PL B1. FLUID SYSTEMS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Warszawa, PL BUP 11/18

Podobne dokumenty
PL B1. ZAWADA HENRYK, Siemianowice Śląskie, PL ZAWADA MARCIN, Siemianowice Śląskie, PL BUP 09/13

PL B1. ZAWADA HENRYK, Siemianowice Śląskie, PL BUP 13/13. HENRYK ZAWADA, Siemianowice Śląskie, PL

PL B1. Układ do zasilania silnika elektrycznego w pojazdach i urządzeniach z napędem hybrydowym spalinowo-elektrycznym

Układ siłowni z organicznymi czynnikami roboczymi i sposób zwiększania wykorzystania energii nośnika ciepła zasilającego siłownię jednobiegową

(54)Układ stopniowego podgrzewania zanieczyszczonej wody technologicznej, zwłaszcza

XVI Konferencja GAZTERM 2013

(73) Uprawniony z patentu: (72) (74) Pełnomocnik:

PL B1. Sposób zasilania silników wysokoprężnych mieszanką paliwa gazowego z olejem napędowym. KARŁYK ROMUALD, Tarnowo Podgórne, PL

PL B1. Sposób epoksydacji (1Z,5E,9E)-1,5,9-cyklododekatrienu do 1,2-epoksy-(5Z,9E)-5,9-cyklododekadienu

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH IM. ROBERTA SZEWALSKIEGO POLSKIEJ AKADEMII NAUK, Gdańsk, PL BUP 20/14

PL B1. Sposób chłodzenia obwodów form odlewniczych i układ technologiczny urządzenia do chłodzenia obwodów form odlewniczych

(57) (13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1

PL B1. GULAK JAN, Kielce, PL BUP 13/07. JAN GULAK, Kielce, PL WUP 12/10. rzecz. pat. Fietko-Basa Sylwia

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(2)Data zgłoszenia: (57) Układ do obniżania temperatury spalin wylotowych oraz podgrzewania powietrza kotłów energetycznych,

PL B1. PRZEDSIĘBIORSTWO BRANŻOWE GAZOWNIA SERWIS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Warszawa, PL

PL B1 STEFANIAK ZBYSŁAW T. M. A. ZAKŁAD INNOWACJI TECHNICZNYCH, ELBLĄG, PL BUP 02/ WUP 04/10

OPIS PATENTOWY F24J 3/08 ( ) F24J 3/06 ( ) F24D 11/02 ( )

PL B1. Sposób i układ uzupełniania wodą sieci ciepłowniczej i obiegu cieplnego w elektrociepłowni

PL B1. POLITECHNIKA RZESZOWSKA IM. IGNACEGO ŁUKASIEWICZA, Rzeszów, PL BUP 10/18

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 18/11. JANUSZ URBAŃSKI, Lublin, PL WUP 10/14. rzecz. pat.

(54) Sposób wydzielania zanieczyszczeń organicznych z wody

Turboekspandery w układach redukcji ciśnienia gazu

PL B1. Odbieralnik gazu w komorze koksowniczej i sposób regulacji ciśnienia w komorze koksowniczej

(13) B1 PL B1 F01K 17/02. (54) Sposób i układ wymiany ciepła w obiegu cieplnym elektrociepłowni. (73) Uprawniony z patentu:

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 26/16

(86) Data i numer zgłoszenia międzynarodowego: , PCT/JP02/ (87) Data i numer publikacji zgłoszenia międzynarodowego:

PL B1. SUROWIEC BOGDAN, Bolszewo, PL BUP 18/13. BOGDAN SUROWIEC, Bolszewo, PL WUP 04/16 RZECZPOSPOLITA POLSKA

PL B1. WONAM SERWIS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Żory, PL BUP 05/12

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 19/15

PL B1. INSTYTUT TECHNOLOGICZNO- PRZYRODNICZY, Falenty, PL BUP 08/13

PL B1. Urządzenie ręczne z elektrycznie napędzanym narzędziem i elektropneumatycznym mechanizmem uderzeniowym

