WYZNACZANIE PRAWDOPODOBIEŃSTWA PODJĘCIA DECYZJI Z UŻYCIEM MODELU PROBITOWEGO I LOGITOWEGO

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE PRAWDOPODOBIEŃSTWA PODJĘCIA DECYZJI Z UŻYCIEM MODELU PROBITOWEGO I LOGITOWEGO"

Transkrypt

1 B A D A N I A O E R A C Y J N E I D E C Y Z J E Nr 005 Barbara BURYN* Mark FURA** WYZNACZANIE RAWDOODOBIEŃSWA ODJĘCIA DECYZJI Z UŻYCIEM MODEU ROBIOWEGO I OGIOWEGO Cl artkułu jst prtacja odl ch dchotocch: logtowgo probtowgo ora wróc uwag a ch srok astosowa w różch ddach auk. W artkul wkorstao odl rgrsj probtowj do waca prawdopodobństwa prjęca kaddata a Wdał Ekoo spcjalość Hadl spółdlcość Uwrsttu Rsowskgo. Słowa klucow: odl logtow odl probtow toda ajwęksj wargodośc Wl jawsk koocch społcch a charaktr jakoścow. Oaca to ż opsując da jawsko arówo alż jak alż prjują skońcoą lcbę wartośc. Z tgo tpu jawska a rguł do ca gd da dotcą pwch jdostk koocch p. gospodarstw doowch gospodarstw rolcch pojdcch kosutów dwdualch prdsęborstw pr c każda tch jdostk dokouj wboru spośród różch ożlwośc. rkładowo da gospodarstwo rolc oż dokoać akupu owgo cągka lub osoba poostająca b prac oż ją alźć lub pracowk oż udać sę do prac saochod trawaj c pso. Wbór każdj dostępch ożlwośc jst alż od różorodch cków płącch rolę ch objaśającch. Roważając a prkład ożlwość akupu skaa tak cka będą wątplw dochód kupującgo c ca skaa. Modl powalając okrślć prawdopodobństwo podjęca pr jdostkę koocą okrśloj dcj to odl probtow logtow. W praktc ajcęścj podjuj dcję o ralacj albo o odstąpu od ralacj jakgoś prdsęwęca. Dcj t oac odpowdo pr ora 0. Nch * Zakład Mtod Iloścowch Uwrstt Rsowsk ul. Ćwklńskj Rsów basabutr@o.pl ** Wżsa Skoła Iżrjo-Ekooca ul. Mckwca Ropcc arkura@ o.pl

2 38 B. BURYN M. FURA będ prawdopodobństw ż -ta jdostka kooca podj dcję 0 prawdopodobństw ż -ta jdostka kooca podj dcję 0. rkładowo ch badaą jdostką koocą będ roda ająca podjąć dcję dotcącą kupa saochodu. Oac pr wktor ch opsującch prrcj -tj rod wględ saochodu ającch wpłw a dcję dotcącą akupu. Nch gd jst wktor ach paratrów. rjj ż prawdopodobństwo podjęca dcj jst ualżo od t. ( ( 0 0 (. Nch Φ będ dstrbuatą stadarowago rokładu oralgo. W odlu probtow akłada sę ż jst wartoścą dstrbuatφ stadarowago rokładu oralgo N(0 dla t. t s s Φ ( ds ds. π π Ioracj o jdostkach koocch uskuj a podstaw -ltowj prób. Jj lt porądkuj w t sposób ż prjuj prwsch ( 0 jdostk któr podjęł dcję a poostałch któr podjęł dcję 0. Fukcja wargodośc dla tj prób alż od paratru a postać ( 0 ( ( Φ ( [ Φ ( ]. [ Φ ( ] Φ oważ ukcja ajwęksj wargodośc a postać locową węc w clu ala jj aksu wgod jst ją logartować. Wadoo ż aksu ukcj wargodośc ora aksu jj logartu ajdują sę w t sa pukc. Wobc tgo: l l l ( l lφ ( Φ [ Φ( ] Różckując ukcję l wględ dostaj l ϕ( Φ( Φ l[ Φ ( ]. ϕ( (

