibre reinforced concrete: new design perspectives. Materials and Structures, 42(9), 1261-1281. Domski, J. (2015). Long-term Study on Fibre Reinforced Fine Aggregate Concrete Beams Based on Waste Sand. Rocznik Ochrona Środowiska, 17, 188-199. Domski, J. (2016). A blurred border between ordinary concrete and SFRC. Construction and Building Materials, 112, 247-252. Domski, J., & Katzer, J. (2013). Load-deflection characteristic of fibre concrete based on waste ceramic aggregate. Rocznik Ochrona Środowiska, 15, 213-230. Domski, J., Katzer, J., & Fajto, D. (2012). Load-CMOD characteristics of FRCC based on waste ceramic aggregate. Rocznik Ochrona Środowiska, 14, 69-80. fib Bulletin 55. (2010). Model Code (wyd. First complete draft). Lausanne: International Federation for Structural Concrete. Głodkowska, W., & Kobaka, J. (2009). Application of Waste Sands for Making Industrial Floors. Rocznik Ochrona Środowiska, 11, 193-206. Głodkowska, W., & Kobaka, J. (2012). The Model of Brittle Matrix Composites for Distribution of Steel Fibres. Journal of Civil Engineering and Management, 18(1), 145-150. Głodkowska, W., & Kobaka, J. (2013). Modelling of properties and distribution of steel fibres within a fine aggregate concrete. Construction and Building Materials, 44, 645-653. Głodkowska, W., & Laskowska-Bury, J. (2015). Waste Sands as a Valuable Aggregates to Produce Fibre-composites. Rocznik Ochrona Środowiska, 17, 507-525. Głodkowska, W., Lehmann, M., & Ziarkiewicz, M. (2015). Wytrzymałości resztkowe fibrokompozytu na bazie piasku odpadowego. Materiały budowlane, 513(5), 75-77. Hendriks, C., & Janssen, G. (2003). Use of recycled materials in construction. Materials and Structures, 36, 604-608. Katzer, J., & Domski, J. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, (34), 243-248. Maidl, B.R. (1995). Steel Fibre reinforced Concrete. Berlin: Ernst & Sohn. Meyer, C. (2009). The greening of the concrete industry. Cement & Concrete composites, 31, 601-605. Naaman, A.E. (1985). Fiber reinforcement for concrete. Concrete International: Design and Construction, 21-25.

Selected Mechanical Properties Analysis of Fibrous Composites 93 Naaman, A.E. (2003). Engineered Steel Fibres with Optimal Properties for Reinforcement of Cement Composites. Journal of Advanced Concrete Technology, 1(3), 241-252. Rudzki, M., Bugdol, M., & Ponikiewski, T. (2013). Determination of steel fibers orientation in SCC using computed tomography and digital image analysis methods. Cement Wapno Beton, 18(5), 257-263. Sadowska-Buraczewska, B., & Rutkowski, P. (2013). Concrete with Recycled HSC/HPC Aggregates in Sustainable Development. Rocznik Ochrona Środowiska, 15, 2175-2184. Seitl, S., Keršner, Z., Bílek, V., & Knésl, Z. (2010). Fatigue parameters of cement-based composites with various types of fibers. Key Engineering Materials, 417, 129-132. Siddique, R. (2008). Waste Materials and By-Products in Concrete. Berlin: Springer. Soares, D., de Brito, J., Ferreira, J., & Pacheco, J. (2014). In situ materials characterization of full-scale recycled aggregates concrete structures. Construction and Building Materials, 71, 237-245. Ulsen, C., Kahn, H., Hawlitschek, G., Masini, E. A., & Angulo, S. C. (2013). Separability studies of construction and demolition waste recycled sand. Waste Management, 33, 656 662. Yazıcı, Ş., İnan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21, 1250 1253. Streszczenie Analiza wybranych właściwości mechanicznych fibrokompozytów na bazie drobnego kruszywa odpadowego Prezentowany artykuł dotyczy ochrony środowiska w aspekcie ograniczania zużycia surowców naturalnych oraz emisji dwutlenku węgla. Swoją tematyką wpisuje się on w ogólnoświatową tendencję związaną z tzw. Zrównoważonym Rozwojem Środowiska. Obszary Polski północnej są ubogie w kruszywo grube, które jest niezbędne przy produkcji tradycyjnych betonów. W tej sytuacji, aby uzyskać pełnowartościowe kruszywo do betonów, należy przerobić znacznie większą ilość urobku w postaci pospółki, przy jednoczesnym zwiększeniu nakładu pracy i energii. W efekcie tych zabiegów uzyskuje się różne frakcje kruszywa, jednak w znacznej części, bo w ponad 80%, jest to piasek o uziarnieniu do 4 mm. Sytuacja ta sprawia, że w obszarze kopalń kruszyw, znajdują się liczne hałdy piasku, traktowane jako odpad poprodukcyjny.