PL B1. BULGA ZBIGNIEW PRZEDSIĘBIORSTWO BUDOWY PIECÓW, AUTOMATYKI I OCHRONY ŚRODOWISKA SZKŁO-PIEC, Kraków, PL

PL B1. OPERATOR GAZOCIĄGÓW PRZESYŁOWYCH GAZ-SYSTEM SPÓŁKA AKCYJNA, Warszawa, PL BUP 14/12

PL B1. Urządzenie wentylatorowe do recyrkulacji gazów w wysokotemperaturowym ogniwie paliwowym. POLITECHNIKA WARSZAWSKA, Warszawa, PL

PL B1. OLESZKIEWICZ BŁAŻEJ, Wrocław, PL BUP 09/ WUP 12/16. BŁAŻEJ OLESZKIEWICZ, Wrocław, PL RZECZPOSPOLITA POLSKA

PL B1. WIJAS PAWEŁ, Kielce, PL BUP 26/06. PAWEŁ WIJAS, Kielce, PL WUP 09/12. rzecz. pat. Wit Flis RZECZPOSPOLITA POLSKA

PL B1. Sposób geotermalnego gospodarowania energią oraz instalacja do geotermalnego odprowadzania energii cieplnej

PL B BUP 11/05. Jakóbczak Antoni,Lublin,PL WUP 12/09 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11)

PL B1. Przekształtnik rezonansowy DC-DC o przełączanych kondensatorach o podwyższonej sprawności

PL B1. Przyłącze gazowe, sposób montażu przyłącza gazowego i zespół redukcyjno-pomiarowy przyłącza gazowego

PL B1. GRODZICKI ZBIGNIEW, Nadarzyn, PL BUP 24/04. ZBIGNIEW GRODZICKI, Nadarzyn, PL WUP 08/10

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/15

PL B1. AFT SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Poznań, PL BUP 11/17. PIOTR BERA, Poznań, PL SEBASTIAN MORYKSIEWICZ, Luboń, PL

PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia

PL B1. HIKISZ BARTOSZ, Łódź, PL BUP 05/07. BARTOSZ HIKISZ, Łódź, PL WUP 01/16. rzecz. pat.

PL B1. Podwieszana centrala klimatyzacyjna z modułem pompy ciepła, przeznaczona zwłaszcza do klimatyzacji i wentylacji pomieszczeń

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1. Fig. 1 F01K 17/02

PL B1. POLITECHNIKA ŚWIĘTOKRZYSKA, Kielce, PL BUP 13/12. WOJCIECH SADKOWSKI, Kielce, PL KRZYSZTOF LUDWINEK, Kostomłoty, PL

PL B1. Zespół prądotwórczy, zwłaszcza kogeneracyjny, zasilany ciężkimi gazami odpadowymi o niskiej liczbie metanowej

PL B1. Sposób transportu i urządzenie transportujące ładunek w wodzie, zwłaszcza z dużych głębokości

PL B1. Uszczelnienie nadbandażowe stopnia przepływowej maszyny wirnikowej, zwłaszcza z bandażem płaskim. POLITECHNIKA GDAŃSKA, Gdańsk, PL

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 F24D 3/08 RZECZPOSPOLITA POLSKA. (21) Numer zgłoszenia:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) OPIS PATENTOWY (19) PL. (86) Data i numer zgłoszenia międzynarodowego: , PCT/DK95/00453

PL B BUP 14/16

(12) OPIS PATENTOWY (19) PL (11) (13) B1

PL B1. Przedsiębiorstwo Produkcyjno-Usługowe WONAM Sp. z o.o.,jastrzębie Zdrój,PL BUP 15/07

PL B1. AREVA T&D Spółka z o.o. Zakład Transformatorów w Mikołowie, Świebodzice,PL BUP 12/ WUP 10/09