3 Waca prawdopodobństwa podjęca dcj gd ϕ oaca gęstość stadarowago rokładu oralgo. rrówując gradt l do ra otruj układ rówań którgo a poocą tod urcch wlca wartośc wktora paratrów. Wartośc odctuj tablc rokładu oralgo. Nch Φ oaca dstrbuatę rokładu logstcgo. W odlu logtow akłada sę ż jst wartoścą dstrbuat Φ rokładu logstcgo dla t. ( Φ. o prkstałcu otruj alżośc:. l W clu okrśla ukcj wargodośc wprowada ą podjuj dcję 0. jdostka -ta gd 0 podjuj dcję jdostka -ta gd Fukcja wargodośc -ltowj prób wraża sę wor (. ogartując otruj ] l( ( l [ ] ( l[ l. l( } l( } l( l } l( ] l( [l

4 40 B. BURYN M. FURA Następ aksaluj logart ukcj wargodośc stosując jdą urcch tod aksalacj. rocdura ta prowad do uskaa oc wktora paratrów. o ch uskau waca wartość a astęp wartość dstrbuat rokładu logstcgo dla wacogo. Za poocą aal probtowj chc wacć prawdopodobństwo prjęca kaddata a studa wżs a kruk Ekooa spcjalość Hadl spółdlcość Uwrsttu Rsowskgo. osłużą a do tgo da pochodąc prprowadoj rkrutacj w crwcu 004 r. rjęc kaddata a studa odbwało sę a podstaw kokursu śwadctw. Zalca bł oc śwadctwa dojrałośc prdotów: atatka gograa (w prpadku jj braku hstora jęk obc. O prjęc a studa ubgało sę 86 kaddatów cgo ostało prjętch osób. Za alża w odlu (dcja jst dchotoca cl prjuj dw wartośc: gd kaddat ostał prjęt a studa 0 w prcw ra. Z alż w odlu to: oca jęka obcgo oca atatk oca gogra (hstor a śwadctw dojrałośc. Są to jakoścow ogąc prjować wartośc: oważ o prjęcu a studa dcduj sua puktów uskaa trch prdotów objaśając ostał węc astąpo jdą ą alżą: sua puktów. rawdopodobństwo prjęca -kaddata a studa alż od wartośc: 0 [ ] [ ] K 86 gd: [ 0 ] wktor ach paratrów wartość j alżj dla -tgo kaddata wos t s s Φ( ds ds. π π W odlu probtow wartośc oc paratru uska todą ajwęksj wargodośc polgającą a wacu prób takch oc paratrów odlu któr aksalują wargodość prób statstcj prdstawoo w tabl. Wartość statstk dobroc dopasowaa χ aalowago odlu wskauj a stotość różc ęd aktual odl a odl tlko wra wol. Moż stwrdć ż a sua puktów stot wpłwa a dcję o prjęcu. Na podstaw tstu t-studta stwrda ż paratr dla j sua puktów wra wol są statstc stot.

5 Waca prawdopodobństwa podjęca dcj... 4 Wk stacj Modl: rgrsja probt; lcba 0:74 : (Butr 86 Za alża: dcja χ ( p Stała Sua puktów Oca Błąd stadardow t ( poo p Ź ródł o: opracowa włas a poocą paktu Statstca. abla rawdopodobństwo sukcsu dla -tgo kaddata w odlu probtow a postać Φ( gd Φ dstrbuata stadarowago rokładu oralgo. Oblc a poocą osacowago odlu prawdopodobństwo prjęca a studa kaddata któr uskał w kokurs śwadctw suę puków 4: Φ( Φ( Woskuj węc ż roważa kaddat a bardo ał sas prjęca a wbra kruk studów. Zajoość wacogo prawdopodobństwa błab r ważą oracją dla owgo kaddata. Calculato o dcso akg probablt usg probt ad logt odls h a o ths artcl s prstato o logt ad probt odls ad thr wd applcato a drt scc. ogt ad probt rgrsso ar usd or aalg th rlatoshp btw o or or dpdt varabls wth catgorcal dpdt varabl. hr ar a lot o advatags o logt (probt odls ovr lar ultpl rgrsso. hs thods pl that th dpdt varabl s actuall th rsult o a trasorato o a udrlg varabl whch s ot rstrctd rag. For xapl th probt odl assus that th actual udrlg dpdt varabl s asurd trs o valus or oral curv; o trasors thos valus or probablts th th prdctos or th dpdt varabl wll alwas all btw 0 od. hus w ar actuall prdctg probablts ro th dpdt varabls h probt odl was usd to calculat th probablt o adssos Rsów Uwrst spcalt Hadl spółdlcość. Kwords: logt odl probt odl axu lklhood