94 Jacek Domski, Wiesława Głodkowska Argumenty te skłoniły autorów niniejszego artykułu, aby zaproponować rozwiązanie zaistniałego problemu. Przeprowadzono analizę wyników badań piasku, pochodzącego z dwóch kopalń z obszaru Polski północnej, która obejmowała: krzywą przesiewu, ziarno mediana, gęstość nasypową w stanie luźnym, gęstość ziaren, zawartość pyłów mineralnych, jamistość oraz zawartość ciał obcych. Wyniki z przeprowadzonej analizy potwierdziły możliwość wykorzystania piasku jako kruszywa w kompozytach cementowych z dodatkiem włókien stalowych. Dodatkowo przeanalizowano uzyskane, w ramach wcześniej przeprowadzonych badań, właściwości mechaniczne wybranych haczykowatych włókien stalowych o średnicy 0,8 mm i długości 50 mm. Zweryfikowano uzyskane wytrzymałości na rozciąganie oraz liczbę przegięć z parametrami deklarowanymi przez producenta włókien. Zasadnicza analiza dotyczyła dwóch specyficznych fibrokompozytów o objętościowej zawartości włókien 0,42% i 1,2%, uznanych za minimalną i optymalną ilość włókien w mieszance. Dla tych kompozytów przeprowadzono analizę statystyczną obejmującą wytrzymałości na ściskanie i rozciąganie przy rozłupywaniu, moduł sprężystości i wytrzymałości resztkowe badanych fibrokompozytów. Na podstawie przeprowadzonej analizy zaproponowano krzywe opisujące zmianę wytrzymałości na ściskanie, wytrzymałości na rozciąganie przy rozłupywaniu oraz modułu sprężystości w funkcji ilości dozowanych włókien. Przedstawione funkcje dobrze charakteryzują zmienność wyżej wymienionych cech, o czym świadczy współczynnik korelacji, który zawierał się w przedziale od 0,76 do 0,94. Przeanalizowano również zależność pomiędzy siłą obciążającą a szerokością rozwarcia rysy (CMOD). Na jej podstawie możliwe było określenie wytrzymałości resztkowych, zaś zgodnie z ModelCode 2010, ustalono klasy fibrokompozytów oraz ustalono, czy możliwe jest częściowe zastąpienie zbrojenia tradycyjnego fibrokompozytem. Wyniki z przeprowadzonych analiz dowodzą, że właściwości mechaniczne drobnokruszywowych kompozytów wykonanych na bazie piasków odpadowych ze zbrojeniem rozproszonym odpowiadają wymaganiom stawianym budowlanym materiałom konstrukcyjnym. Abstract The presented article concerns environmental protection in terms of limiting consumption of natural resources and carbon dioxide emission. Its subject matter fits in the world-wide tendency consisted with Sustainable Ecological Development. Northern Poland area lacks of coarse aggregate, which is essential to produce ordinary concrete. In this case, in order to obtain wholesome aggregate to concrete production, it is necessary to process much more output in the form of all-in aggregate, increasing work and energy input at the same time. This procedure results in obtaining various aggregate fractions,

Selected Mechanical Properties Analysis of Fibrous Composites 95 however over 80% of it is sand with maximum granulation of 4 mm. As the result, most of sand remains unused in numerous piles located nearby the aggregate mines and is treated as post-production waste. These facts made the authors of the article to propose a solution of the existing issue. Therefore, there were analyzed the results of study on sand from two mines located in northern Poland. The analysis covered grading curves, grain median, bulk density in loose state, grain density, quantity of mineral dust, voids and foreign body content. The results of conducted analysis confirmed the possibility of using waste sand as aggregate in cement composites with steel fibres. Additionally, there were also analyzed the results of previous study on mechanical properties of selected hooked steel fibres, which were 50 mm long and had 0.8 mm in diameter. The tensile strength results and the number of bends, that were obtained, were verified with the parameters declared by fibre producers. The main analysis concerned two specific fibrous composites of volumetric content of fibres of 0.42% and 1.2%. These values are considered to be minimal as well as optimal for quantity of fibres in the mixture. In case of these composites, the statistical analysis also included compression strength and tension strength at splitting, modulus of elasticity and residual strength. On the basis of this analysis the curves were proposed describing value changes in compression strength, tension strength at splitting and modulus of elasticity in function of dosed fibres quantity. The presented functions well describe variability of aforementioned qualities, what is confirmed by correlation ratio, which was between 0.76 and 0.94. There was also analysed an interdependence between loading force and crack mode opening displacement (CMOD). On its basis it was possible to determine residual strength and to establish, according to Model Code 2010, fibrous composite classes and also whether it was possible to partially replace ordinary reinforcement with fibrous composites. The results of all these analysis prove that the mechanical properties of fine aggregate composites made on the basis of waste sand with dispersed reinforcement comply with the requirements imposed on construction materials. Słowa kluczowe: piasek odpadowy, kruszywo drobnoziarniste, kompozyt, włókna stalowe Keywords: waste sand, fine aggregate, composite, steel fibres