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

Innowacyjny układ odzysku ciepła ze spalin dobry przykład

PL B1. Sposób wydzielania toluilenodiizocyjanianu z mieszaniny poreakcyjnej w procesie fosgenowania toluilenodiaminy w fazie gazowej

BUDOWA I ZASADA DZIAŁANIA ABSORPCYJNEJ POMPY CIEPŁA

PL B1. ZAKŁAD MECHANIKI PRZEMYSŁOWEJ ZAMEP SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gliwice, PL BUP 17/12

PL B1. Sposób chłodzenia ogniw fotowoltaicznych oraz urządzenie do chłodzenia zestawów modułów fotowoltaicznych

PL B1. RESZKE EDWARD, Wrocław, PL MEDOŃ PIOTR, Wrocław, PL BUP 01/13. EDWARD RESZKE, Wrocław, PL PIOTR MEDOŃ, Wrocław, PL

(13) B1 PL B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (21) Numer zgłoszenia: , (51) IntCl5: B01 D 36/00 B01 D 35/00

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny

PL B1. Sposób dozowania środków chemicznych do układu wodno-parowego energetycznego kotła oraz układ wodno-parowy energetycznego kotła

PL B1. Instytut Automatyki Systemów Energetycznych,Wrocław,PL BUP 26/ WUP 08/09. Barbara Plackowska,Wrocław,PL

PL B1. C & T ELMECH SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pruszcz Gdański, PL BUP 07/10

Numeryczna analiza pracy i porównanie nowoczesnych układów skojarzonych, bazujacych na chłodziarce absorpcyjnej LiBr-H 2 O

(12) OPIS PATENTOWY (19) PL (11)

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/17

(62) Numer zgłoszenia, z którego nastąpiło wydzielenie:

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

(13) B 1 PL B 1 C10G 31/09. 73)) U praw niony z patentu:

PL B1. Urządzenie do wymuszonego chłodzenia łożysk, zwłaszcza poziomej pompy do hydrotransportu ciężkiego

PL B1. TFP SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Dziećmierowo, PL BUP 14/13

PL B1. PRZEDSIĘBIORSTWO HAK SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Wrocław, PL BUP 20/14. JACEK RADOMSKI, Wrocław, PL

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

PL B1. EKOPROD SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Bytom, PL

PL B1. ADAPTRONICA SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Łomianki k. Warszawy, PL BUP 20/10

PL B1. ABB Spółka z o.o.,warszawa,pl BUP 03/02. Paweł Mróz,Wrocław,PL WUP 02/08 RZECZPOSPOLITA POLSKA

PL B BUP 16/02. Kramarz Józef,Świeradów Zdrój,PL WUP 05/08

PL B1. WOJTAŚ JAN, Kaźmierz, PL BUP 25/15. JAN WOJTAŚ, Kaźmierz, PL WUP 01/17 RZECZPOSPOLITA POLSKA

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7

PL B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL

(12) OPIS PATENTOWY. (86) Data i numer zgłoszenia międzynarodowego , PCT/NO98/00100

PL B1. Sposób podgrzewania żarników świetlówki przed zapłonem i układ zasilania świetlówki z podgrzewaniem żarników

(12) OPIS PATENTOWY (19) PL

OPIS PATENTOWY C22B 7/00 ( ) C22B 15/02 ( ) Sposób przetwarzania złomów i surowców miedzionośnych

PL B1. INSTYTUT MASZYN PRZEPŁYWOWYCH PAN, Gdańsk, PL JASIŃSKI MARIUSZ, Wągrowiec, PL GOCH MARCIN, Braniewo, PL MIZERACZYK JERZY, Rotmanka, PL

Obiegi gazowe w maszynach cieplnych

PL B1. Politechnika Warszawska,Warszawa,PL BUP 25/03. Mateusz Turkowski,Warszawa,PL Tadeusz Strzałkowski,Warszawa,PL

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 01/12. VIKTOR LOZBIN, Lublin, PL PIOTR BYLICKI, Świdnik, PL

PL B1. KABUSHIKI KAISHA TOSHIBA, Tokyo, JP , JP, ONO YASUNORI, Tokyo, JP BUP 05/

PL B1. Układ i sposób zabezpieczenia generatora z podwójnym uzwojeniem na fazę od zwarć międzyzwojowych w uzwojeniach stojana

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/14. PIOTR OSIŃSKI, Wrocław, PL WUP 10/16. rzecz. pat.