Instrukcja dodawania reklamy

Instrukcja dodawania reklamy Istrukja dodawaa rklam b s tu P w r st la m uj m C S ku t r k www.p.om www.sawa.om www.orst.om fabook.om/p a h Krok 1 Rjstraja owgo użtkowka la m uj m 1. Whodm a jd trh portal, klkam a lk dodaj rklamę

Bardziej szczegółowo

ń Ę ń Ś Ą Ń ż Ą ż ż ż ż ż ć ć ż ż ż ż ż ń ź ż ż ż ć ż ć ż ż ż ż ż ń Ą ż ń ń ż ń Ń Ę ż ź ń ż ć ć ń ż ż ż ń ż ż ż ć ć ń Ń ń ż ż Ń ć Ę ń ć ć ż ż ż ż ń Ę ń ż Ź Ś ż ć ć ż Ś ż ż ć ń ń ż ć ć ż Óż ń ń ż ż ć ć

Bardziej szczegółowo

Ł ź ź ź

Ł ź ź ź Ń ź Ó Ć Ą Ą Ń Ą Ą Ą Ą ź Ż Ł ź ź ź Ń Ń Ą Ą ź ź ź Ń Ł Ź Ł Ż Ń Ó Ł Ż Ś Ó Ą Ń Ł Ż Ś ź ź Ż ź ź ź Ą ź Ą Ą ź Ć ź ź Ń Ą Ą Ń Ł Ś Ą Ą Ł Ł Ą Ń Ń Ń Ł Ą Ą Ą Ż Ą Ą Ą ź Ą Ą Ą Ł Ł ź Ó Ń Ł Ś Ż Ą Ą ź Ł Ó Ż Ł Ń Ś Ż ź

Bardziej szczegółowo

Ł Ś Ś Ń Ń

Ł Ś Ś Ń Ń Ą Ą Ć ź Ł Ł Ł Ś Ł Ś Ś Ń Ń Ł Ó ź ź ź Ą ź Ś Ś ź Ź Ź Ź Ż Ź Ś Ż Ć Ź Ż Ż Ó Ś Ż Ń Ą Ó Ź Ś Ś ź Ł Ą ź Ź Ć Ź Ą Ż ź Ż Ó Ś Ą Ą Ż Ź Ó Ś Ś Ż Ą ź ź ÓŻ Ś Ż Ź Ł Ż Ś Ś Ś Ż Ż Ś Ł Ź Ś ź ź Ą ź Ź Ż Ó Ś Ż Ż Ź Ź Ź Ż ź Ź Ł Ń

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

Mikroskopia polaryzacyjna

Mikroskopia polaryzacyjna Mikroskopia polaracja Wktorow opis fali lktromagtcj r,t H r,t Dr,t B r,t -wktor atężia pola lktrcgo -wktor atężia pola magtcgo -wktor idukcji dilktrcj -wktor idukcji magtcj Wktor t, którch współręd alżą

Bardziej szczegółowo

Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą

Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą Ą ź Ą Ą Ź Ń ź Ł Ł Ó Ą ć ć Ó Ą Ź Ó ć Ó Ó Ę Ą Ó Ó Ź Ó Ó ć ć Ź ć Ł Ź ć ć Ą Ó Ź Ó Ó ć ć ć Ł Ę ź Ę Ę Ę Ę Ę Ę Ę ć Ę Ź Ę Ę ć Ó Ę ć Ó ź Ę ÓÓ Ę Ę Ź Ó Ó ÓŹ Ł Ź Ź Ę ć Ó Ó Ź Ó Ó Ą ÓĘĘ Ó Ą Ź Ó Ó Ź Ć ÓŹ Ó ć Ą Ć Ę Ć

Bardziej szczegółowo

Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ

Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ É ý đ Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ Ł Ż Ł Ż őź á í ň Ż ű ä Ľ ô ď ŕ ć ć ć éŕ Ż ŕ ć Ł Ż Đ ŕ Ü É í ć Ł ŕ ź Ł Ł Ł ć Ó ő á ť Ó ĐŃ Üŕ ŁÓ

Bardziej szczegółowo

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H

16, zbudowano test jednostajnie najmocniejszy dla weryfikacji hipotezy H Zada Zakładając, ż zm losow,,, 6 są zalż mają rozkłady ormal ~ N( m, ),,, 6, zbudowao tst jdostaj ajmocjszy dla wryfkacj hpotzy H 0 : m 0 przy altratyw H : m 0 a pozom stotośc 0,05 W rzczywstośc okazało

Bardziej szczegółowo

Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć

Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć Ł Ę Ś ć Ć ć ć Ź ć ć ć Ź ć ć Ś ć Ź ć Ź ć ć ć ź ć ć ć ć Ź Ć ćś ć ć Ć ć ć Ź ć ć ć Ś ć Ć ć Ś Ć ć ć Ś ć Ś ć Ś ć Ś Ć Ź ć ć ź Ź ć Ś Ć Ć Ą Ć Ś Ś Ś Ś Ś Ś Ś Ź Ć Ź Ź ŚĆ Ś Ę ź Ś Ź Ź Ź ć ć Ś Ś Ś Ś Ź Ź Ś Ś Ć Ś ć Ć Ą

Bardziej szczegółowo

Ż Ń

Ż Ń Ó Ń ź ź Ś ź Ó ź Ż Ń Ś ź Ź ź Ż Ż Ś Ń Ć Ś ź ź ź Ż ź Ń ź ź ź Ń Ń Ń Ń ź Ć ź ź ź Ś Ś Ś Ó Ó Ż Ś ź ź ź ź ź ź ź ź Ś ź Ś Ś Ś Ć Ś Ś Ś Ż Ć Ż ź Ń Ż ź Ń ź Ń Ś Ó ź Ń ź Ń ź ź ź Ń Ń ź Ś ź Ń Ć Ń Ń ź ź Ń ź Ń ź Ś ź Ń Ń

Bardziej szczegółowo

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,

Bardziej szczegółowo

ć Ó Ó Ż

ć Ó Ó Ż Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo

ń ż Ż

ń ż Ż Ł ń ć ń Ż ń ż Ż Ę ń Ź Ż Ń ż ń ż Ż ń ż Ć Ę Ę ć ć ż ć ń ć ć ć ć ć ć Ę ń ć ń Ż ć Ą Ż ć ń ż ć ć Ń Ń ż ć ć ć Ż ć ź ż ć ć ć ż Ę ć ć Ń ć ż ć Ą ć ć ć Ę ć ń ż ć ć ń Ń ż ń ć Ą ż ć ń ć ż ż Ę Ź Ż Ż ń Ę Ż Ę Ę ż ń ż

Bardziej szczegółowo

Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó

Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó Ł ÓŁ Ł Ż Ę Ł Ł Ł Ł ó ż ó ó ó ó ó Ń ó ó ó ó ó ó Ł Ę Ł ó ó Ł ó Ę Ł Ż Ę ź ó ż ż ó ó ć Ę ż ć ż ó ó ó Ą ż ó ó ó ó ó ó ó ó ó ó ó ó Ń Ć Ż ó Ż Ę Ś ó ó Ą Ę ż ż ż Ń Ń ż ć Ść ó ŚĆ ó Ę ć ż Ź ŚĆ ź Ę Ś ć ó ó Ś ż ź Ó

Bardziej szczegółowo

Ć ź Ą

Ć ź Ą ć Ż Ł Ć ź Ą ć ć ć ź ć ć ć Ń ć ć ć ć Ó ć ć ć Ć Ł ź ć ź ć ć ć ć ć Ż ź ć Ń ć Ź Ó Ń ć ć ć ć ć ź ć ć ć Ą ć ź ź ć Ą ź ć ź ć Ą ć ź ć ć ć ź Ń ć ź ź ć ź Ź ć ź Ń ć ź ź ć Ą ć ź ć ź ź Ą ć ć Ń ź ź Ą ć ź ć ź ć ć ź ć

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

Dynamika układu punktów materialnych

Dynamika układu punktów materialnych Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł

Bardziej szczegółowo

Ń Ł Ł

Ń Ł Ł Ń ź Ż Ń Ł Ł ĄŁ Ź ć ć Ó Ś ć Ź Ś Ż ć Ł ć ć ć Ą Ż ć Ż ć Ż Ą ć Ą Ś Ł Ł Ś Ń Ź ć Ó Ź ź ĄŁ Ą Ł Ą Ó Ś Ź Ż Ń ć Ą Ź ź Ź Ą Ź Ż Ź ź ć Ż Ż Ż Ś Ż ć ź Ć Ś Ź ć Ź ć Ż Ź Ó Ł ÓŁ Ł Ó Ł Ź Ś Ż Ź Ą ź Ę Ą Ś Ź Ź Ę Ś Ń Ż Ź Ł ź