PL B1. POLITECHNIKA ŚLĄSKA, Gliwice, PL BUP 20/10

Transkrypt:

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230197 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 419501 (22) Data zgłoszenia: 17.11.2016 (51) Int.Cl. F17D 1/04 (2006.01) F17D 3/12 (2006.01) F17D 5/06 (2006.01) (54) Sposób redukcji ciśnienia paliw gazowych (73) Uprawniony z patentu: FLUID SYSTEMS SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Warszawa, PL (43) Zgłoszenie ogłoszono: 21.05.2018 BUP 11/18 (45) O udzieleniu patentu ogłoszono: 31.10.2018 WUP 10/18 (72) Twórca(y) wynalazku: ANDRZEJ JANUSZ OSIADACZ, Warszawa, PL MACIEJ CHACZYKOWSKI, Pruszków, PL MAŁGORZATA KWESTARZ, Warszawa, PL NICCOLO ISOLI, Warszawa, PL (74) Pełnomocnik: rzecz. pat. Joanna Bocheńska PL 230197 B1

2 PL 230 197 B1 Opis wynalazku Przedmiotem wynalazku jest sposób redukcji ciśnienia paliw gazowych do zastosowania w stacjach gazowych. W tradycyjnych stacjach gazowych redukcja ciśnienia gazu prowadzona jest w procesie dławienia przepływu gazu na zaworze redukcyjnym. Spadek temperatury podczas rozprężania gazu na zaworze redukcyjnym wynosi około 4,5 6 C przy spadku ciśnienia o 1 MPa i jest uzależniony od składu chemicznego gazu i jego aktualnych parametrów (ciśnienia i temperatury). Z uwagi na ryzyko kondensacji pary wodnej, jak również ryzyko tworzenia się hydratów przy niskiej temperaturze gazu po redukcji ciśnienia, w stacjach gazowych stosuje się układy podgrzewania gazu przed rozprężaniem. W praktyce, proces podgrzewania gazu realizowany jest w taki sposób, aby minimalna temperatura gazu na wyjściu reduktora była wyższa od temperatury punktu rosy wody oraz temperatury na krzywej tworzenia się hydratów. W przypadku zastosowania w stacji gazowej rozprężarki zamiast zaworu redukcyjnego, gaz przepływający przez rozprężarkę wykonuje pracę kosztem spadku entalpii. Jednocześnie podczas rozprężania gaz gwałtownie się ochładza. Spadek temperatury gazu w rozprężarce jest znacznie większy niż w przypadku klasycznego reduktora. Jest on funkcją składu chemicznego gazu, aktualnych parametrów gazu oraz dodatkowo sprawności wewnętrznej rozprężarki. W przypadku zastosowania rozprężarki w stacji gazowej należy mieć na uwadze podobnie jak w przypadku reduktora konieczność budowy układu podgrzewania gazu przed rozprężaniem z uwagi na możliwość tworzenia się hydratów. W przypadku zastosowania układu z rozprężarką o wysokiej sprawności, gaz jest podgrzewany do temperatury znacznie wyższej niż w przypadku układów z reduktorem. Jednak zaletą instalacji do redukcji ciśnienia gazu z wykorzystaniem rozprężarek jest możliwość napędu generatorów prądu elektrycznego, co oznacza, że w przypadku stosowania tego typu redukcji ciśnienia gazu jednocześnie produkowany jest w stacji gazowej prąd elektryczny. Oprócz