Bardziej szczegółowo

Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź

Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź Ź Ą ź Ż Ź Ź Ż Ż Ż Ż Ż Ź Ż Ź Ź Ż ź ź ź Ż Ż Ż Ą Ź Ź Ź ź Ź Ż Ź ź ź Ź Ź Ź Ż Ź Ź Ż Ź Ą Ź Ż ź Ź Ż Ł Ź Ł Ź Ł Ł Ą Ą Ł Ą ź Ż Ą Ń Ń Ń Ą Ń Ń Ą Ń Ą Ł Ł Ł Ż Ź ź Ź Ą Ż Ą Ą Ą Ź Ź Ź Ź Ź ź ź Ż Ą Ź Ł Ł ź Ż ź Ł Ż Ż Ł Ł

Bardziej szczegółowo

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś

Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ś ż ź ż ś Ż ż Ź ś ż ż ś Ą Ą Ź ż Ż ś ż ż Ż Ż ż ć ś ś ć ć Ń ź ś Ż ć ż ż ś ś ś ż ż ś ź Ą ż Ń ż ż ż Ż ź ż ść Ż ś ź ź ś Ś ź ś ś Ą Ż ś Ż ś Ż ś ż ż ś ż ść ś ż ż ś ż ś ż ć ś ś ź ś ż ś ż ź ż ż ź ź Ó ż ć ż ż ż ź

Bardziej szczegółowo

ń Ó ń Ó Ź Ą Ż ń ć Ą ń ń ń ń Ł Ą Ą

ń Ó ń Ó Ź Ą Ż ń ć Ą ń ń ń ń Ł Ą Ą Ł Ó ć Ą ń Ą ń Ą ń ń Ł Ą ń Ó ń Ó Ź Ą Ż ń ć Ą ń ń ń ń Ł Ą Ą ć Ó Ż ń Ó ń Ź Ó ń ń Ó ń Ó Ł Ą Ó Ź Ż Ż ń Ż ń Ź Ó ń ń ń Ó ń ń ń ń ń Ą Ł ń Ł ń Ó Ó Ó Ą Ł Ł Ż Ń Ł Ą ć Ą ń Ó Ń Ł Ą Ó Ń ń ć ń Ż Ó ć ć ć ć ń ń ń ń ń ń

Bardziej szczegółowo

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń Ą Ł Ę Ó ń Ó ć Ś ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń ź ń Ń Ą Ó ĄŁ Ł Ś Ą Ś Ó Ń Ó Ś Ń ń ć ć Ó Ę Ó Ą Ą ź ź ń Ł Ś Ę ć ć ń ć ź ć ć ź ć ć Ó Ą Ń Ż ń ć ć ń Ń ć ć ź ć ć ć ć ć ń ń ć Ą Ń Ę ń ń Ń ź ź ń Ń ń Ń ć ń ń ć ć

Bardziej szczegółowo

ń Ł ń ź ń ć Ż Ż ć Ż Ż ć Ą Ź ń Ś ń Ż ź ć Ż ź Ż Ż ć Ż Ź Ś Ż Ł Ź Ż ć Ś ń Ż ń Ść ń Ż Ś Ż Ś ć Ź ń Ł Ż ć Ż Ż Ś ć Ł ń Ż ć Ś ń Ł ć Ż Ż ć ć ć Ż ć ń ź Ż Ż Ż ń Ż Ż ń Ć Ź ń Ź ć Ż ć ć ć Ń ć Ł Ż Ż ć Ż Ż Ż ć Ż ć Ś ć

Bardziej szczegółowo

Ę ź Ą

Ę ź Ą Ę ź Ą Ę Ł Ń Ż Ż ć Ł ć ć ć ć Ż Ż Ć Ż ć Ż Ż Ń Ć Ć Ć Ż ć ć ć Ć ć Ż Ż Ć Ć Ż Ż Ź Ż Ż ć ć ć Ż Ż Ć Ć Ż Ź Ż Ż ć Ż Ż Ć Ż ć Ż Ł Ń Ę ć Ż Ł Ż ć Ć ć ć Ę Ż ć Ć Ż ć ć Ź Ć ć Ć Ź ć ć ć Ć ć ć Ż ć ć ć ć Ż Ę ć Ę Ć ć Ć Ą Ż