wartości temperatury, jednym z ważniejszych parametrów układu jest stosunek ciśnienia gazu przed i po rozprężaniu (stopień redukcji ). Stopnie redukcji mają podstawowe znaczenie z punktu widzenia mocy mechanicznej dostępnej na wale rozprężarki, przez co decydują o ilości energii elektrycznej produkowanej w stacji. W praktyce, w przypadku stacji gazowych wysokiego ciśnienia zasilających sieci dystrybucyjne, stopnie redukcji są w zakresie 4 < < 14, przy których najczęściej spotykane są dwustopniowe układy rozprężania gazu, z podgrzewaniem gazu przed każdym stopniem. W przypadku układów wielostopniowych, zwykle dobiera się jednakowy stopień redukcji na każdym stopniu, gdyż dzięki temu spadki temperatury gazu na każdym ze stopni są w przybliżeniu równe. Drugim poza stopniem redukcji parametrem decydującym o ilości produkowanej energii elektrycznej jest natężenie przepływu gazu. Czym większy jest strumień objętości gazu tym bardziej opłacalne jest stosowanie rozprężarek w celu wykorzystania energii sprężonego gazu do produkcji energii elektrycznej. Jednocześnie im większy strumień objętości gazu i im większe stopnie redukcji, tym większy strumień ciepła potrzebny do podgrzania gazu i tym większe koszty eksploatacji stacji gazowej wynikające z kosztów produkcji ciepła. Znane rozwiązania charakteryzują się ujemnym bilansem energetycznym. Stacje tego typu wymagają dostarczania energii z zewnątrz co wymusza ich współpracę ze źródłami ciepła. Nieoczekiwanie okazało się, że jeśli redukcji ciśnienia podda się gaz osuszony można całkowicie zrezygnować z podgrzewania gazu. To oznacza, że zamiast podgrzewania gazu należy zastosować jego osuszanie. Osuszanie gazu ziemnego nie polega na całkowitym usunięciu pary wodnej. Wystarczy usunąć ją w takim stopniu, aby zapobiec skropleniu się wody w temperaturze minimalnej procesu. Oznacza to, że zadowalające jest osuszenie gazu do takiego poziomu, aby temperatura punktu rosy wody była o około 5 C niższa od minimalnej temperatury, w jakiej może znaleźć się gaz ziemny. Sposób według wynalazku polega na tym, że strumień gazu ziemnego lub mieszaniny gazów zawierający parę wodną kierowany jest do kolumny absorpcyjnej i kontaktowany w przeciwprądzie z ciekłym absorbentem, korzystnie glikolem trietylenowym. Osuszony gaz kieruje się do turboekspandera a następnie kieruje do sieci. Absorbent zawierający wodę poddaje się rozprężaniu na reduktorze ciśnienia a następnie wstępnie podgrzewa w wymienniku ciepła i przesyła na kolumnę destylacyjną, pełniącą funkcję desorbera. W kolumnie destylacyjnej woda zostaje usunięta z roztworu i odprowadzona w strumieniu pary za pośrednictwem skraplacza na górze kolumny. Ciepło do regeneracji roztworu absorbenta dostarczane jest za pośrednictwem elektrycznego reboilera zasilanego energią elektryczną