Bardziej szczegółowo

Ś

Ś ź Ś ź Ż Ż Ż Ż ć Ś Ó Ń ć ć Ż Ż Ż Ż ń ć Ż Ż Ż Ż Ą Ś ć Ź Ż ć ć Ż ć ć Ż Ż Ż Ż Ż ć Ó Ó ź Ż Ż ź ź Ś Ż ć Ż ć ć Ą Ż ź Ż ź Ż ć Ż Ż Ż Ź Ż Ż ź ć ć ć ć Ż ć ć ć ć Ż Ż ź ź Ż Ż Ś ć Ź ć ć ć ć ć Ż ć ć ć ć ć Ż ć ć ć Ż Ń

Bardziej szczegółowo

Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć

Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć ż ż Ą ż Ż Ć Ó Ż Ń Ń ć ż ć Ż Ż ć ż Ż ć Ż ć Ż ć Ż Ó Ż ć Ó Ą ż ć Ż Ż ć ż ć Ż ć Ż Ż Ż Ż Ż Ż Ó Ż Ż Ó Ż Ż Ś Ś Ś ż Ż Ś Ó ż Ż Ż Ń Ż ż ć ż ż ż ż Ń Ś Ó Ż Ś Ż ć Ś Ś ć ż Ś Ą Ż Ś Ń Ń Ś Ż ż Ś ż Ż Ą Ż Ś Ż ż Ś ć Ś Ś Ż

Bardziej szczegółowo

Polaryzacja i ośrodki dwójłomne. Częśd I

Polaryzacja i ośrodki dwójłomne. Częśd I Polaracja ośrodk dwójłom Cęśd Wkorow ops fal lkromagcj r, H r, D r, B r, -wkor aęża pola lkrcgo -wkor aęża pola magcgo -wkor dukcj dlkrcj -wkor dukcj magcj Wkor, kórch współręd alżą od położa casu, powąa

Bardziej szczegółowo

Ą Ą Ś Ń Ć Ó Ą Ą

Ą Ą Ś Ń Ć Ó Ą Ą Ń Ś Ą Ż Ż Ś Ż Ź Ń Ą Ą Ś Ń Ć Ó Ą Ą Ś Ą Ź Ń Ó Ś Ć Ż Ą Ą Ć Ż Ó Ą Ó Ą Ć Ś Ą Ą Ń Ń Ń Ń Ń Ą Ń Ą Ń Ń Ń Ń Ą Ń Ń Ń Ń Ń Ń Ń Ń Ś Ą Ń Ś Ś Ó Ś Ó Ą Ń Ś Ą Ś Ą Ś Ś Ż Ą Ą Ą Ą Ą Ś Ą Ś Ó Ą Ś Ś Ś Ń Ń Ż Ą Ś Ś Ą Ń Ż

Bardziej szczegółowo

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności

Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam

Bardziej szczegółowo

Ż ż ż ź ś ż ś ż ż ż ż ż ś ż ź ś ś ż ść ż ś ż ż ż Ż ż ż ż ż ć ś ż ż ż ć ż ż ż ś Ż ć ś ż ś ż ż ż ś ż ś ż ś ś ż ż ś ś ść ż ść ść ś ś ś ś ś ś ż ć ż Ł ż Ń ź ź ś ś ś ż ć ś Ź ść ść ż ż ć ż ż Ą Ż ś Ń Ł ż ś ż ż

Bardziej szczegółowo

ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż

ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż Ż Ż ć ż ć ż Ż ć ż ć Ż ż ć ż ć Ż ć ć ć ć Ż źń ż ć ć Ż ż Ż Ę ć ź Ż Ż ż ń Ź ÓŻ ń ż ź Ą ń ż ć Ź ć ż ż ż ż ń ż ż ż ż ż Ż ż ń Ó ż ń ć ć ż Ć Ż ć ź Ż Ż ć Ż ż Ż Ę ż Ó Ć ć Ł Ę Ą Ł ĘŚ ż Ż Ż ć ć ć Ć Ą Ć ć ć ć ć ż