PL 230 197 B1 3 z generatora napędzanego turboekspanderem. Po regeneracji absorbent przesyłany jest do wymiennika ciepła, w którym odzyskiwane jest ciepło. Następnie przepompowywany jest przez drugi wymiennik ciepła, w którym dodatkowo oddaje ciepło do strumienia gazu po czym kierowany jest do absorbera. Zgodnie z wynalazkiem instalacja podgrzewania gazu w stacji gazowej jest zastąpiona instalacją osuszania gazu, jednocześnie na potrzeby redukcji ciśnienia gazu stosuje się rozprężarkę zamiast klasycznego reduktora. To rozwiązanie umożliwia odzyskanie energii, która przy tradycyjnym rozwiązaniu polegającym na dławieniu przepływu gazu jest bezpowrotnie rozpraszana. Moc dostępna na wale rozprężarki wykorzystana jest do napędu generatora prądu elektrycznego. Energia elektryczna z generatora wykorzystana jest do zasilania instalacji osuszania gazu. Przeprowadzone badania wykazały, że energia odpadowa strumienia gazu odzyskana w procesie rozprężania na rozprężarce w pełni pokrywa zapotrzebowanie na energię potrzebną do procesu osuszania gazu. Przedstawiony sposób postępowania pozwala zatem na całkowite wyeliminowanie zapotrzebowania na energię pierwotną do realizacji procesu redukcji ciśnienia, którą do tej pory była energia chemiczna paliwa gazowego zużytego na potrzeby produkcji ciepła w układzie podgrzewania gazu. Przeprowadzono analizę termodynamiczną układu na bazie parametrów eksploatacyjnych rzeczywistej stacji gazowej, w której przyjęto rozwiązanie polegające na zastosowaniu ciągu redukcyjnego z instalacją osuszającą gaz w procesie absorpcji wraz z turboekspanderem pracującym w układzie monitorującym. Uzyskane rezultaty pokazały możliwość zbilansowania energii układu turboekspander-osuszacz i potwierdziły, że proponowane rozwiązanie pozwala na całkowite wyeliminowanie zapotrzebowania na energię pierwotną w stacji gazowej. Rozwiązanie pozwala zatem na skonstruowanie zeroenergetycznej stacji gazowej. Jednocześnie obliczenia przeprowadzone przy różnych wartościach przepływu i stopnia redukcji ciśnienia gazu wykazały, że odpowiednio wysokie wartości przepływu i stopnia redukcji pozwalają na uzyskanie dodatniego bilansu energii netto układu turbogenerator-osuszacz, przy którym możliwe jest wytwarzanie energii elektrycznej w stacji w ilościach przekraczających potrzeby własne stacji. Stacja skonstruowana na bazie proponowanego rozwiązania pracująca w takich warunkach byłaby plus-energetyczną stacją gazową. Przedmiot wynalazku pokazano na rysunku, na którym Fig. 1 przedstawia schemat technologiczny modułu osuszania i redukcji ciśnienia gazu, Fig. 2 przedstawia schemat technologiczny zeroenergetycznej stacji gazowej a Fig. 3 przedstawia schemat blokowy zeroenergetycznej stacji gazowej z zaznaczonym modułem osuszania i redukcji ciśnienia gazu. P r z y k ł a d. Instalacja do redukcji ciśnienia paliw gazowych pokazana na Fig. 1 składa się z następujących elementów: 1 pompa, 2 kolumna absorpcyjna absorber, 3 wymiennik ciepła I, 4 reduktor ciśnienia, 5 wymiennik ciepła II, 6 turboekspander, 7 regenerator absorbenta, 8 skraplacz, 9 reboiler, 10 strumień gazu wilgotnego, 11 roztwór absorbenta z wodą, 12 roztwór absorbenta po redukcji ciśnienia, 13 roztwór absorbenta po wstępnym podgrzaniu, 14 strumień pary, 15 absorbent po regeneracji, 16 absorbent po wstępnym schłodzeniu, 17 sprężony absorbent, 18 absorbent po schłodzeniu, 19 strumień gazu suchego, 20 gaz po podgrzaniu, 21 gaz po redukcji ciśnienia. Schemat technologiczny zeroenergetycznej stacji gazowej pokazany na Fig. 2 składa się z następujących elementów: 1 filtr, 2 absorber wody, 3 wymiennik ciepła I, 4 zawór szybkozamykający, 5 reduktor monitorujący, 6 turboekspander, 7 zawór upustowy (opcjonalnie), 8 rejestrator ciśnienia i temperatury, 9 regulator ciśnienia na przewodzie obejściowym, 10 złącza izolujące, 11 zespoły zaporowo-upustowe, 12 nawanialnia gazu, 13 reduktor ciśnienia. Proces osuszania gazu ziemnego odbywa się na kolumnie absorpcyjnej. Para wodna zawarta w strumieniu gazu ziemnego jest pochłaniana przez absorbent kontaktowany ze strumieniem gazu w przeciwprądzie. Absorbent zawierający wodę jest następnie rozprężany na reduktorze ciśnienia, wstępnie podgrzewany na wymienniku ciepła i przesyłany na kolumnę destylacyjną, pełniącą funkcję desorbera. W kolumnie destylacyjnej woda zostaje usunięta z roztworu i odprowadzona w strumieniu pary za pośrednictwem skraplacza na górze kolumny destylacyjnej. Ciepło do regeneracji roztworu dostarczane jest za pośrednictwem elektrycznego reboilera zasilanego energią elektryczną z generatora napędzanego turboekspanderem. Po regeneracji absorbent jest przesyłany do wymiennika ciepła, w którym odzyskiwane jest ciepło. Następnie przepompowywany jest przez drugi wymiennik ciepła, w którym dodatkowo oddaje ciepło do strumienia gazu (19) z powrotem do absorbera. Strumień gazu po redukcji ciśnienia kierowany jest do sieci.