Bardziej szczegółowo

Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż

Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ł Ń Ń Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ś Ł Ś Ś ó ż ć ó ó óż ó ć ó ć ż ć ż Ć ż ż ć ó ó ó ó Ś ó ż ż ŚĆ ż ż ż Ś ż ó ó ó ó Ą Ć ż ó ó ż ó Ę ż ó ó ó Ś ć ż ż ć ó Ę ć Ś ó ż ć ż ć ż ć ż Ę ó ż ż ź ó Ę Ę ó ó ż ó ó ć

Bardziej szczegółowo

Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż

Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż Ś ż Ó ż ż ć Ż Ą Ą ć Ż Ż ć Ż ż ć Ż ż Ż Ź Ż ż ż ż ć Ź ż ć Ż ć Ż Ó ż Ż Ż ć Ż Ż ć ż ć Ż Ż ż ć ż Ż ż ż ż ż ż Ó ć ż ż ż Ź ż ż Ź Ż ż ź Ó Ó ć ć ć ć Ź ć ż ć ć Ó ż ż Ń Ż Ó ć ć ć ć ć ć ć Ź Ż ż Ż Ó ż ż Ź ć Ą ż ż Ż

Bardziej szczegółowo

Ł Ę ó Ę Ł Ó Ś Ź Ł ó ó Ń Ł Ę Ł

Ł Ę ó Ę Ł Ó Ś Ź Ł ó ó Ń Ł Ę Ł Ł Ł Ń Ń Ł Ę ó Ę Ł Ó Ś Ź Ł ó ó Ń Ł Ę Ł Ł Ó Ń Ł ó ó ó ó ó ó ć ć ć ć ó Ż ó ó Ą óź ó ó ó Ł ć ó ó ó ó ó ć ó Ó ó ó Ś ó ó ó Ś Ś ó ó ć Ż ź ó ó ó ó Ę Ą Ą ó ó ó ó ó ó ć ó ó ć ó ó ć ć ó ó ó Ą Ł Ń Ż Ą Ż Ą ó ź ó ó

Bardziej szczegółowo

ź ć ó ó ó ó Ż Ę ó ó Ę Ę Ą ń Ę ń

ź ć ó ó ó ó Ż Ę ó ó Ę Ę Ą ń Ę ń Ł ó óż ź Ł ó ó ó ó ć ć ć ć ć Ś ó ó ó ó ó ó Ż Ą ń ź ć ó ó ó ó Ż Ę ó ó Ę Ę Ą ń Ę ń Ń Ą Ą Ą ŁŁ Ą ń Ł ó ó ó ó Ź ć ó ó ó ć Ą ó Ł ń ó ź ć Ź ć ź Ę Ę Ź ź ź Ż ź Ź Ń ź ć ź ć Ź ć Ź ć Ż ć ź ć ź ć ź ź ć Ą Ź ć ć ć ź

Bardziej szczegółowo

ść ść ś ś Ą ż Ść ś Ó Ó ś ń ś ń ś ń Ć Ż ż Ó Ż Ó Ó żó ń Ó ś Ż ń ż Ź ś

ść ść ś ś Ą ż Ść ś Ó Ó ś ń ś ń ś ń Ć Ż ż Ó Ż Ó Ó żó ń Ó ś Ż ń ż Ź ś ś Ó Ó Ó Ó ś ń Ę ś ś Ó Ó Ż ń ń ż ń ś ż Ó ś Ó ś Ż ś ń Ó Ż ń Ó ń Ó Ż ń Ó ś Ó Ó ń Ó Ę ść ść ść ś ś Ą ż Ść ś Ó Ó ś ń ś ń ś ń Ć Ż ż Ó Ż Ó Ó żó ń Ó ś Ż ń ż Ź ś ś ńą ś ś ż ś ż Ó Ż ś Ó Ó Ó Ź Ó Ó Ś Ó Ó Ó Ó Ę ś Ę

Bardziej szczegółowo

ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą

ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą ć ć ń ń ć ć ć ć ń ć ń ć ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą ć Ó Ż ÓŻ ć Ó Ó Ż Ó Ż Ó ń Ó Ż ć Ż ń ź ć ć ć ć ć ć ć ń ź ń Ż ć Ł Ź ć ć ź ź ć ć Ż Ś Ż Ż Ó ć ź ć ć ń ć ń Ą ń Ą Ó ć Ó ć Ś ć ć ć ń Ś ć ć Ż

Bardziej szczegółowo