4 PL 230 197 B1 Przeprowadzono weryfikację metody rozprężania gazu ziemnego wysokometanowego z wykorzystaniem instalacji osuszającej gaz na bazie glikolu trietylenowego (TEG) dla stacji gazowej wysokiego ciśnienia o przepustowości 62 130 kg/h (90 260 m 3 /h) o ciśnieniu wejściowym 2,9 MPa i ciśnieniu wyjściowym 270 kpa, przy udziale masowym pary wodnej w mieszaninie gazu ziemnego na poziomie 1%. Skład gazu ziemnego (udziały masowe) CH4 97%; C2H6 0,3%; C3H8 0,3%; C4H10 0,4%; N2 0,9%; CO2 0,1%; Woda 1%. Dane dotyczące rozwiązań technicznych elementów instalacji przedstawiono w Tablicach 1 4. T a b l i c a 1. Dane dotyczące aparatów chemicznych instalacji redukcji ciśnienia gazu T a b l i c a 2. Dane dotyczące wymienników ciepła w instalacji redukcji ciśnienia gazu

PL 230 197 B1 5 T a b l i c a 3. Dane dotyczące przewodów instalacji redukcji ciśnienia gazu T a b l i c a 4. Dane dotyczące maszyn przepływowych i pozostałych aparatów instalacji redukcji ciśnienia gazu Zastrzeżenia patentowe 1. Sposób redukcji ciśnienia paliw gazowych, znamienny tym, że strumień gazu ziemnego lub mieszaniny gazów zawierający parę wodną kierowany jest do kolumny absorpcyjnej i kontaktowany w przeciwprądzie z ciekłym absorbentem, następnie osuszony gaz kieruje się do turboekspandera a następnie kieruje do sieci przy czym absorbent zawierający wodę poddaje się rozprężaniu na reduktorze ciśnienia a następnie wstępnie podgrzewa w wymienniku ciepła i przesyła na kolumnę destylacyjną, w której usuwa się wodę z roztworu i odprowadza ją w strumieniu pary za pośrednictwem skraplacza na górze kolumny a ciepło do regeneracji roztworu absorbenta dostarcza się za pośrednictwem elektrycznego reboilera zasilanego energią elektryczną z generatora napędzanego turboekspanderem natomiast absorbent po regeneracji przesyłany jest do wymiennika ciepła a następnie przepompowywany jest przez drugi wymiennik ciepła po czym kierowany jest do absorbera. 2. Sposób według zastrz. 1, znamienny tym, że jako ciekły absorbent stosuje się glikol trietylenowy.

6 PL 230 197 B1 Rysunki

PL 230 197 B1 7

8 PL 230 197 B1 Departament Wydawnictw UPRP Cena 2,46 zł (w tym 23% VAT)